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Abstract. The δ-matching problem is a special version of approximate pattern-matching,

motivated by applications in musical information retrieval, where the alphabet Σ is an interval

of integers. The δ-match is an occurrence of the pattern such that |a − b| ≤ δ for each pair of

letters (integers) whose positions match in this occurrence. We investigate relations between

δ-matching and pattern-matching with don’t care symbol ∗ (a symbol matching every symbol,

including itself). We show a close correspondence between pattern-matching with don’t cares

and δ-matching. The δ-matching is reducible to k instances of pattern-matching with don’t

cares. We investigate how the numbers δ and k are related by introducing δ-distinguishing

families H of morphisms. The size of H corresponds to k. We show that for minimal families

H we have |H| = Θ(δ).
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1 Introduction

The δ-matching problem is a version of approximate string-matching motivated by informa-

tion retrieval in musical data, see [5]. It has been also considered in [4] as subset matching,

where subsets were very special: intervals of integers. In this paper we provide a novel

approach to δ-matching through families H of morphisms; this gives considerably simpler

algorithms, compared with [4]. We also contribute to combinatorics on texts, in particular

combinatorics of morphisms, by providing several upper and lower bounds on H.

Assume the alphabet Σ is a set of integers Σ = [1, 2, . . . , s] and δ is an integer.

For a, b ∈ Σ we write

a
δ
= b iff |a − b| ≤ δ.

If u, w are two strings of the same length over Σ then

u
δ
= w iff u[i]

δ
= w[i] for each position i in u.

For a pattern P of size m and a text T of size n a δ-match is any position 1 ≤ i ≤ n−m+1

such that

P
δ
= T [i . . . i + m − 1].

The problem of δ-matching consists of finding all δ-matches of P in T . The related problem

is that of matching with don’t care symbol ∗. The don’t care symbol matches any symbol

(including itself). We write a ≈ b iff a = b or a = ∗ or b = ∗. For two strings of the

same length u ≈ w iff u[i] ≈ w[i] for each position i. The problem of pattern-matching with

don’t cares consists of finding all positions i such that P ≈ T [i . . . i + m − 1]. Denote by

IntMult(n) the time to multiply two n-bit binary numbers. The following fact has been

shown by Fischer and Paterson, see [6, 3].

Lemma 1. The problem of pattern-matching with don’t cares for strings over an alphabet

Σ can be solved in time O(log |Σ| · IntMult(n)).

We show that for small Σ δ-matching is at least as difficult as matching with don’t cares.

Theorem 1. For binary alphabets {a, b} the string-matching with don’t cares is reducible

in linear time to δ-matching for the alphabet Σ = [1, 2, 3].

Proof. Replace a by 1, b by 3 and dont’care symbol ∗ by 2 in an instance of string-matching

with don’t cares. Take δ = 1. Then the symbol 2 “plays” the role of the don’t care symbol,

and the problem is reduced to δ-matching with δ = 1.



2 δ-Distinguishing Families of Morphisms

Let H = {h1, h2, . . . , hk} be a family of morphisms

hi : Σ → Σi ∪ {∗}

We say that H is δ-distinguishing iff for every (a, b ∈ Σ)

[a
δ
= b] ≡ [∀ (h ∈ H) h(a) ≈ h(b)]

We can view the morphism presented linearly as h(123 . . . |Σ|). The family H is also treated,

throughout the paper, as a k×s-table, the i-th row corresponds to the i-th morphism, viewed

in its linear form. Similarly, denote by Mδ(P, T ) the set of starting positions of δ-occurrences

of P in T . Similarly define by D(P, T ) the set of matches with don’t care symbol. Formally:

Mδ(P, T ) = {i : P
δ
= T [i . . . i + m − 1]}

D(P, T ) = {i : P ≈ T [i . . . i + m − 1]}

Theorem 2. If H = {h1, h2, . . . , hk} is δ-distinguishing, then

Mδ(P, T ) = D(h1(P ), h1(T )) ∩ D(h2(P ), h2(T )) ∩ . . .D(hk(P ), hk(T ))

For a given pattern P and text T the δ-matching is now reduced to |H| instances of the

string-matching with don’t care. For each h ∈ H we solve an instance of string-matching

with don’t cares: check if h(P ) occurs in h(T ) (forgetting about δ). There is a δ-match of

P starting at position i in T iff there is a don’t-care-match of h(P ) in h(T ) at position i for

each h ∈ H.

