Mohri, Mehryar. 1994. Syntactic Analysis by Local Grammars Au-
tomata: an Efficient Algorithm. Papers in Computational Lexicog-
raphy (COMPLEX). Research Institute for Linguistics, Hungarian
Academy of Sciences, Budapest, pp. 179-191.

Perrin, Dominique. 1990. Finite automata. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science. Elsevier, chapter 1, pages
3-57.

Schiitzenberger, Marcel-Paul. 1961. A remark on finite transducers.

Inform. and Control, 4:185-196.

33

than for French, and since BiPho makes only minimal assumptions about
the mathematical properties of the conversion, we believe that it can be

used for virtually any conversion task related to phonetics.

References

Aho, Alfred and Margaret Corasick. 1975. Efficient string matching: an
aid to bibliographic search. CACM, 18(6):333-340.

Berstel, Jean. 1979. Transductions and Context-Free Languages.

Stuttgart: Teubner.

Eilenberg, Samuel. 1974. Auwutomata, Languages and Machines, vol-

ume A. New York/San Francisco/London: Academic Press.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description.

Mouton.

Kaplan, Ronald M. and Martin Kay. 1994. Regular models of phono-
logical rule systems. ACL, 20(3):331 378.

Koskenniemi, Kimmo. 1983. Two-level morphology: a general computa-
tional model for word-form recognition and production. Publication

no. 11. Dept. of General Linguistics, University of Helsinki.

Laporte, Eric. 1989. Quelques variations phonétiques en francais.

Lingvisticae Investigationes, XIII(1):43-116.

Laporte, Eric. 1993. Phonétique et transducteurs. Technical report,

Université Paris 7-Denis-Diderot, June.

32

ble whose rows are indexed by left-to-right states and whose lines are
indexed by right-to-left states. The content of the table at line q and
at column ¢ is a key that gives access to the set left(7) N right(E).
Output is a two-dimensional table whose rows are indexed by the keys
of the sets 1eft(?) N right(?), and whose lines are indexed by input
symbols. The content of the table at line k and at column a is the output

sequence ’y(?, a, ?) defined in section 6.2.

6.3 Running the bimachine

When running the bimachine on an input string, the string is first pro-
cessed in reverse order: we compute the values of the states of the right-
to-left automaton for each symbol in the input string and store them
in a one-dimensional array. Then, for each symbol from left to right,
the state of the left-to-right automaton is computed. This value is used
with the value of the right-to-left state, the input symbol and the ta-
bles BimSet and Output in order to retrieve the output sequence. The
complexity of this algorithm is independent of the number of states and
transitions of the bimachine: the time of the conversion is dominated by

the length of the input sequence.

7 Conclusion

The finite-state formal devices described in this chapter and tested in
the context of phonetics and phonology proved to be both convenient
for linguistic description and adapted for efficient implementation. The
conversion system BiPho was tested with complete phonetic conversion

data for French. Since phonetic conversion of most languages is simpler

31

ptk
bdg
fs /[

VZ73

ptk
bdg

fs /[

L]

N7
ptk ptk
bdg /\bdg
Dtk fs [fs [
hdg V73 / V73
fs]f
V73

Figure 12: the left-to-right automaton of the simultaneous combination.

30

ptk
bdg

a (\ E:
o / D
J
'y

fs /[

vVZ3

[7]
-)
ptk ptk
\ bdg bdg
fs /[fsf
V73 vZ3

7 stands for all symbols except pt kbdgfs [vzzlrjuy.

Figure 11: the minimal deterministic automaton for A* L.

29

7 stands for all symbols except ptkbdgfs [fvzzlrjuy.

Figure 10: the minimal deterministic automaton for A*L;.

28

A/(;, a, E) = a. This completes the definition of the combined bimachine
which will simulate the behaviour of the n bimachines whenever one of
them applies to an input symbol.

For example, let us combine the rules of Figures 8 and 9. The rule

ptk

fs/f

V73 \

Tuy

jlr

7 stands for all symbols except ptkbdgfs fvzzlrjuy.

