An improved algorithm for finding longest repeats with a modified factor oracle

Arnaud Lefebvre
UMR 6037 – ABISS, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
e-mail: Arnaud.Lefebvre@univ-rouen.fr

Thierry Lecroq
LIFAR – ABISS, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
e-mail: Thierry.Lecroq@univ-rouen.fr

and

Joël Alexandre
UMR 6037 – ABISS, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France
e-mail: Joel.Alexandre@univ-rouen.fr

ABSTRACT

We first give some experimental evidences of the difference rate on the length of the repeats of a string p found using the factor oracle of p. We show then how to improve the length of the repeats. Examples of improvements are given for finding repeats in genomic sequences and using repeats for data compression.

Keywords: String algorithms, computational biology, factor oracle, repetitions, data compression

1. Introduction

Finding repeats in strings is of great interest in areas such as bioinformatics and data compression. There exist exhaustive methods to find all the repeats in a string (see [2], [4] and [9]). The new challenge consists in dealing with huge strings such as those generated in computational biology. In [6] we introduced an on-line linear heuristic method to compute repeats in a string p using the factor oracle of p. We also showed that this method is very useful when applied on genomic sequences. However this method is a heuristic and we were not able to precisely characterize the rate of the approximation. We give here some empirical evidences of this rate. We then show how to improve the length of the repeats found using the factor oracle this leads to introduce a data structure called the repeat oracle. Experiments on genomic sequences

1This work was partially supported by a NATO grant PST.CLG.977017.
and in data compression show that the new method drastically improves the previous one.

The remainder of this article is organized as follows. The next section recalls some notation and background notions on strings and factor oracles. Section 3 presents experimental estimates of the difference rate of the length of the repeats found using the factor oracle. In Sect. 4 we introduce the improvement and in Sect. 5 we show examples on genomic sequences and in data compression. Finally, in Sect. 6 we present our conclusions.

2. Notations and background notations

A word is a sequence of zero or more symbols from an alphabet \(\Sigma \); the string with zero symbols is denoted by \(\varepsilon \). The set of all strings over the alphabet \(\Sigma \) is denoted by \(\Sigma^* \). A word \(p \) of length \(m \) is represented by \(p[1..m] \), where \(p[i] \in \Sigma \) for \(1 \leq i \leq m \). A word \(w \) is a factor of \(p \) if \(p = uvw \) for \(u, v \in \Sigma^* \); we equivalently say that the word \(w \) occurs at position \(|u| + 1 \) of the word \(p \). The position \(|u| + 1 \) is said to be the starting position of \(w \) in \(x \) and the position \(|u| + |w| \) the end position of \(w \) in \(x \). A word \(w \) is a prefix of \(x \) if \(x = uvw \) for \(u \in \Sigma^* \). Similarly, \(w \) is a suffix of \(x \) if \(x = uvw \) for \(u \in \Sigma^* \).

Let \(p = p[1..m] \) be a word of length \(|p| = m \) over an alphabet \(\Sigma \). An occurrence of a factor \(w \) of \(p \) is denoted by the position \(i \in \{1, \ldots, m\} \) of its ending letter. A repeated factor of a word \(p \) is a factor of \(p \) which has at least two distinct occurrences in \(p \).

The factor oracle of a word \(p \) of length \(m \) is a deterministic finite automaton \((Q, q_0, F, \delta)\) where \(Q = \{0,1,\ldots,m\} \) is the set of states, \(q_0 = 0 \) is the starting state, \(F = Q \) is the set of terminal states and \(\delta \) is the transition function. An example of factor oracle is given in Figure 1. The factor oracle of a word \(p \) of length \(m \) has the following properties: it has exactly \(m + 1 \) states (there is a bijection between the states and the length of all the prefixes of \(p \), including the empty one); it has between \(m \) and \(2m - 1 \) transitions; it recognizes at least all the factors of \(p \). It can be built on-line in linear time (see [1]). Each transition leading to state \(i \) is labeled by \(p[i] \). We distinguish two kinds of transitions: transitions from state \(i \) to state \(i + 1 \) are called internal transitions and transitions from state \(i \) to state \(j \) such that \(j - i > 1 \) are called external transitions. There are exactly \(m \) internal transitions. Thus, to store the oracle, one needs to store only the word \(p \) and at most \(m - 1 \) external transitions without their label. All the other information can be deduced from the word \(p \). This representation is completely independent of the underlying alphabet. The factor oracle of \(p \) recognizes at least all the factors of \(p \) and a few other words. The exact characterization of the language recognized by the factor oracle is still an open question.

