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SUMMARY

We present experimental results for string matching algorithms which are known to be fast in
practice. We compare these algorithms through two aspects: the number of text character
inspections and the running time. These experiments show that for large alphabets and small
patterns the Quick Search algorithm of Sunday is the most efficient and that for small alphabets
and large patterns it is the Reverse Factor algorithm of Crochemoreet al. which is the most
efficient.
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INTRODUCTION

The string-matching problem consists of finding all occurrences of a patternx of
length m in a text y of length n. The pattern and the text are both words built on
the same alphabetS. The brute-force algorithm to solve this problem has a quadratic
O(nm) worst-case time complexity. Fortunately there exist several linear-time algor-
ithms that have been developed in the last twenty years. Some of them are even
sublinear in practice, but Rivest1 proved in 1977 that at leastn − m + 1 text characters
must be inspected in the worst case.

The best way to understand how a string matching algorithm works is to imagine
that there is a window on the text. This window has the same length as the pattern
x. This window is first aligned with the left end of the text and then the string
matching algorithm scans if the characters of the window match the characters of
the pattern (we will call that specific work anattempt). After each attempt the
window is shifted to the right over the text until it goes over the right end of the
text. A string matching algorithm is a succession of attempts and shifts. The aim of
a good algorithm is to minimize the work done during each attempt and to maximize
the length of the shifts.

Most of the linear string matching algorithms preprocess the pattern before the
search phase. Only one algorithm, designed by Crochemore,2 has a linear worst-case
time complexity without a preprocessing phase.

The word done during the preprocessing phase usually helps the algorithm to
maximize the length of the shifts. The preprocessing phase generally needs an extra
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space which is linear in the length of the pattern. Only two algorithms3,4 need a
constant extra space. They both have the particularity that they scan the characters
in the window in the two directions: one part from left to right and the other part
from right to left.

The general scheme of a string matching algorithm is given inFigure 1.
There are different ways to check if the characters of the window match the

characters of the pattern. After a mismatch or a complete match of the whole pattern
the brute-force algorithm shifts the window to the right by exactly one position. The
direct improvements of the brute-force algorithm scan the characters of the window
from left to right: they are Morris and Pratt’s algorithm,5 Knuth, Morris and Pratt’s
algorithm6 and Simon’s algorithm.7 These algorithms scan in the worst case at most
2n text characters. They use a shift function based on the notion of periods of the
prefixes of the pattern.

The Quick Search algorithm of Sunday8 also scans the characters of the window
from left to right, but it uses a ‘heuristic’ shift function called the occurrence shift,
first introduced by Boyer and Moore.9

The algorithms which scan the characters of the window from right to left are
well known for their fast running time. The first of them was the famous Boyer–
Moore algorithm9 which was improved by Galil,10 Apostolico and Giancarlo11 and
Crochemoreet al.12 These algorithms use two shift functions: the occurrence shift
and the matching shift. There exists a simplification of the Boyer–Moore algorithm,
due to Horspool,13 which uses only the occurrence shift.

There are also two algorithms which scan the characters of the window from right

Figure 1. General scheme of a string-matching algorithm
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Figure 2. The brute-force algorithm

to left using the smallest suffix automaton (or dawg) of the reverse pattern, they are
called the Reverse Factor algorithm and the Turbo Reverse Factor algorithm.12,14

Some algorithms scan the characters of the window in the two directions. We can
distinguish two types of such algorithms. First those which scan from one direction
and then from the other from a specific position into the pattern: this is the case
for the already cited algorithms of Galil and Seiferas3 and Crochemore and Perrin.4

The position in the pattern is chosen from some combinatorial properties on words.
The second type of algorithm partitions the positions in the pattern into two subsets
and first scans the position of a subset from left to right and then the positions of
the other subset from right to left. They are the algorithm of Colussi15 and the
algorithm of Galil and Giancarlo16 which in the worst case scan at most 3n/2 and
4n/3 text characters, respectively.

Several experiments on string matching algorithms have already been reported.13,17–

21 In this paper we report experiments on eight different algorithms: the brute force
algorithm, the Boyer–Moore algorithm, the Apostolico–Giancarlo algorithm, the
Turbo-BM algorithm, the Boyer–Moore–Horspool algorithm, the Quick Search algor-
ithm, the Reverse Factor algorithm and the Turbo Reverse Factor algorithm
(respectively BF, BM, AG, TBM, BMH, QS, RF and TRF for short).