Figure 9: a conversion rule.

of Figure 9 converts /i/ into /j/ in certain contexts, e.g. for allier [alje]
‘ally’, it converts /alie/ into /alje/. The minimal deterministic automa-
ton for A*L; is in Figure 10 and the one for A*L, is in Figure 11.
These rules do not conflict. If you build their simultaneous combina-
tion, you will obtain the left-to-right automaton of Figure 12, and a two-
state right-to-left automaton. The states E which are marked as final in
Figure 12 are those for which 1eft(?) is nonempty. With the French
phonetic conversion data for BiPho, the deterministic automata of the
12 bimachines have 3 to 144 states. The output function is implemented

with two tables, BimSet and Output. BimSet is a two-dimensional ta-

27

If there are no conflicts, the simultaneous combination is possible.
Let 62-, 61 be the state sets of the n bimachines, q:_EQ_)i, qZ_Eéi
the initial states, g,\ 62 XA —>§l and g@ 62 xA —>‘Q_l the transition
functions, and ~; : Cjz X A X iQ_Z—> B* the output function. Then the

combined bimachine is defined as follows:

— — —

Q=0Q:1 x Q2 ><---><C5;, 6261 Xéz X---Xéna

— —

q-= (ql‘:—v q;—v-" q;—)v q-= (qf—vq;—v'-- QrT,—)v

—

5 (@ @0)ya) = (81 (@1,a)s- 60 (@ms),

— —

5 (@0 @)y @) = (81 (q150); - bn (Gnr).

With this definition, and) may contain states which cannot be
reached from the initial states, but it is not necessary to actually create
such states. Before defining the output function, note that for each

u,v € A* such that 5 (q_,u) =5 (q_,v),
Vi€ [1,n] (ve A*L; <= v € A*L;).
For each state Ezg (q_:, u) we can therefore define
left(q) :={i€[l,n]|ue A*L;}.
Similarly, for each q=6 (qi,)
right(q) :={i € [I,n] |u € RiA*}.

Now let EECS, a € Aand EECS There is at most one ¢ € [1, n] such that
1€ left(?), a=a; and i € right(?). (If there were two, take E =
5 (¢_,u) and q=3 (q—,v): there would be two i’s such that u € A*L;,
a = a; and v € R;A*, in contradiction with the fact that there are

no conflicts.) If there exists such an 7, define 'y(?, a, E) = u;, otherwise

26

so we minimize it. There is no notion of final states in a bimachine. In
our implementation, the automata for A*L and A* }N2 do have final state
sets: they are used in the definition of the output function.

The output function ~ of the bimachine is defined as follows: if a € A

is the input label of the action part, and if v € B* is the output label,

then
1/(4,1),(1) =
if b = a and ; is final and Eiis final
then u
else b

The two deterministic automata are implemented with two-dimensional
tables whose rows are indexed by states and whose columns are indexed
by input symbols. The content of the table at line E and at column a

is the state § (?, a).

6.2 Simultaneous combination of bimachines

Several transductions realized by bimachines can apply simultaneously
to the same input provided that they do not conflict. A conflict is defined
as follows. Let a; — wu;/L;___R;, for 1 <7 < n, be n bimachines over
A and B defined as above: L; C A* and R; C A* are the left and right
context parts, a; € A is the input label of the action part and u; € B*
is the output label of the action part. A conflict arises if and only if two
bimachines apply to the same input symbol of an input string, i.e. if there
are two indices ¢ and j, with 1 <i < j < n, such that A*L; N A*L; # o,
a; = aj and R;A* N R;A* # ¢. This condition is checked for each pair

of rules by computing the intersections of contexts.

25

box). The input label is one input symbol, but the output label may be
a string of zero, one or several output symbols. In case of variants, the
output label stands for the list of variants. The semantics of the rule
is straightforward: whenever the input label of the action part occurs
between the left and right contexts, substitute the output label for it,
otherwise leave it unchanged. This rule converts /i/ into /ij/ in certain
contexts, e.g. for plier [plije] ‘fold’, it converts /plie/ into /plije/.

The context part of the graph contains only the part of the context
which is relevant to the transduction; if the action part of the rule must
take place no matter what the left context is, then the left context part
of the graph is empty. The left and right context parts of the automa-
ton are converted into finite automata which are then determinized and
minimized with the aid of standard algorithms. Let L (resp. R) be the
set of sequences recognized by the left (resp. right) context part of the
graph: the left-to-right deterministic automaton of the bimachine must
recognize A*L, and the right-to-left automaton must recognize A* INL
where the elements of IN% are the elements of R read in reverse order.
The only algorithm needed for the construction of these automata is the
construction of a finite automaton recognizing A*L from an automa-
ton recognizing L, and the same for E% Since relevant contexts are
bounded in length, L and R are finite. We apply to them a variant of
the algorithm of Aho and Corasick (1975). The original version of this
algorithm makes use of the set of prefixes of a finite set L. This set
can be replaced with the set of states of the minimal deterministic fi-
nite automaton recognizing L. The algorithm has to be adapted (Mohri,
1994), but it produces an automaton with less states than in the original