We denote by \(LRS(p) \) the longest repeated suffix of \(p \): \(LRS(p) = v \) such that \(v \) is a suffix of \(p \) and \(v \) is a factor of \(p[1..|p| - 1] \) and \(|v| \) is maximal.

We recall the definition of the suffix link for a state \(i \) of the factor oracle of a word \(p \).
An improved algorithm for finding longest repeats with a modified factor oracle

Figure 1: Factor oracle of \(p = abccbaabc \). Dash arrows represent the suffix links. All transitions leading to state \(i \) are labeled by \(p[i] \). There is always a transition from state \(i - 1 \) to state \(i \), for \(1 \leq i \leq m \). Such transitions are called internal transitions. Thus this factor oracle can be represented by \(p \) itself and the list \(((0,2),(0,4),(0,8),(2,4),(4,8)) \) of the external transitions (going from a state \(i \) to a state \(j \) such that \(j - i > 1 \) with \(0 \leq i \leq m - 1 \) and \(1 \leq j \leq m \)) without their label. All the states are terminal. All the factors of \(p \) are recognized. Some more words that are not factors but subsequences of \(p \), such as \(abca \), are also recognized.

Definition 1 ([1]) \(S[i] \), the suffix link of a state \(i \) of the factor oracle of a word \(p \), is equal to the state in which the longest repeated suffix of \(p[1..i] \) is recognized: \(S[i] = \delta(0,LRS(p[1..i])) \).

The state \(S[i] \) is equal to an occurrence of a repeated suffix of \(p[1..i] \).

Figure 2 presents the pseudo-code for the computation of the factor oracle of a word \(p \) of length \(m \).

3. Computing repeats with a factor oracle

In [6] we describe a method to compute, for each prefix \(p[1..i] \) of \(p \), the length of one of its repeated suffixes, such that \(S[i] \) is one of its occurrences. This length is denoted by \(lrs[i] \).

We proved in [6] that \(lrs[i] \) is a good approximation of \(LRS(p[1..i]) \) and \(lrs[i] \leq |LRS(p[1..i])| \) always holds.

Figure 3 shows the pseudo-code for the computation of the factor oracle of a word \(p \) of length \(m \) together with the array \(lrs \). It is done simultaneously in time and space \(O(m) \).

Since it is a heuristic, we performed some experiments in order to estimate the number of states \(i \) where \(lrs[i] \) is different from \(|LRS(p[1..i])| \). The exact values were computed using a classical dynamic programming method (dotplot-like) [5].

Figures 4 and 5 show results obtained on the chromosome I of the model plant \(Arabidopsis thaliana \). It contains a little more than 31 millions of symbols. Since the dynamic programming method is very slow, we performed this comparison on a
Figure 2: The algorithm \textsc{Oracle}(p,m) builds, on-line, the factor oracle of the word \(p\) of length \(m\). It runs in time and space \(O(m)\). The function \textsc{AddLetter}(i) builds the factor oracle of \(p[1..i]\) from the factor oracle of \(p[1..i-1]\).

4. A better heuristic

Since the suffix link of each state \(i\) leads to a state \(j\) smaller or equal to the first occurrence of the longest repeated suffix of \(p[1..i]\), an occurrence of \(p[i-lrs[i]..i]\) can be equal to a state \(k\) such that \(j < k < i\) and \(S[k] = S[i] = j\).

