Invertible Bloom Lookup Tables (aka Invertible Bloom Filters)

Hashing large sets in small memory for future reconciliation
IBLT: Invertible Bloom Lookup Table

- U: universe of possible elements
- K: subset of elements, $|K| = n$
- IBLT: table $T[0..m-1]$
- $T[i]$ has fields $T[i].\text{keysum}$ and $T[i].\text{counter}$
- d hash functions $h_1, \ldots, h_d: U \rightarrow \{0, \ldots, m-1\}$
IBLT: Invertible Bloom Lookup Table

- U: universe of possible elements
- K: subset of elements, $|K| = n$
- IBLT: table $T[0..m-1]$
- $T[i]$ has fields $T[i].\text{keysum}$ and $T[i].\text{counter}$
- d hash functions h_1, \ldots, h_d: $U \rightarrow \{0, \ldots, m-1\}$

INSERT(k): for every j,

- $T[h_j(k)].\text{keysum} \leftarrow T[h_j(k)].\text{keysum} + k$ \hspace{1cm} (+ or \oplus)
- $T[h_j(k)].\text{counter} \leftarrow T[h_j(k)].\text{counter} + 1$

DELETE(k): for every i,

- $T[h_j(k)].\text{keysum} \leftarrow T[h_j(k)].\text{keysum} - k$ \hspace{1cm} (− or \oplus)
- $T[h_j(k)].\text{counter} \leftarrow T[h_j(k)].\text{counter} - 1$
IBLT: Invertible Bloom Lookup Table

- U : universe of possible elements
- K : subset of elements, $|K| = n$
- IBLT: table $T[0..m - 1]$
- $T[i]$ has fields $T[i].\text{keysum}$ and $T[i].\text{counter}$
- d hash functions $h_1, ..., h_d: U \rightarrow \{0, ..., m - 1\}$

- **LIST_KEYS(T):**
 - while there exists index i with $T[i].\text{counter} = 1$
 - for some i do DELETE($T[i].\text{keysum}$)
- **LIST_KEYS(T) succeeds** if the resulting table is empty
LIST_KEYS(A): properties

- LIST_KEYS(A) can be implemented in $O(m)$ time
- success of LIST_KEYS is closely related to peelability of underlying (hyper)graph
- phase transition ($c_d = m/n$)

<table>
<thead>
<tr>
<th>d</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_d</td>
<td>1.222</td>
<td>1.295</td>
<td>1.425</td>
<td>1.570</td>
<td>1.721</td>
</tr>
</tbody>
</table>

- if $m > (c_d + \varepsilon)n$, then LIST_KEYS(T) succeeds with probability $1 - o(1)$ when $n \to \infty$
Application: set reconciliation

- Assume Alice and Bob hold respectively sets S_A and S_B such that $S_B \subseteq S_A$ and $\Delta = S_A \setminus S_B$ is small compared to S_A, S_B.
Application: set reconciliation

- Assume A(lice) and B(ob) hold respectively sets S_A and S_B such that $S_B \subseteq S_A$ and $\Delta = S_A \setminus S_B$ is small compared to S_A, S_B

- to find out $S_A \setminus S_B$,
 - A builds a IBLT for S_A of size $O(|\Delta|)$ and sends it to B
 - B deletes all elements of S_B
 - the resulting IBLT can be used to list $S_A \setminus S_B$
Application: set reconciliation

- Assume Alice and Bob hold respectively sets S_A and S_B such that $S_B \subseteq S_A$ and $\Delta = S_A \setminus S_B$ is small compared to S_A, S_B
- to find out $S_A \setminus S_B$,
 - A builds a IBLT for S_A of size $O(|\Delta|)$ and sends it to B
 - B deletes all elements of S_B
 - the resulting IBLT can be used to list $S_A \setminus S_B$

Comments:
- condition $S_B \subseteq S_A$ is not necessary, we can consider symmetric difference $\Delta = S_A \setminus S_B \cup S_B \setminus S_A$
- Δ can even be recovered from IBLTs of S_A and S_B
IBLT: more comments

- IBLT can also store a satellite ‘value’ information via an additional *valuesum* field.
- Retrieval of the key value (or key membership) is not supported in general, but elements with $A[h_j(k)].\text{counter} = 1$ for some j can be retrieved.
- Supports deletion of an element that is in the current set (otherwise the data structure is corrupted); can be handled by an additional *hashsum* field.
Count-Min sketch (aka Spectral Bloom filter)

Storing count information
How to support deletions in Bloom filters?
How to support deletions in Bloom filters?