version. However, the resulting automaton is not necessarily minimal,

24

6 Implementation

The rational functions used by BiPho are realized by local bimachines.
They are created in a graphic form like that of Figure 8, which comprises
a context part which recognizes whether the rule applies and an action
part which translates symbols. Each batch of graphs that must apply
simultaneously is read and combined into a bimachine. The resulting
bimachines apply sequentially to input strings. The finite substitutions
that should apply to the output of the bimachines are not implemented

yet.

ptk
bdg
fsf'

vz3

Figure 8: a conversion rule.

6.1 Construction of a bimachine from a rule

The conversion rule of Figure 8 reads as follows. The left and right
context parts are delimited from the action part of the rule by the symbol
A. The left and right contexts take the form of finite automata that
read from left to right. The transitions in the context parts are boxes
with only input labels (inside the boxes). The action part is the only

transition which has both an input label and an output label (below the

23

<Cons> }K‘ <Cons> }Y‘ <Cons> LY‘<C0ns> \
<Cons> EI
€

Figure 7: bounded context for sequences of consonants.

(s,d)-local if for each pair of paths of length s, (g0, a1,q1,... as,qs) and
(40, @1, 41, .- as,qL), labelled by the same sequence ajasz ... as, we have
¢a = ;- An automaton is local if there exist s and d such that it is
(s,d)-local. If so, the smallest possible value for s is called the scope of
the automaton.

This notion of locality applies to the left-to-right and right-to-left
deterministic automata of a bimachine. Let [, be positive integers. We
say that a bimachine is (I, 7)-local if its left-to-right automaton is (7, 1)-
local and its right-to-left automaton is (r,7)-local. The maximal length
of relevant left contexts is I and the maximal length of relevant right
contexts is r. If a bimachine is (I, 7)-local, the function that it realizes is
also realized by a finite transducer whose projection is an (I +r,[)-local
automaton.

Recall that with BiPho, the transduction is expressed as a combina-
tion of rational functions and finite substitutions (cf. page 18). In the
phonetic conversion data for French, this decomposition of the problem
could be done in such a way that all rational functions are realized by

local bimachines, i.e. all contexts have bounded length.

22

graphic mode of representation of bimachines, and algorithms for loading
a bimachine from this format and running it.

The structure of a finite transducer is not so directly similar to that
of a usual rule. Contexts and actions are mixed up in transition labels.
Since transition labels combine input and output symbols, contexts may
refer both to input and output labels (see Koskenniemi (1983), Kaplan
and Kay (1994) for examples).

The computation of a bimachine is deterministic, hence simpler than
that of a non-deterministic device. On the other hand, the inversion
of a transduction (swapping input and output) is probably easier to

implement on a transducer than on a bimachine.

5.3 Locality

The translation of a symbol usually depends on its context, but this
dependency is usually very local. This is probably the reason why pho-
nologists are so fond of counter-examples with unbounded dependencies.
Intuitively, a conversion rule is local if the length of the context needed
to apply the rule is bounded for all input strings. Typical values of this
bound are small, about ten or even five symbols. Contexts of unbounded
length are frequently used by phonologists, but in most cases they are
easy to replace with bounded contexts. For example, <Cons>* in a con-
text apparently matches any number of consonants, but since sequences
of consonants with no intervening vowel hardly go beyond five symbols
in French, the pattern of Figure 7 has the same effect as a rule that
converts /e/ into [g] before <Cons><Cons>*#.

Formally, the notion of locality is defined with respect to automata.

Let s, d be positive integers such that 0 < d < s. An automaton is

21

E: CS x A —>C_é and 3; Z) x A —><C§, and an output function
v:1Q xAx Q— B*.

In fact, 6, qi and E constitute a left-to-right deterministic automa-
ton without final states, and é, qt and 3 constitute a right-to-left de-
terministic automaton without final states. The transition functions are
extended to C_j x A* and Z) x A* by setting 5 (?, <E>) :?, 5 (E, <E>)
=E, s (E,ua) =5 (E (?, u), a), 5 (E, ua) =5 (}5_ (;, u),a). For an in-
put string ajay ... a,, the output for a; is defined as

— —

(6 (q-saras...a;_1),a;, & (q—yAn@n_1...a;11))

The output string for ajas ... a, is the concatenation of the output
strings for a;,as,... a,. Thus, a bimachine realizes a string function.