This paper is organized as follows: in the second section we present the algorithms
tested in the following sections. In the third section we present the different texts
used. In the fourth section we give results for the number of inspections of text
characters, and in the fifth section we exhibit results for the running times.
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THE STRING MATCHING ALGORITHMS

We denote byper(w) the smallest period of a wordw.
We identify each attempt with the integer 0# i # n − m such that the window is

composed of the charactersy[i + 1,i + m].
In all the algorithms belowi will be an index in the texty and j will be an

index in the patternx.

Brute force

The brute-force algorithm may scan the characters of the window from left to
right beginning with the leftmost character of the window or from right to left
beginning with the rightmost character of the window. In any case, after a mismatch
or a complete match of the entire pattern it shifts the window of exactly one position
to the right. We give the version which scans the characters from left to right
in Figure 2.

The BF algorithm has a quadraticO(nm) worst-case time complexity. The average
number of comparison for one text character is 1+ 1/(uSu − 1).

Boyer–Moore

The Boyer–Moore algorithm9 scans the characters of the window from right to
left beginning with the rightmost character of the window. In case of a mismatch
or a complete match of the whole pattern it uses two shift functions to shift the
window to the right. These two functions are called theoccurrence shiftand the
matching shift.

If a mismatch occurs between a characterx[j] and a charactery[i + j] during an
attempt i of the BM algorithm then the occurrence shift consists in aligningy[i + j]
with its rightmost occurrence inx[1,m− 1] (seeFigure 3). If y[i + j] does not appear
in x then no occurrence ofx in y can includey[i + j] and the left end of the pattern
can be shifted immediately to the right ofy[i + j]. The matching shift consists of
aligning the factory[i + j + 1,i + m] with its rightmost occurrence inx[1,m] preceded
by a character different fromx[j] (see Figure 4) or if it is not possible to align the
longest suffix ofy[i + j + 1,i + m] with a matching prefix ofx.

The BM algorithm then applies the maximum between the occurrence shift and
the matching shift (seeFigure 5).

These two shift functions are defined as follows:

Figure 3. The occurrence shift; the charactera does not appear in the suffixv of x
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Figure 4. The matching shift,a±b and c±b

Figure 5. The Boyer–Moore algorithm

∀a P S, occurrence shift(a) = min { j/1 # j , m and x[m − j] = a} if a
appears inx,
occurrence shift(a) = m otherwise

for 1 # j # m, matching shift (j) = min {h/(h $ j and x[1,m− h] =
x[h + 1,m]) or
(h , j and x[j − h]±x[j] and
x[j − h + 1,m− h] = x[j + 1,m])}

and we definematching shift(0) = per(x).
The occurrence shift and the matching shift functions are preprocessed in time

O(m + uSu) before the search phase and require an extra space inO(m + uSu).
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The first correct published version of the computation of the matching shift was
due to Rytter22 and another version is due to Mehlhorn.23

When searching for all the occurrences of the pattern in the text the BM algorithm
has a quadratic worst-case time complexity. The exact complexity6 is O(n + rm)
where r is the number of occurrences ofx in y. Galil10 gave in 1979 a version of
the Boyer–Moore algorithm which runs linearly independently ofr.

The proof of the linearity of the BM algorithm when searching for the first
occurrence of the pattern is not trivial. A first proof of 7n characters comparisons
was given in 1977 by Knuth.6 In 1980 Guibas and Odlyzko24 gave a proof of 4n
comparisons and conjectured that the real bound was 2n comparisons. It was
only in 1990 that Cole25 gave the tight bound of 3n − n/m comparisons for non-
periodic patterns.

Apostolico–Giancarlo

The Boyer–Moore algorithm is difficult to analyse because after each attempt it
forgets all the characters it has already matched. In 1986 Apostolico and Giancarlo11

designed an algorithm which remembers each factor of the text which is a suffix of
the pattern.

Let us assume that during an attempt, i the algorithm has matched a suffix of
x of length k at position i + j with 0 , j , m, then skip[i + j] is equal tok. During
the attempt i if the algorithm compares successfully the factor of the text
y[i + j + 1,i + m] (see Figure 6), then

1. If x[ j − k + 1,j] is a suffix of x it is possible to jump over the factor of the
text y[i + j − k + 1,i + j] and to resume the comparisons with the characters
y[i + j − k] and x[j − k].

2. If x[ j − k + 1,j] is not a suffix ofx we know that no occurrence of the pattern
can be found during attempti and the algorithm must perform a shift.