Figure 6 illustrates this situation.

The idea of the improvement is, every time that a \(lrs\) value is computed, to verify if there exists such another occurrence of a longer repeated suffix. If it is the case, then the suffix link is updated to the new occurrence and the \(lrs\) value is increased.
An improved algorithm for finding longest repeats with a modified factor oracle

$\text{ORACLEAndLRS}(p, m)$
1. Create state 0
2. $S[0] \leftarrow -1$
3. for $i \leftarrow 1$ to m
 4. do $\text{NEWAddLetter}(i)$

$\text{NEWAddLetter}(i)$
1. Create state i
2. $\delta(i-1, p[i]) \leftarrow i$
3. $k \leftarrow S[i-1]$
4. $\Pi_1 \leftarrow i-1$
5. while $k > -1$ and $\delta(k, p[i])$ is undefined
 6. do $\delta(k, p[i]) \leftarrow i$
 7. $\Pi_1 \leftarrow k$
 8. $k \leftarrow S[k]$
 9. if $k = -1$
 10. then $S[i] \leftarrow 0$
 11. $lrs[i] \leftarrow 0$
 12. else $S[i] \leftarrow \delta(k, p[i])$
 13. $lrs[i] \leftarrow \text{LENGTHCOMMONSUFFIX}(\Pi_1, S[i] - 1) + 1$

$\text{LENGTHCOMMONSUFFIX}(\Pi_1, \Pi_2)$
1. if $\Pi_2 = S[\Pi_1]$
 2. then return $lrs[\Pi_1]$
 3. else while $S[\Pi_2] \neq S[\Pi_1]$
 4. do $\Pi_2 \leftarrow S[\Pi_2]$
 5. return $\min(lrs[\Pi_1], lrs[\Pi_2])$

Figure 3: The algorithm $\text{ORACLEAndLRS}(p, m)$ builds the factor oracle of the word p of length m together with the array lrs. It runs in time and space $O(m)$. The function $\text{NEWAddLetter}(i)$ computes the factor oracle of $p[1..i]$ and the value $lrs[i]$ from the factor oracle of $p[1..i-1]$ and $lrs[1..i-1]$. The function $\text{LENGTHCOMMONSUFFIX}(\Pi_1, \Pi_2)$ finds the length of a common suffix ending at the position Π_1 and Π_2 by traversing the suffix links.

by one. For a state i, with $1 \leq i \leq m$, we denote this new kind of suffix link by $S'[i]$. We also need to store for a state i the set of states j such that $S'[j] = i$. We denote this set by $T[i]$:

$T[i] = \{j \mid S'[j] = i \text{ and } i < j \leq m\}$

for $0 \leq i \leq m - 1$. Figure 7 presents the pseudo-code of the improved method.
Figure 4: Results obtained with a factor oracle on the chromosome I of the model plant *Arabidopsis thaliana*. The size of the windows is 25,000 symbols. Values on the X-axis are the starting positions of the windows on the chromosome. On the Y-axis the number of differences represents the percentage of differences divided by ten; the average difference represents the average difference between *lrs* values and the values computed by dynamic programming. The number of differences for each window is about 40% and the average difference is a bit less than one.
An improved algorithm for finding longest repeats with a modified factor oracle

Figure 5: Results obtained with a factor oracle on the chromosome I of the model plant *Arabidopsis thaliana*. The size of the windows is 100,000 symbols. Values on the X-axis are the starting positions of the windows on the chromosome. On the Y-axis the number of differences represents the percentage of differences divided by ten; the average difference represents the average difference between *Irs* values and the values computed by dynamic programming. The number of differences for each window is about 40% and the average difference is a bit less than one.