Bimachines are a convenient tool both for linguistic description and
computation.

The linguistic description of a transduction related to phonetics gen-
erally takes the form of a set of conversion rules. Usual rules comprise
a ‘context part’, which recognizes whether the rule applies, and an ‘ac-
tion part’, which translates symbols. Rules are often stated in the form
a — u/L___R, where the context part is L____R and the action part
is @ — u. In the usual sense, the context refers to the input string,
which is known before the rules apply, and not to the output string.
This is the most straightforward convention and makes rules readable
and easy to design.

The structure of a bimachine is quite similar. The two deterministic
automata correspond to the left and right context parts of the rule, and
the output function constitutes the action part; the context part refers

to the input string only. In section 6, page 23, we describe a readable,

20

rational b i m
j #

function: k 3 u: b i 7z <m;om>

finite substitution:

<mj;om> <mj;om>
m om

Figure 6: decomposition into a rational function and a finite substitu-

tion.

and finite substitutions can be realized by well-known, simple devices
for which efficient implementations are known. Finite substitutions are
realized by one-state transducers. Rational string functions are realized

by bimachines.

5.2 Bimachines

The notion of bimachine was introduced by Schiitzenberger (1961). It is
a strictly alphabetic, deterministic variant of the notion of finite trans-
ducer. The set of transductions realized by bimachines is the set of
rational string functions (Eilenberg, 1974). Any bimachine can be com-
piled into an equivalent transducer with the same alignment.

A bimachine over alphabets A and B is composed of two finite

sets @), (), two initial states qiEQ, q_€Q, two transition functions

19

Figure 5: a transduction which is not a function.

string /kju:bizm/ is in relation with two phonetic strings, [kju:bizm] and
[kju:bizem].

When every input string is in relation with at most one output string,
the transduction is said to be a function. A transduction realized by a
deterministic finite transducer is not necessarily a function (examples:
Figures 4 and 5), but it is easy to prove that it is the composition of a
rational function and a finite substitution. A finite substitution o over

alphabets A and B is a transduction such that:
e for each a € A, o(a) is a finite subset of B*,
e 0(<E>)=<E> and
e for each u,v € A*, o(uv) = o(u)o(v).

Finite substitutions are rational transductions. Figure 6 shows the de-
composition of the transduction of Figure 5 into a rational function and
a finite substitution which is represented as a one-state transducer in
the figure. Recall that transductions related to phonetics can usually be
expressed as a combination of transductions realized by deterministic
finite transducers. When they can, it follows that they can also be ex-
pressed as a combination of rational functions and finite substitutions,
which are simple cases of rational transductions. The computational in-

terest of this decomposition stems from the fact that rational functions

18

as the composition of 12 transductions. Each of them is in turn the
simultaneous combination of 6 to 231 simple transductions realized by
deterministic transducers. We need a few more mathematical notions
before describing how these elementary transductions are represented,

how they are combined, and how the actual conversion is performed.

5 Mathematical properties

The transductions mentioned in section 3 page 6 are usually rational
transductions. A transduction® over alphabets A and B is rational if it
can be specified by a rational expression over A* x B*. Equivalently,
a transduction is rational if it can be realized by a finite transducer.
The fact that phonological transductions are usually rational is far from
new. It was first noticed by Johnson (1972). It is stated in more stan-
dard terms by Kaplan and Kay (1994). In what follows we examine other
mathematical properties of transductions related to phonetics. The in-
terested reader will find more details about definitions and algorithms

in handbooks of automata theory, e.g. Berstel (1979) or Perrin (1990).

5.1 Transductions realized by deterministic trans-
ducers
In a transduction, an input string can be in relation with several output

strings. In the case of transductions related to phonetics, this allows us

to describe phonetic variants. For example, in Figure 5, the phonemic

3In automata theory, the terminology rational is preferred to regular because it
emphasizes the analogy with the theory of rational functions in classical analysis and

of rational power series in commuting variables.