Another case can occur ifk . j (seeFigure 7), then it is sufficient to know ifx[1,j]
is a suffix of x.

In each case the only information which is needed is the length of the longest
suffix of x ending at positionj in x. For that the AG algorithm use two data structures:

(a) a tableskip which is updated at the end of each attempti in the following way:

skip[i + m] = max {k/x[m − k + 1,m] = y[i + m− k + 1,i + m]}

Figure 6. Typical situation during the Apostolico–Giancarlo algorithm (I). The factors coloured with
the same gray match
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Figure 7. Typical situation during the Apostolico–Giancarlo algorithm (II)

(b) a tablesuffix whose values are preprocessed in the following way:

for 1 # j , m, suffix[ j] = max{k/x[ j − k + 1,j] = x[m− k + 1,m]}

During an attempti, at positioni + j if skip[i + j] ± 0 andsuffix[j] $ skip[i + j] or
suffix[ j] = j then it is possible to jump over the factor of the text
y[i + j − skip[i + j] + 1,i + j].

If skip[i + j] ± 0 and suffix[j] , skip[i + j] and j . suffix[j] then we know that a
mismatch would occur between charactersy[i + j − suffix[j]] and x[j − suffix[j]] and we
can compute the shift with max (occurrence shift(y[i + j − suffix[j]] − m+ j + suffix[j],
matching shift(j − suffix[j]] (seeFigure 8). This is a slight modification of the algorithm
presented in Reference1, where in that case the shift is computed only with
matching shift′(j), where

for 1 # j # m, matching shift(j) = min {h/(h $ j and x[1,m − h] =
x[h + ,m]) or
(h , j and x[j − h + 1,m− h] =
x[j + 1,m])}

This modification gives a longer shift and makes the algorithm a little bit faster in
practice but does not modify the worst-case time complexity of the algorithm.

Figure 8. Mismatch in the Apostolico–Giancarlo algorithm
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The table suffix can be precomputed in timeO(m). Then the complexity in
space and time of the AG algorithm is the same as that for the Boyer–Moore
algorithm: O(m+ uSu).

The AG algorithm is presented inFigure 9.
During the search phase only the lastm informations of the tableskip are needed

at each attempt, so the size of the tableskip can be reduced toO(m).
The Apostolico–Giancarlo algorithm performs in the worst case at most 2n − m+ 1

comparisons of text characters.

Figure 9. The Apostolico–Giancarlo algorithm
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Figure 10. A turbo-shift can apply whenuvu , uuu

Turbo-BM

The Turbo-BM algorithm12 can be viewed as a simplification of the Apostolico–
Giancarlo algorithm. It needs no extra preprocessing and requires only a constant
extra space compared to the original Boyer–Moore algorithm. It consists of remem-
bering only the factor of the text that matched a suffix of the pattern during the
last attempt (and only if a matching shift has been performed). This technique has
two advantages: (i) it is possible to jump over this factor and (ii) it can enable a
turbo-shift to be performed.

A turbo-shift can occur if during the current attempt the suffix of the pattern that
matches the text is shorter than the one remembered from the preceding attempt. In
this case (seeFigure 10) let us callu the remembered factor andv the suffix matched
during the current attempt, such thatuzv is a suffix of x. Then av is a suffix of x,
the two charactersa and b occur at distancep in the text, and the suffix ofx of
length uuzvu has a period of lengthp, and thus it cannot overlap both occurrences
of charactersa and b in the text. The smallest shift possible has lengthuuu − uvu,
which we call a turbo-shift.

Always in the case whereuvu , uuu, if the occurrence shift is the larger shift then
the actual shift must be greater or equal touuu + 1 (seeFigure 11). In this case the
two charactersc and d are different because we assumed that the previous shift was
a matching shift. Then a shift greater than the turbo-shift but smaller thanuuu + 1
would align c and d with the same character inv. Thus if the occurrence shift is
the larger shift the length of the actual shift must be at least equal touuu + 1.

The TBM algorithm is depicted inFigure 12. The variableu memorizes the length
of the suffix matched during the previous attempt and the variablev memorizes the
length of the suffix matched during the current attempt.

Figure 11. c ± d so they cannot be aligned with the same character inv
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Figure 12. The Turbo-BM algorithm
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The number of character comparisons performed by the TBM algorithm is bounded
by 2n.

Boyer–Moore–Horspool

In 1980 Horspool proposed to use only the occurrence shift of the rightmost
character of the window to compute the shifts in the Boyer–Moore algorithm.