Example 1. Let Σ = [1, 2, 3, 4] and δ = 1. Take the family H1 of 2 morphisms:

h1 : 1 → a, 2 → a, 3 → ∗, 4 → b,

h2 : 1 → a, 2 → ∗, 3 → b, 4 → b,

We also write morphisms as the string h(1) · h(2) · · ·h(s); in this way we can write h1, h2

as h1 = aa ∗ b, h2 = a ∗ bb

The family H1 is 1-distinguishing for the alphabet Σ = [1, 2, 3, 4]. Figure 1 illustrates how

δ-matching is related to two instances of don’t care matching for the pattern

P = 1432 and the text T = 233423431.

h1(T ) = a ∗ ∗ba ∗ b ∗ a, h1(P ) = ab ∗ a, h2(T ) = ∗bbb ∗ bbba, h2(P ) = abb∗

Mδ(P, T ) = D(ab ∗ a, a ∗ ∗ba ∗ b ∗ a) ∩ D(abb∗, ∗bbb ∗ bbba) = {2, 3, 5, 6} ∩ {1, 5} = {5} .

Let H = {h1, h2, . . . , hk} be a family of morphisms. Define Sp(H) = {i : hi(p) = ∗} for

each 1 ≤ p ≤ |Σ|. Next, possible properties P1-P4 of H are defined.
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Fig. 1. (A) There is only one 1-match of P = 1432 in T = 233423431: we have Mδ(P, T ) = {5}, (B)

D(ab ∗ a, a ∗ ∗ba ∗ b ∗ a) = {2, 3, 5, 6}, (C) D(abb∗, ∗bbb ∗ bbba) = {1, 5}.

P1: (intersecting property) (∀ 1 ≤ p, q ≤ |Σ|) Sp(H) ∩ Sq(H) 6= ∅;

P2: Each segment of *’s in a fixed row has length δ, or at most δ in case when this is a

prefix or suffix segment;

P3: if hi(p) 6= ∗ and hi(q) 6= ∗ and there is ∗-position between p and q in the morphism

hi then hi(p) 6= hi(q), for each hi ∈ H;

P4: Assume that hi(p) 6= ∗ and hi(q) 6= ∗, and p−q > δ. then there is a ∗-position between

p and q.

Lemma 2.

Assume the family H satisfies properties P1-P4, then H is a δ-distinguishing family.

Denote by α(δ, s) the size of a minimal δ-distinguishing family of morphisms for the alphabet

Σ of size s. Let α(δ) = maxs α(δ, s).
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Fig. 2. The structure of 7 morphisms (rows) constituting together a 3-distinguishing family.

Theorem 3. α(δ) ≤ 2 · δ + 1



Proof. The structure of the morphisms, for δ = 3, is illustrated in Figure 2. The first

morphism, written as a linear array is:

h = ∗ ∗ . . . ∗ 11 . . . 1 ∗ ∗ . . . ∗ 22 . . . 2 ∗ ∗ . . . ∗ 33 . . . 3 ∗ ∗ . . . ∗,

where we take groups of δ stars, and the symbols between stars are (δ + 1) consecutive

integers (the same for each group of non-stars). The next 2δ morphisms result by shifting

h1 by 1, 2, . . . , 2δ places to the right. It is easy to see that this family satisfies properties

P1-P4. By Lemma 2 the constructed family is δ-distinguishing.

Example 2.

For δ = 3, s = 30 we can take the family which consists of 7 morphisms whose structure is

illustrated in Figure 2. Each row is a table of morphism, the stars are don’t cares, and each

maximal consecutive group of non-stars gets the next integer number. The morphisms are

presented by linear arrays, the i-th symbol is the morphic value of the input symbol i.

We have α(3, 30) ≤ 7 and generally α(3) ≤ 7, since the construction is periodic and works

for arbitrarily large alphabet Σ.

Lemma 3. α(3) ≤ 6.

Proof. The construction of 6 morphisms for δ = 3 is illustrated in Figure 3. The sets of

stars in each column have been selected from the family:

F = [ {1, 2, 4}, {1, 2, 3}, {3, 4, 6}, {3, 4, 5}, {2, 5, 6},

{1, 3, 5}, {2, 4, 5}, {2, 3, 6}, {1, 4, 6}, {2, 3, 4} ]

It easy to see that for each X ∈ F the complement of X is not in F . Hence F has the

intersecting property.

The morphism can be constructed in such a way that if there is a star between two

positions in the same row then the symbols on these positions are different. The family

obeys the properties P1-P3, but not P4. However it can be checked that each two columns

at distance at least 4 are distinguished by non-star entries. The construction is periodic,

hence it works for an arbitrarily large alphabet Σ.

Lemma 4. α(r · δ) ≤ r · α(δ).