17

or both (cf. above). The fact that this simplification of the problem is
usually possible is an empirical observation which is not predicted by
phonological theories. In the following, we assume it is always the case.
For example, the transducer of Figure 3 can be expressed as t; 0 (to+13).
In this expression, ¢;, t3 and t3 are the deterministic transducers of Fig-
ure 4, the symbol o refers to sequential combination and + refers to
simultaneous combination. An advantage of this representation is that
t1, to and t3 represent separately three unrelated phenomena. Note
that ¢t; produces two variants, but is deterministic: when we build the
projection by deleting the output labels [5] and <E>, the two original
transitions merge into one transition since they have the same input

label [B] and the same target.

tll

t22

- (=]
[#]

o[=]

<[3
'

<E>

Figure 4: three deterministic transducers.

The phonetic conversion data used with BiPho for French involve
13 levels of representation: the first is spelling, the sixth is phonemics

and the last is phonetics. The overall transduction is thus implemented

16

4.3 Deterministic computation

When a transducer is strictly alphabetic, one can make an automaton
out of it by deleting all output labels. This automaton is called the
projection of the transducer. The projection of a strictly alphabetic
transducer may be deterministic or not. If it is, the output strings for
a given input string can be produced by a deterministic computation
using the transducer. A deterministic computation is more direct, and
therefore usually simpler and more efficient than a non-deterministic
computation. We say that a transducer is deterministic if it is strictly
alphabetic and has a deterministic projection?. The transducer of Fig-

ure 3 is non-deterministic: when we build the projection by deleting the

n <E> <E>

Figure 3: a non-deterministic transducer.

output labels [d] and [n], we leave two transitions with the same label
/d/ and different targets. In fact, if we wish to have this transduction
realized by a deterministic finite transducer, we will not find any with
the same alignment. However, in phonemics-to-phonetics conversion,
when this problem occurs, the transduction can usually be expressed
as a combination of transductions realized by deterministic transducers.

The combination may involve simultaneous or sequential combinations

2This terminology is not traditional. There is no standard definition of determin-

istic transducers.

15

4.2.1 Simultaneous combination

The rules for translating a symbol are often very different from those
for translating another. When it is the case, the transduction that will
apply to the first symbol can be described independently of the other.
Assume a transduction t; translates a given input pattern, leaving all
the rest unchanged, and a transduction ¢, translates another input pat-
tern that does not overlap the other and also leaves the rest unchanged.
Then t; and t, apply to different places in input strings and can apply
(conceptually) simultaneously. In other words, ¢; and t2 can be imple-
mented (conceptually) in parallel. In section 6, page 23, we will give a
formal definition of the ‘simultaneous combination’ t; + t2 of transduc-
tions t; and ty provided that they apply either to different input strings
or in different contexts. The result of the simultaneous combination of
transductions is independent of the order in which the transductions are

given.

4.2.2 Sequential combination or composition

Transductions related to phonetics frequently have a natural expression
as a composition of simpler transductions: one describes a finite se-
quence of transductions in a definite order, and the output of each of
them will serve as input for the next. This amounts to defining inter-
mediate levels of representation and going from each level to the next.
Expressing a transduction as a composition of simpler ones is a basic
method in generative phonology. This concept is called ‘rule ordering’.
If the output of ¢; serves as input for t2, the composition of t; and ¢,

will be noted t; o ts.

14

ments between spelling and phonetic transcription. They differ only in
details and both of them are quite sensible. In order to take full advan-
tage of the partial regularity of spelling-to-phonetics transduction, the
transducer that performs the conversion must at least approximately
follow the natural alignment.

In a transducer, input and output labels are strings over the input
or output alphabet. They can comprise zero, one or several symbols. A
reasonable simplification of the problem is to consider alignments where
each separate input symbol in the input string has its own counterpart
in the output; the output for a given input symbol may still be composed
of zero, one or several symbols. Formally, we will say that a device that
realizes a transduction is strictly alphabetic if and only if it associates
with each symbol in input strings a factor of the corresponding output
string. The second transducer of Figure 2 is strictly alphabetic, i.e. each
input label is an isolated input symbol. In the case of transductions
related to phonetics, a strictly alphabetic alignment is always possible

and is usually close to the most natural alignment.

4.2 Divide and conquer

Describing a complex transduction is an intricate task, we need to split it
into smaller tasks. The finite-state formal framework provides ways to do
that. Individual transductions can be devised for independent subtasks,
and combined into a larger transduction that solves the original problem.

Two simple principles will help us implement this strategy.

13

4.1 Alignments

What we will call an alignment of a transduction is a correspondence
between input symbols and output symbols in strings. A transduction in
itself does not specify any alignment between input symbols and output
symbols. However, transducers and other devices do specify an align-
ment of the transduction they realize. Several transducers that realize
the same transduction may specify different alignments, as in Figure 2.