The Boyer–Moore–Horspool algorithm is shown inFigure 13.
The average number of comparisons performed by the BMH algorithm for one

text character is between 1/uSu and 2/(uSu + 1).18

Quick Search

In 1990 Sunday8 designed an algorithm which scans the characters of the window
from left to right beginning with the leftmost character of the window, and computes
its shifts with the occurrence shift of the character of the text immediately after the
right end of the window.

We now define the occurrence shift as follows:

∀ a P S, QS occurrence shift(a) = min { j/1 # j # m and x[m − j] = a}
if a appears inx,
QS occurrence shift(a) = m otherwise

This modification enables the last character of the pattern to be recognised.

Figure 13. The Boyer–Moore–Horspool algorithm
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Figure 14. The Quick Search algorithm

Reverse Factor

The Boyer–Moore type algorithms match some suffixes of the pattern, but it is
possible to match some prefixes of the pattern reading the character of the window
from right to left and then improve the length of the shifts. This is made possible
by the use of the smallest suffix automaton (also called dawg for directed acyclic word
graph) of the reverse pattern. This algorithm is called the Reverse Factor algorithm.

The smallest suffix automaton of a wordw27,28 is a deterministic finite automaton
! = (S, s0, F, d) where S is a set of states,s0 P S is the start state,F is the set of
the final states andd : S × S → S is the transition function. The language accepted
by ! is +(!) = { u P S*/∃ v P S* such thatw = vu}.

The preprocessing phase of the RF algorithm consists of computing the smallest
suffix automaton for the reverse patternxR. It is linear in time and space in the
length of the pattern. During the search phase the RF algorithm parses the characters
of the window from right to left with the automaton! starting with states0. It
goes until there are no more transitions defined for the current character of the
window from the current state of the automaton or if the whole window has been
scanned. At this moment it is easy to know what is the length of the longest prefix
of the pattern which has been matched: it corresponds to the length of the path
taken in ! from the start states0 and the last final state encountered. Knowing the
length of this longest prefix, it is trivial to compute the right shift to perform.

The RF algorithm is shown inFigure 15.
The RF algorithm has a quadratic worst-case time complexity but it is optimal

on the average. It performsO(nloguSum)/m) inspections of text characters on the
average, reaching the best bound shown by Yao29 in 1979.
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Figure 15. The Reverse Factor algorithm

Turbo Reverse Factor

It is possible to make the Reverse Factor algorithm linear. It is in fact sufficient
to remember the prefixu matched during the last attempt. Then during the current
attempt when reaching the right end ofu, it is easy to show that it is sufficient to
read again at most the rightmost half ofu.10,23 This is done by the Turbo Reverse
Factor algorithm.

If a word z is a factor of a wordw we definedisp(z,w), the displacement ofz
in w, to be the least integerd . 0 such thatw[m − d − uzu − 1,m− d] = z.

The general situation of the TRF algorithm is when a prefixu has been found in
the text during the last attempt and for the current attempt the algorithm tries to
match the factorv of length m − uuu in the text immediately at the right ofu. The
point betweenu and v is called the decision point. Ifv is not a factor ofx then
the shift is computed as in the Reverse Factor algorithm. Ifv is a suffix of x then
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an occurrence ofx has been found. Ifv is not a suffix but a factor ofx then it is
sufficient to scan again the min (per(u),uuu/2) rightmost characters ofu.

If u is periodic (i.e.per(u) # uuu/2) let z be the suffix ofu of length per(u). By
definition of the periodz is an acyclic word, and then an overlap such as shown in
Figure 16is impossible. Thus,z can only occur inu at distances which are multiples
of per(u), which implies that the smallest proper suffix ofuv which is a prefix of
x has a length equal touuvu − disp(zv,x) = m− disp(zv,x). Thus the length of the shift
to perform is disp(zv,x).

If u is not periodic (per(u) . uuu/2), it is obvious thatx cannot reoccur in the
left part of u of length per(u). It is then sufficient to scan the right part ofu of
length uuu − per(u) , uuu/2 to find a non-defined transition in the automaton.

The function disp is implemented directly in the automaton! without changing
the complexity of its construction.

The TRF is presented inFigure 17.
The TRF performs at most 2n inspections of text characters and it is also optimal

on the average.10,23

Summary

The known time complexities of the different algorithms are shown inTable I for
both the worst case and the average case.