Figure 6: Factor oracle of *abbcabcdabc*. Dash arrows represent the suffix links. Values near the states are the *Irs* values. The detected repeated suffix of *abbcabcdabc* is *bc* (length 2). However, there exists an occurrence of *abc* (length 3) in position 7 which is a longer repeated suffix than *bc*. The improvement of the method consists in moving the suffix link to state 7, and increasing the *Irs* of state 11 by one.
RepeatOracle(p, m)
1. Create state 0
2. $S'[0] \leftarrow -1$
3. for $i \leftarrow 1$ to m
4. do NewImprovedAddLetter(i)

NewImprovedAddLetter(i)
1. Create state i
2. $\delta(i-1, p[i]) \leftarrow i$
3. $k \leftarrow S'[i-1]$
4. $\Pi_1 \leftarrow i - 1$
5. while $k > -1$ and $\delta(k, p[i])$ is undefined
6. do $\delta(k, p[i]) \leftarrow i$
7. $\Pi_1 \leftarrow k$
8. $k \leftarrow S'[k]$
9. if $k = -1$
10. then $S'[i] \leftarrow 0$
11. else $lrs[i] \leftarrow 0$
12. $S'[i] \leftarrow \delta(k, p[i])$
13. $lrs[i] \leftarrow NewLengthCommonSuffix(\Pi_1, S'[i] - 1) + 1$
14. $k \leftarrow FindBetter(i, p[i - lrs[i]])$
15. if $k \neq 0$
16. then $lrs[i] \leftarrow lrs[i] + 1$
17. $S'[i] \leftarrow k$
18. $T[S'[i]] \leftarrow T[S'[i]] \cup \{i\}$

FindBetter(i, a)
1. for all the elements j of $T[i]$ in increasing order
2. do if $lrs[j] = lrs[i]$ and $p[j - lrs[i]] = a$
3. then return j

NewLengthCommonSuffix(Π_1, Π_2)
1. if $\Pi_2 = S'[\Pi_1]$
2. then return $lrs[\Pi_1]$
3. else while $S'[\Pi_2] \neq S'[\Pi_1]$
4. do $\Pi_2 \leftarrow S'[\Pi_2]$
5. return $\min(lrs[\Pi_1], lrs[\Pi_2])$

Figure 7: Pseudo-code of the improved method.
Figure 8: Results obtained with a repeat oracle on the chromosome I of the model plant *Arabidopsis thaliana*. The size of the windows is 100,000 symbols. Values on the X-axis are the starting positions of the windows on the chromosome. On the Y-axis the number of differences represents the percentage of differences divided by ten; the average difference represents the average difference between *lrs* values and the values computed by dynamic programming.

This new structure is then called *repeat oracle*. It is even more difficult to characterize than the factor oracle. However it is much more accurate regarding the detection of repeats.

5. Applications

We now show two applications where the improved method reveals itself to be very useful.

5.1. Repeat detection

In order to estimate the improvement, the same experiments as those presented in the previous section have been performed. Results are shown in Figure 8 only for window size 100,000.

With the improvement, the average number of differences drops to 6% (instead of 40%), and the average difference drops to 0.1 (instead of 1). Experiments were conducted on a large number of sequences and were all consistent with those obtained with chromosome I of *Arabidopsis thaliana*. For all to these results, this improvement reduces significantly differences generated by the previous method.

In terms of running time, this improvement is slower than the original method.
<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th>original</th>
<th>improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>at1</td>
<td>31</td>
<td>50</td>
<td>85</td>
</tr>
<tr>
<td>at4</td>
<td>17.5</td>
<td>28</td>
<td>54</td>
</tr>
<tr>
<td>pic</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>book1</td>
<td>0.7</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>book2</td>
<td>0.6</td>
<td>1.4</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 9: Execution times, given in seconds, of the original method and the improved method applied on files containing DNA sequences (at1 and at4 are respectively chromosomes I and IV of Arabidopsis thaliana), pictures (pic) or English texts (book1 and book2). Sizes of the files are given in Mb in the first column.

Figure 9 shows that the improved method is twice slower than the original one. This would mean that the improved method is still linear.