- **Counting Bloom filter**: Bloom filter that, instead of 0 and 1, stores (small) counters

 - INSERT\((k)\): \(B[h_i(k)] \leftarrow B[h_i(k)] + 1\) for all \(i\)
 - LOOKUP\((k)\): check \(B[h_i(k)] > 0\) for all \(i\)
 - DELETE\((k)\): \(B[h_i(k)] \leftarrow B[h_i(k)] - 1\) for all \(i\)

- Also works for multi-sets

- Analysis shows that if Bloom filter is properly dimensioned (e.g. \(m/n \approx 10\)), then counters remain small (e.g. \(< 2^4 = 16\) [Fan et al. IEEE/ACM Trans. on Networking, 2000]
CountMin sketch

- What if we want to estimate the multiplicities (number of occurrences) of elements of a multi-set stored in a counting Bloom filter?
- Streaming framework
- *Example:* \(m = 8, \ C[0..7] \)

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1)</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>(h_2)</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

\(\text{b a d a e f c a ...} \)

#a? #e? #f? \(\uparrow \)

#c? #e? #f? \(\uparrow \)
CountMin: operations

- **UPDATE**(k): \(C[h_i(k)] \leftarrow C[h_i(k)] + 1 \) for all \(i \)
- count estimate of \(k \): \(\hat{f}(k) = \min_i h_i(k) \)

Let \(f(k) \) be the true count of \(k \)

Property: \(\hat{f}(k) \geq f(k) \)
CountMin sketch: analysis

- **Theorem**: if \(d = \log_2 \frac{1}{\delta} \) and \(m = \frac{ed}{\varepsilon} \), then
 \[
P[\hat{f}(k) \geq f(k) + \varepsilon N] \leq \delta,
 \]
 where \(d \) is the number of hash functions, \(f(k) \) is the true count of \(k \) and \(N \) is the total number of elements in the stream

Proof: \(C[h_i(k)] = f(k) + X_i(k) \)

\[
E[X_i(k)] = \frac{1}{m} \sum_{l \neq k} f(l) + \sum_{j \neq i} \frac{1}{m} \sum_k f(k) \leq \frac{d}{m} N = \frac{\varepsilon}{e} N
\]

\[
P[X_i(k) > \varepsilon N] < \frac{1}{e}
\]

Since \(\hat{f}(k) = f(k) + \min_i X_i(k) \), we have

\[
P[\hat{f}(k) - f(k) \geq \varepsilon N] \leq e^{-d} = \delta
\]
CountMin: properties

- Total space $m = \frac{e}{\varepsilon} \log \frac{1}{\delta}$
- Bound in Theorem is in terms of N
- CM-sketch also applies to increments > 1
- Decrements (“deletions”) are also supported provided that counters remain non-negatives
Application: **Heavy Hitters**

- Assume we want to output all elements that occur $N/50$ of times.
- Set $\varepsilon = 1/100$, build CountMin sketch ($m = 271 \cdot \log \frac{1}{\delta}$) and output all elements with CountMin estimate $\geq N/50$ (N known in advance).
- Then we will output all desired elements, but also some elements occurring less, but not less than $N/100$, with $p = 1 - \delta$.
What if N is not known in advance?

- **Idea**: Maintain a min-heap of current frequent items, update after each element.
- After processing each element x, estimate $\hat{f}(x)$.
- If $\hat{f}(x) \geq \varepsilon N$ (N current stream size), insert x to the heap with value $\hat{f}(x)$ (or update if it was already there).
- If the smallest value of the heap (computed in $O(1)$) is $< \varepsilon N$, delete it from the heap.
- At the end, output all elements of the heap.
Sketches for mining big data streams
Processing big streaming data

- Big data is often streamed from a data source (sensors, cameras, internet, phone calls, …) or has to be processed in a streaming fashion (genomes, …)

- Common characteristics:
 - data comes at a (very) high rate
 - data cannot be stored, small working memory used
 - data should be processed online, in low time per item
 - approximate answers are often ok
Example 1: Sampling a stream

- **General idea**: sample a stream (e.g. consider 1/10 of the items) in hope that the sampled stream will have similar properties.
- **Cannot be done by simply sampling 1 over 10 items!**
- **Why?**
Example 1: Sampling a stream

- **General idea:** sample a stream (e.g. consider 1/10 of the items) in hope that the sampled stream will have similar properties.
- Cannot be done by simply sampling 1 over 10 items!
- **Why?** Assume we have a stream where s items occur once and d occur twice, and we want to estimate the fraction of repeated elements (right answer $\frac{d}{s+d}$).