Considering their average case complexities one should expect the brute-force and
the Boyer–Moore–Horspool algorithms to be efficient for large alphabets and the
Reverse Factor and the Turbo Reverse Factor to be efficient for large patterns.

THE TEXTS

We give experimental results for the number of inspections of text characters and
of the running time for the above algorithms for different types of text: binary
alphabet, alphabet of size 4, alphabet of size 8, alphabet of size 20, natural language,
C code and genome.

Binary alphabet

The alphabet isS = { a,b}. The text is composed of 500,000 characters and was
randomly built. The distribution is uniform, with 49·97 per cent ofa and 50·03 per
cent of b. For patterns of lengths between 2 and 7 we search for all of them and
for longer patterns we made the search for only 100 of them randomly built.

Figure 16. Impossible overlap ifz is an acyclic word
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Figure 17. The Turbo Reverse Factor algorithm
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Table I. Time complexities

Algorithms Worst case Average case

BF O(nm) n(1 + 1/(uSu − 1))
BM O(n + rm)

all occurrences
BM 3n − n/m

first occurrence
AG 2n − m + 1

TBM 2n
BMH O(nm) O(n/uSu)
QS O(nm)
RF O(nm) O(n(loguSum)/m)

TRF 2n O(n(loguSum)/m)

Alphabet of size 4

The alphabet isS = { a, b, c, d}. The text is composed of 500,000 characters and
was randomly built. The distribution is uniform, with 24·97 per cent ofa, 25·03 per
cent of b, 25·01 per cent ofc and 24·99 per cent ofd. For patterns of lengths
between 2 and 4 we search for all of them and for longer patterns we made the
search for only 100 of them randomly built.

Alphabet of size 8

The alphabet isS = { a, b, c, d, e, f, g, h}. The text is composed of 500,000
characters and was randomly built. The distribution is uniform, with 12·49 per cent
of a, 12·51 per cent ofb, 12·5 per cent ofc, 12·5 per cent ofd, 12·5 per cent of
e, 12·52 per cent off, 12·48 per cent ofg and 12·5 per cent ofh. For patterns of
length 2 and 3 we search for all of them and for longer patterns we made the
search for only 100 of them randomly built.

Alphabet of size 20

The alphabet isS = { a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t}. The
text is composed of 500,000 characters and was randomly built. The distribution is
uniform (seeTable II). We search all the patterns of length 2 and for longer patterns
we made the search for only 100 of them randomly built.

Table II. Character distribution in the text with an alphabet of size 20

Character Percentage Character Percentage Character Percentage Character Percentage

a 5·03 f 5·06 k 4·97 p 5·01
b 5·01 g 4·97 l 5 q 5·01
c 5·04 h 4·99 m 4·95 r 4·99
d 5·04 i 4·95 n 4·97 s 4·99
e 5·03 j 4·99 o 5·01 t 4·98
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Natural language

We use the novelAlice’s Adventures in Wonderlandby Lewis Carroll. The
alphabet is composed of 70 different characters (see distribution inTable III). The
text is composed of 148,188 characters. For each pattern length we made the search
with 100 patterns randomly chosen in the text.

C code

We use a program written in C. The alphabet is composed of 93 different
characters (see distribution inTable IV). The text length is equal to 140,240. For
each pattern length we search for 100 patterns randomly chosen in the text.

Genome

A genome is a DNA sequence composed of the four nucleotides: Adenine,
Cytosine, Guanine and Thymine. The alphabet isS = { a,c,g,t}. The genome we used
for these tests is a sequence of 180,136 base pairs of the region of the replication
origin of the Bacillus subtilis chromosome. It is composed of 29·63 per cent of
Adenine, 20·56 per cent of Cytosine, 22·95 per cent of Guanine and 26·86 per cent
of Thymine. For each pattern length we made the search with 100 of them randomly
chosen in the genome.

INSPECTIONS OF TEXT CHARACTERS

For each run of these algorithms we count the numberc of inspections for each
text character.