Proof. (Sketch)

We use the linear representation of morphisms. Assume {h1, h2, . . . , hk} is a δ-distinguishing



period period

* * *

* * *

* * *
* * *

* * *
* * *

* * *
* * *

* * *

* * *
* * *

*
* *

* *

*

* * *
* * *

* * *
* * *

* * *
* * *

* * *
*

* * *
**

* *
* *

*

*

*
*

*

*

* *

* * *
* * *

* * *
* * *

*

*

*

* *

* * *
* * *

* * *
* * *

*

* * *

Fig. 3. The periodic structure of 6 morphisms (rows) representing together the 3-distinguishing family of

morphisms. Only don’t care symbols are shown. This family does not obey the property P3 but properties

P1 and P2 are satisfied.

family, where each hi is identified with hi(123 . . . |Σ|). We construct an rδ-distinguishing

family by first replacing each symbol x in each hi by r copies of x. Then each of the resulting

linear representations of morphisms is cyclically shifted by j, 1 ≤ j < r. In this way we

obtain k · r morphisms, except that their linear representations could be too long. In this

case each resulting morphism is cut at the end to have its linear representation of length

exactly |Σ|. We omit the correctness proof in this version.

The last two lemmas together imply directly the following fact.

Theorem 4. If k is divisible by 3, then α(δ) ≤ 2 · δ.

Theorem 5. [Lower bounds]

(a) α(δ) ≥ δ + 2, for δ ∈ {1, 2} we have α(δ) = 2 · δ + 1.

(b) α(δ) = Θ(δ).

3 Mixed Families of Morphisms

For the string matching with don’t cares the size of the alphabet is relevant. This motivates

the introduction of two separate families: arbitrary morphisms, those with many output

symbols, and binary morphisms, those with only two output symbols (plus the don’t care).

The latter morphisms, as well as related families of morphisms, are said to be binary.

Theorem 6. For each δ ≥ 1 there are two families H1 and H2 of morphisms such that

1. The family H = H1 ∪H2 is δ-distinguishing;



2. H2 consists only of binary morphisms;

3. |H1| = 3; |H2| = 2δ + 1.

Proof. We write morphism in a linear form: h = h(123 . . . |Σ|). Take H1 = {h1, h2, h3},

where

h1 = 12δ · ∗δ · 22δ · ∗δ · 32δ . . .

h2 = ∗δ · 12δ · ∗δ · 22δ · ∗δ·

h3 = 1δ · ∗δ · 22δ · ∗δ · 32δ · ∗δ·

Additionally we take 2δ + 1 morphisms whose structure is the same as the one used in the

proof of Theorem 3, see Figure 2. The only difference is that we replace groups of non-star

entries alternately by a and b. In this way we get a family of binary morphism, which for

positions at distance at most 2δ “behaves” in the same way as the family from Theorem 3.

We omit, in this extended abstract version, technical details related to correctness.

As a corollary of Theorem 6 we have the following fact (this asymptotic bound was shown

previously in [4]):

Theorem 7. The problem of δ-matching with the input alphabet Σ can be solved in time

O((δ + log |Σ|) · IntMult(n)).

Example 3. For δ = 3, s = 30 we take the family H1 given by:

h1 = 111111 ∗ ∗ ∗ 222222 ∗ ∗ ∗ 333333 ∗ ∗ ∗ 444

h2 = ∗ ∗ ∗111111 ∗ ∗ ∗ 222222 ∗ ∗ ∗ 333333 ∗ ∗∗

h3 = 111 ∗ ∗ ∗ 222222 ∗ ∗ ∗ 333333 ∗ ∗ ∗ 444444

The family H2 in this case consists of 7 ( = 2δ + 1) binary morphisms:

h1 = ∗ ∗ ∗1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗

h2 = 1 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111∗

h3 = 11 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111

h4 = 111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 111

h5 = 1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 11

h6 = ∗1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1

h7 = ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗ ∗ 1111 ∗ ∗ ∗ 2222 ∗ ∗∗



4 Final Remarks

The δ-matching problem is a very special instance of approximate string-matching, and

its algorithmic complexity is still not well understood. In this paper we contribute to the

algorithmics of this problem by introducing a novel approach. We have introduced in this

paper δ-distinguishing families of morphisms which are a useful tool in the transformation

of δ-matching to the pattern-matching with don’t cares. This gives simple and efficient

algorithms for δ-matching using the integer multiplication procedure as a black-box.

The crucial parameter is the cardinality of such minimal families, denoted by α(δ). We have

shown that α(δ) is of the same order as δ: δ + 2 ≤ α(δ) ≤ 2δ + 1.

This gives exact values: α(1) = 3 and α(2) = 5. For δ = 3 we have 5 ≤ α(3) ≤ 6, due to the

fact, shown in the paper, that α(r · 3) ≤ 6r. The exact formula for α(δ) remains as an open

problem. A simpler problem is to compute the exact value of α(4).

From the practical point of view more important is the cardinality of the family of binary

morphisms. We have shown that there is always a δ-distinguishing family consisting of 3

morphisms with large alphabet (but at most |Σ|) and 2δ + 1 binary morphisms. For δ’s

which are multiple of 3 this can improved to 2δ.
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