The symbol <E> is the empty sequence which is made of no symbols at

2]
el

Figure 2: two alignments of the same transduction.

all. Rational expressions and other mathematical constructs used to de-
fine rational transductions also specify an alignment. In the case of the
transductions related to phonetics mentioned in section 3, page 6, the
time correspondence between input and output is a meaningful align-
ment for all of them, but specifying it in the smallest detail sometimes

involves arbitrary decisions. For example, Figure 2 specifies two align-

12

problems have much in common: the same computational framework
gave good results for both. Another type of conversion problem is also
probably very close: the simulation of phonetic changes from a historical
state of a language to another or to its present state.

In the following, the transductions whose definition was outlined in

this section will be referred to as ‘transductions related to phonetics’.

4 Construction of the transductions

A transduction is an abstract object. A transducer or another formal
device that ‘realizes’ a transduction is an abstract machine that speci-
fies it in a more concrete way, though it does not specify a particular
algorithm to perform the conversion. Automata theory provides various
mathematically equivalent ways of recognizing the same set or realizing
the same transduction. In such a practical enterprise as ours, we have
to choose a particular device to realize a transduction. This choice is

not neutral:

e the success of the operation depends on the theoretical expressive

power of the device;

e this choice may facilitate or hinder the descriptive aspect of the

work, namely the elaboration of the conversion rules;

e it may lead to more or less efficient implementations of the com-

putation.

Let us examine the consequences of those requirements on the problem

of designing and implementing transducers.

11

ence: [si:ts], [si:ziz]. If we consider that this [s] and this [iz] are variants
of the [z] heard in sees [si:z], we can transcribe them by means of the
same symbol /z/ in abstract transcriptions: /si:tz/, /si:zz/, [siz/. We
will use the terms phonetic level to refer to the level of narrow transcrip-
tions, phonemic level to refer to that of abstract ones, and phonemes to
refer to the elements of the alphabet of the phonemic level.

Phonemic transcriptions are also useful to describe free phonetic vari-
ations. For example, in French, lier ‘link’ admits a monosyllabic phonetic
form [lje] and a disyllabic one [lije]: we transcribe both as /li+e/ (La-
porte, 1989). Several phonetic variants are produced from a phonemic
form by a multiple-output transduction. Multiple-output transductions
are often defined with optional rules, but the notion of several-output
transduction is more general than that of optional rule. For example,
if we transcribe lier with the phonemic form /lje/ and if we produce
the variant [lije] with an optional rule that inserts [i], this rule might
produce a wrong variant *[pije] for pied [pje] ‘foot’. On the other hand,
if we transcribe lier with the phonemic form /lije/ and if we produce the
variant [lje] with an optional rule that deletes [i], this rule might produce
a wrong variant *[pje] for piller [pije] ‘plunder’. Finally, the phonemic
form /li+e/ contains an unpronounceable variation mark /+/, so the

rule that produces [lje] and [lije] from /li+e/ has to be obligatory.

3.4 From a level to another

Spelling, phonetics and phonemics are three levels of linguistic represen-
tation: there are six ways of going from one of them to another, thus six
conversion problems for each language. Our experiments on spelling-to-

phonemics and phonemics-to-phonetics in French showed that these two

10

phonological descriptions make an intensive use of binary features. A set
of phonetic symbols, e.g. {pbfv}, may be expressed as [+labial —son],
which is less redundant. One can also replace a few rules by one. Gen-
erative phonology is traditionally much concerned about redundancy,
since the best possible grammar should be the least redundant. Using
binary features brings about some decrease in redundancy, but also a
dramatic decrease in readability: for a human reader, series like {pbfv}
are more readable than binary-feature specifications. For such a practi-
cal purpose as actual linguistic description, readability and compactness
are as important as redundancy. The work described in this paper does
not take any advantage of binary features, but the same formal frame-
work could undoubtedly be adapted with only minor modifications in
order to express rules by means of features.

Since we use linear strings on a finite alphabet, and we study the
relations between these strings, the appropriate formal framework for
this study is that of transductions, i.e. relations over two sets of strings.
Basic definitions about transductions in the context of phonetics and

phonology are given in Kaplan and Kay (1994).

