A Method for Compressing Lexicons

Strahil Ristov, Rudjer Boskovic Ingtitute, Zagreb, Croatia, ristov@rudjer.irb.hr
Eric Laporte, Université de Marne-la-Vallée, France, laporte@bastille.univ-mlv.fr

Lexicon lookup is an essential part of almost every natura language processing
system. Natural language lexicon is a set of strings where each string consists of a
word and the associated linguistic data. Its computer representation is a structure that
returns appropriate linguistic data on a given input word. It should be small and fast.
We are proposing a method for lexicon compression based on a very efficient trie
compression method [2] and the inverted file paradigm [3]. The method was applied
on a 664 000 gtring, 18 Mbyte, French phonetic and grammatical electronic dictionary
for spelling-to-phonetics conversion. Entries in the lexicon are strings consisting of a
word, it's phonetic transcription, and some additional codes. An example entry is
(phonétique,fonetik,.A31:fs).

Although a trie can be built from original lexicon and compressed, the compression
performance is much better for sets of shorter strings. The phonetic lexicon can be
separated in two sets of shorter strings: words and phonetics, where only French words
are in the first, and the phonetic transcriptions and the additional data in the second.
When compressed tries are produced from two sets, the sum of their sizes is much less
than the size of the compressed original lexicon. The challenge lies in how to connect
appropriate word/phonetics pairs in two structures in such a way that overall reduction
in size justifies the added complication. To compress the trie efficiently, input sets
must be sorted in advance [2] therefore in-set ordering can’'t be used. Furthermore,
there may exist multiple phonetics for a given word, so the problem is a complex one.
It can be solved in away reminiscent to inverted file index compression [3].
Compressed trie allows for a procedure that transforms it to order preserving minimal
perfect hash function [1]. The number of final states that can be reached from the node
intrie is stored in the node. Then, when traversing the trie following the input word we
can extract that word's ordinal number. Inversely, a word can be obtained through its
number. Since members of pairs word/phonetics don't have the same numbers, some
sort of index must be built. The index is a list of phonetics numbers for each word
number. The search procedure then goes as follows. First, input word is looked up in
wordstrie, if it exists anumber w is returned. Then, the list of phonetics numbers py in
index position w is retrieved. Finally, phonetics trie is searched returning phonetics
entry for every number in the list. The largest part of the system is index so it is
compressed as follows. Every N-th list in index starts with the explicit phonetics
number and the rest of the numbers are represented as the difference from the
preceding value enabling very good compression with canonical Huffman codes. The
drawback is necessity for slower sequential search but the speed is still acceptable:
tens of thousands words per second for N around 100. Overall size of our compressed
searchable lexicon is 7% of its textual representation.

[1] Lucches and Kowaltowski. Applications of finite automata representing large
vocabularies, Software-Practice and Experience, 23(1) pp. 15-30, 1993.

[2] Ristov and Laporte. Ziv Lempel compression of huge natural language data tries
using suffix arrays, Proceedings of CPM’ 99, LNCS 1645, pp. 196 — 211, 1999.

[3] Witten, Moffat and Bell, Managing Gigabytes, Morgan Kaufmann, 1999.