If we sample each element with $p = \frac{1}{10}$, then out of d repeated items, $\frac{d}{100}$ will occur twice in the sample, $\frac{81 \cdot d}{100}$ will disappear, and $\frac{18d}{100}$ will become unique.

The estimate will be $\frac{d}{s + \frac{18d}{100} + \frac{d}{100}} = \frac{d}{10s + 19d}$.

Sampling a stream (cont)

- How to solve this problem?
Sampling a stream (cont)

- How to solve this problem? Use hash functions!

- Hash items to numbers, sample those whose hash ends with 0 (in decimal notation)
Example 2: Checking if an element has been “seen before”
Example 2: Checking if an element has been “seen before”

- Can be done with Bloom filters!
Example 3: Keeping multiplicities of elements and maintaining “heavy hitters”

- Find frequent (often occurring) elements in a stream

- *Example*: frequently viewed products in an online shop
Example 3: Keeping multiplicities of elements and maintaining “heavy hitters”

- Can be done with **CountMin** sketch!
Example 4: Counting distinct elements in a stream

- **Count-distinct problem**: count the number of distinct elements in a (very large) stream

 - **Examples**:
 - estimating the cardinality for memory allocation (Bloom filter)
 - unique users of a web site,
 - distinct IP addresses (routers, web servers, …)
 - detecting DoS attacks
 - number of distinct words (k-mers) in a (streamed) text (DNA sequence)
 - …
Approximate (probabilistic) counting (Morris 1977)

- Robert Morris (Bell Labs): maintain the logs of a very large number of events in small registers

Algorithm:
- maintain K that stores (approx value of) $\log(n)$, i.e. size of K is $\log \log(n)$
- initialize $K = 0$
- when a new event arrives, increment K with probability 2^{-K}
- K reaches a value k after expected $1 + 2 + 4 + \cdots + 2^{k-1} = 2^k - 1$ steps, i.e. $E[2^K - 1] = N$ (N is true count)
- $\sigma^2 = N(N - 1)/2$ i.e. $\sigma \approx N/\sqrt{2}$ (70% of N)
Try this

- Implement this and run several times, acquire statistics:

 pick \(N \) (e.g. \(N = 15 \))
 \(c = 0 \)
 for \(i = 1 \) to \(2^N \) do
 increment \(c \) with probability \(2^{-c} \)
 print \(c \) // compare \(c \) with \(N \)
Try this

- Implement this and run several times, acquire statistics:

pick N (e.g. $N = 15$)
$c = 0$
for $i = 1$ to 2^c do
 increment c with probability 2^{-c}
print c // compare c with N
How to improve?

- **Improvement 1**: change base of logarithms from 2 to some smaller \(b \ (b > 1) \), count \(\log_b N \)
 - increment \(K \) with probability \(b^{-K} \)
 - \(E[b^K - 1] = (b - 1)N, \sigma^2 = (b - 1)N(N - 1)/2 \)
 - price: space increased from \(\log \log n \) to \(\log \log_b n \)

- **Improvement 2**: keep \(m \) counters instead of just one, then compute the average/median …
Counting distinct elements in a stream
[Flajolet & Martin 85]

Main idea:

- hash elements into (binary) numbers $[0..2^L - 1]$ using a good hash function h
- hashes $\ldots x\ldots x\ldots$ are expected to occur $1/2$ time, $\ldots x\ldots x\ldots x\ldots 10$ are expected $1/4$ time, $\ldots x\ldots x\ldots x\ldots 100$ $1/8$ time, etc.
- $\max_k[\text{hash } \ldots 10^i]$ are all observed for $0 \leq i \leq k]+1$ is a good indication of $\log N$ (N nb of distinct elements)
Flajolet & Martin algorithm: implementation

- maintain a bitmap of size L, set all bits to 0
- for each hash, compute position of the rightmost 1 and set the corresponding bit of bitmap to 1
- let i be the position (from right) of the rightmost 0 in bitmap
- then the nb N of unique elements is estimated as $2^{i-1}/\varphi$, $\varphi=0.77351..$

Intuition: if $i \ll \log N + 1$, then it is almost certainly 1; if $i \gg \log N + 1$, then i-th bit of bitmap is almost certainly 0

- Pb: big variance of results (accuracy within a factor of ~ 2)
- **Solution 1**: run the algo m times, then take average/median/combination (accuracy $O(1/\sqrt{m})$)
- **Solution 2 [FM]**: stochastic averaging
 - use first k bits of hash to dispatch elements into $m = 2k$ bins, then average; accuracy $\approx 0.78/\sqrt{m}$