3.3 Phonetics or phonemics

It seems difficult to actually carry out any extensive description of pho-
netic forms in a language without taking into account the traditional
distinction between narrow and abstract transcriptions. Narrow tran-
scriptions are an observational account of pronunciation, whereas ab-
stract transcriptions aim at taking into account phonetic variations in
the phonology of languages. For example, the final s is pronounced dif-

ferently in seats and seizes, and narrow transcriptions reflect this differ-

tic choice when it is used to represent speech. If we consider speech as
a combination of acoustic and articulatory events, this combination is
much more complex than phonetic transcriptions of speech: in the dura-
tion of one or two phonetic segments, dozens of acoustic events happen,
their chronological order may vary, most of them are continuous varia-
tions of continuous parameters, and those which are instantaneous are
hardly ever simultaneous. In other words, the most accurate phonetic
transcription is only an approximate, partial and imperfect description
of speech. However, phonetic transcriptions are an excellent descriptive
tool. It is standardized to quite a reasonable degree among linguists, and
it is successfully used for speech synthesis (e.g. synthesis by diphones)
when associated with prosodic information. This is why we stick to lin-
ear sequences of phonetic symbols as one of the convenient and useful
representations of pronunciation.

With the development of non-linear phonology, many linguists shifted
from one-dimensional to multi-dimensional abstract representations of
speech. For example, in spite of the fact that time is essentially one-
dimensional, it is unquestionable that some phonetic variations or phe-
nomena involve embedded structures in speech: syllables, coda, etc.
However, the level of recursion of such structures has very restrictive
bounds, so that they can be coded in linear strings which are a simpler

structure than trees.

3.2 Phonetic symbols are readable

The symbols in the phonetic alphabet are usually defined by binary
feature-value pairs. In this view, the elementary units at a phonetic

level are not the phonetic symbols but the binary features. Phonetic and

appears as a formal system: transcriptions are coded as sequences of
symbols. The set of symbols, the alphabet, is finite. We will consider
only lowercase letters and a special symbol § standing for word boundary.
The size of the alphabet is thus less than 30 in English. It must be
extended for other languages, due to accents and other diacritics. In
French, spelling is highly ambiguous with respect to pronunciation, so
we use as an intermediate level a disambiguating alphabet where e.g.
intervocalic s is marked as s15 when it is pronounced [s], like in paras;; ol
(in most words, intervocalic s is pronounced [z]). This disambiguating
alphabet has 315 symbols. This method could give interesting results in
English also.

The definition of a phonetic level of representation is not so simple.

It is connected with three theoretical issues:

e the principle of using a finite set of symbols and of building linear

sequences of symbols, is a far from neutral choice linguistically;

e it is usually considered that the elementary units at a phonetic level
are not the symbols in the phonetic alphabet but binary feature-

value pairs which serve to define these symbols;

e we will make a distinction between narrow transcriptions, which
are an observational account of pronunciation, and abstract tran-
scriptions, which are a means of taking into account phonetic vari-

ations in the phonology of languages.

3.1 Linear sequences are simple structures

Using an alphabet, i.e. a finite set of symbols, and building linear se-

quences of symbols, is a familiar principle, but it is not a neutral linguis-

duction and points out the consequences of decisions made at that stage.
Section 5 introduces mathematical properties that relevant transduc-
tions usually have and mathematical tools that underly our implemen-
tation. Section 6 specifies a readable mode of representing transductions
related to phonetics, defines its formal meaning, and describes an effi-

cient implementation of it.

3 Transductions related to phonetics

In this section, we have a linguistic standpoint about a number of prob-
lems for which we will claim that finite-state devices are appropriate
formal and computational tools. The prototypical example of these
problems is that of spelling-to-phonetics conversion. A given speech
utterance can be transcribed orthographically or phonetically; spelling
and phonetics can thus be considered as two levels of representation of
language. Spelling-to-phonetic conversion refers to two types of prob-
lems. First, one is faced with a descriptive problem: which spelling
transcriptions are in relation with which phonetic transcriptions? Then,
two computational problems can be contemplated: given a spelling tran-
scription, what phonetic transcriptions can be in relation with it? and
the reverse problem. In order to pose this kind of problemsin an accurate
way, we discuss a few issues about some of the levels of representations
of speech. The reader who is only interested in formal or computational
aspects can go to section 4, page 11.

Spelling needs not be defined, at least for English and other European
languages with well-documented, standardized writing systems. Spelling

can be considered as a practical level of linguistic representation. It

ing of the combination of finite-state transducers can be designed
and defined so that the contents of a given graph will not interfere
with the contents of another when they are combined. This fea-
ture is an improvement upon hierarchies of rules and exceptions
which are traditionally used for spelling-to-phonetics conversion:
a modification on a particular rule or exception in a hierarchy may

have non-local effects.