5.2. Lossless on-line data compression

Computing the length of long repeated suffixes for each prefix of a word p naturally leads to a factorization of p which can be used to compress it [7]. All the first occurrences of the letters of the alphabet in p are encoded as single letters. All the repeated factors are encoded as pairs (length, position). The encoding is performed simultaneously with the construction of the factor oracle.

Assume that the factor oracle of $p[1..j]$ has already been built and thus that the prefix $p[1..j]$ of length j of the word p has already been encoded. To encode the suffix $p[j + 1..m]$, we then need to find the smallest position $i + 1$ strictly greater than j such that $\text{lrs}[i + 1] < i + 1 - j$. If $i + 1 = j + 1$ (or equivalently $\text{lrs}[j + 1] = 0$) then it means that the letter $p[j + 1]$ never occurred in $p[1..j]$ and it is encoded as a single letter. Otherwise we represent $p[j + 1..i]$ as the pair $(i - j, S[i] - i + j + 1)$ since $p[j + 1..i] = p[S[i] - i + j + 1..S[i]]$. At that time the prefix $p[1..i]$ has been encoded, it remains to encode, by the same process, the suffix $p[i + 1..m]$. The reader can refer to [7] for the encoding details. This compressing method is called compror.

The word ababcdabc whose factor oracle and lrs values are given in Figure 6 is encoded by $\text{ab(1,2)c(2,1)(1,4)d(2,1)(1,4)}$.

The decoding process is straightforward. Given $\text{ab(1,2)c(2,1)(1,4)d(2,1)(1,4)}$ it is obvious to retrieve the word ababcdabc.

Since it is possible to detect longer repeats with the improved method than with the original one, it has also been implemented in a new version of compror. The word ababcdabc whose factor oracle and lrs values are given in Figure 6 is encoded by $\text{ab(1,2)c(2,1)(1,4)d(3,5)}$ with the repeat oracle. This new compressing method has been compared to gzip2 which is based on the Burrows-Wheeler transform [3] and gzip based on Ziv-Lempel method [10]. New compression results are given figure 10.

The improved version of compror is much better than the original version and beats gzip in a large number of cases.
An improved algorithm for finding longest repeats with a modified factor oracle

<table>
<thead>
<tr>
<th></th>
<th>size</th>
<th>bzip2</th>
<th>gzip</th>
<th>original</th>
<th>improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>at4</td>
<td>17.5</td>
<td>4.7</td>
<td>4.9</td>
<td>5.7</td>
<td>4.8</td>
</tr>
<tr>
<td>pic</td>
<td>0.51</td>
<td>0.05</td>
<td>0.05</td>
<td>0.12</td>
<td>0.073</td>
</tr>
<tr>
<td>book1</td>
<td>0.77</td>
<td>0.23</td>
<td>0.31</td>
<td>0.43</td>
<td>0.31</td>
</tr>
<tr>
<td>book2</td>
<td>0.61</td>
<td>1.5</td>
<td>0.20</td>
<td>0.29</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Figure 10: Compression results on chromosome IV of *Arabidopsis thaliana* (at4), a picture (pic) and English texts (book1 and book2). The size column gives the size of each file (in Mb), other columns give the sizes of the files after compression with bzip2, gzip, original compro and the improved version of compro respectively.

6. Conclusion

We present in this article experimental results that enable to measure the approximation rate of the length of the repeats found on-line and in linear time with a factor oracle. Though the number of differences is quite large, the difference is itself close to one on the average, even for large sequences. Furthermore we showed an improvement of the original method which divides the number of differences by seven and the difference itself by ten. This leads to improved results when looking for exact repeats in genomic sequences and when applied to data compression. Since exact repeat are used as seeds to detect approximate repeat [8], the improvement is of great importance in that case too. Furthermore the experimental results indicate that the method, which is still on-line, remains linear. We leave, as an open problem, the exact characterization of the new data structure named repeat oracle.

References