5. Generality. This introductory example only deals with spelling-
to-phonetics conversion of English text. However, the same type
of formalism applies to more exotic conversion tasks, involving
other languages, phonemics-to-phonetics conversion, phonetics-to-

spelling decoding, etc.

6. Efficiency. Finite-state transducers, including ones with dozens of
thousands of states, are also an efficient computational tool if they
are wisely implemented. This feature is of the utmost importance
since the size of the data at stake, in the final analysis, depends

on the number of words in the language.

As a matter of fact, this paper describes theoretical and practical work
done in this framework on several conversion problems related to pho-
netics. The phonetic conversion system BiPho exploits complete data
for phonetic conversion in French (Laporte, 1993). French spelling is as
irregular as English spelling. The output of the conversion constitutes
the 600,000-inflected-word phonetic dictionary of LADL!.

Section 3 states which conversion problems are concerned. Section 4

deals with the problem of designing a transducer to specify a given trans-

Taboratoire d’automatique documentaire et linguistique, University of Paris 7,

France.

tions. Since the figure concentrates on the pronunciation of ou before
gh, a phonetic transcription is displayed only under those boxes which
contain ou. The other boxes contain the left or right contexts. The spe-
cial symbol f stands for word limit or morpheme boundary. This graph
is rather readable for people but it can also be used in order to compute
phonetic transcriptions of words. This type of representation has several

advantages.

1. Readability. An error in a graph like that of Figure 1 is easy to
detect even for a non-specialist if a word which is an exception to
the rules comes across his mind. Metalanguage and conventions

are reduced to a minimum and take a graphical form.

2. Formalization. The formal meaning of this type of representation

is defined mathematically.

3. Compactness. Various contexts are taken into account in Figure 1,
but when similar contexts for different pronunciations are consid-
ered, several pathsin the graph can often share their common part.
For example, final gh, i.e. ght, appears once for though, enough,
bough and thorough; th appears once for though and thought. When
long lists of words or word elements are to be listed, avoiding the
repetition of common parts is a substantial economy, whereas mak-
ing such lists without automata is discouraging and error-prone.
The mathematical properties of automata that underlie this prac-

tical advantage are minimality properties.

4. Cumulativity. Figure 1 deals with a very specific issue. It should
be associated with many other graphs in order to make up the

complete data of a phonetic conversion system. The formal mean-

Figure 1: ou before gh.

1 Introduction

Spelling-to-phonetics conversion is one of the most classical problems in
natural language processing. Several other conversion problems related
to phonetics are interesting in themselves or for their applications. For
example, phonetics-to-spelling decoding is a real challenge and has ap-
plications in speech processing. Appropriate computational solutions for
these conversion problems are provided by finite-state tools: transduc-
ers (i.e. automata with input and output) and bimachines, two notions
borrowed from the theory of rational transductions. We present a con-
version system, BiPho, based on transducers and bimachines. This con-
ceptual and computational framework has two major advantages: the
description of linguistic data is carried out in a readable format, and the
speed of the conversion algorithm is independent of the size of the set
of conversion rules and dominated by the length of input strings. With
spelling-to-phonetics conversion data for French, BiPho constitutes the
first comprehensive spelling-to-phonetics conversion system for French

to take the form of transducers or bimachines.

2 An introductory example

English has one of the most difficult spelling systems. Figure 1 shows
the phonetic transcription of ou before gh. It is a directed acyclic graph
which reads from left to right. This graph is a representation of a finite
transducer. A transducer is an automaton where each transition is la-
belled by an input label and an output label. In this figure, input labels
are displayed inside the boxes and output labels under the boxes. Input

labels are spellings of word parts, output labels are phonetic transcrip-

Rational Transductions for Phonetic

Conversion and Phonology

Eric Laporte
Institut Gaspard-Monge
France

laporte@Quniv-mlv.fr

August 1995

Abstract

Phonetic conversion, and other conversion problems related to
phonetics, can be performed by finite-state tools. We present a
finite-state conversion system, BiPho, based on transducers and
bimachines, two mathematical notions borrowed from the theory
of rational transductions. The linguistic data used by this sys-
tem are described in a readable format and actual computation
is efficient. With adequate data, BiPho constitutes the first com-
prehensive spelling-to-phonetics conversion system for French to

take the form of transducers or bimachines.