Table III. Character distribution in the text in natural language

Character Percentage Character Percentage Character Percentage Character Percentage

CR 0·7196 E 0·0370 W 0·0474 k 0·2148
space 5·7686 F 0·0146 X 0·0008 l 0·9220

! 0·0892 G 0·0164 Y 0·0226 m 0·3810
″ 0·0228 H 0·0560 Z 0·0002 n 1·3766
’ 0·3514 I 0·1458 [ 0·0004 o 1·5922
( 0·0112 J 0·0016 ] 0·0004 p 0·2912
) 0·0110 K 0·0164 0·0008 q 0·0250
* 0·0120 L 0·0190 ’ 0·2198 r 1·0558
, 0·4826 M 0·0388 a 1·6270 s 1·2536
- 0·1338 N 0·0234 b 0·2762 t 2·0394
. 0·1946 O 0·0350 c 0·4490 u 0·6790
: 0·0466 P 0·0128 d 0·9462 v 0·1606
; 0·0386 Q 0·0168 e 2·6716 w 0·4866
? 0·0406 R 0·0278 f 0·3852 x 0·0288
A 0·1276 S 0·0436 g 0·4884 y 0·4298
B 0·0182 T 0·0936 h 1·4148 z 0·0154
C 0·0286 U 0·0126 i 1·3528
D 0·0380 V 0·0084 j 0·0276
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Table IV. Character distribution in the C program

Character Percentage Character Percentage Character Percentage Character Percentage

TAB 0·0570 7 0·0190 P 0·0538 i 0·9962
CR 0·9894 8 0·0232 Q 0·0002 j 0·1196

space 5·2162 9 0·0492 R 0·0372 k 0·1798
! 0·0294 : 0·0330 S 0·0742 l 0·5670
″ 0·0284 ; 0·5474 T 0·4540 m 0·5800
# 0·0134 , 0·0772 U 0·0322 n 0·7376
% 0·0090 = 0·3264 V 0·0328 o 0·3896
& 0·0358 . 0·0268 W 0·0012 p 0·2116
’ 0·0014 ? 0·0046 X 0·0278 q 0·0190
( 0·6686 A 0·0582 Y 0·1196 r 0·8060
) 0·6688 B 0·0956 Z 0·0236 s 0·3944
* 0·8488 C 0·0132 [ 0·1534 u 0·6586
+ 0·2220 D 0·0716 \ 0·0034 v 0·2820
, 0·4318 E 0·1254 ] 0·1534 w 0·0502
- 3·2692 F 0·0252ˆ 0·0038 x 0·0938
. 0·1072 G 0·0164 0·5248 y 0·0836
/ 0·2068 H 0·0072 a 0·7510 z 0·0662
0 0·2034 I 0·2832 b 0·2266 { 0·3854
1 0·1738 J 0·0026 c 0·2610 u 0·0784
2 0·0660 K 0·0344 d 0·4564 } 0·0032
3 0·0338 L 0·2472 e 1·2620 0·0784
4 0·0138 M 0·1160 f 0·3876
5 0·0108 N 0·2910 g 0·1914
6 0·0082 O 0·0258 h 0·2032

Binary alphabet

The BF algorithm scans each text character between 1·5 and 2 times. As BMH
and QS algorithms only use the occurrence shift they are not efficient for very small
alphabets. The other algorithms are sublinear as expected. For a binary alphabet the
best results are achieved by the TRF algorithm; it almost reaches a bound of 2 per
cent for very long patterns (seeTable V and Figures 18and 19).

Alphabet of size 4

For very small patterns (length 2 and 3) the QS algorithm is efficient. For longer
patterns BM-like algorithms (BM, AG, TBM) and RF-like algorithms (RF, TRF)
have better results. For very long patterns RF-like algorithms are the most efficient
(seeTable VI and Figures 20and 21).

Alphabet of size 8

For small patterns (up to length 7) the QS algorithm is the most efficient. For
m = 8, 9 and 10 BM-like algorithms become efficient, and for longer patterns RF-
like algorithms are the most efficient. The TRF algorithm even reaches a bound of
less than 1 per cent for very long patterns (seeTable VII and Figures 22and 23).
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Table V. Text character inspections for a binary alphabet

m BF BM AG TBM BMH QS RF TRF

2 1·4999 1·0001 0·9166 1·0001 1·0001 0·9482 1·4168 1·0001
3 1·7499 0·9731 0·8969 0·9538 1·0945 1·0562 1·2400 0·9315
4 1·8749 0·9227 0·8567 0·8830 1·1659 1·0915 1·0612 0·8659
5 1·9374 0·8576 0·8045 0·8216 1·2099 1·0994 0·90950·7914
6 1·9687 0·7992 0·7532 0·7624 1·2338 1·0990 0·78880·7205
7 1·9843 0·7446 0·7041 0·7108 1·2467 1·0967 0·69480·6563
8 1·9921 0·6997 0·6599 0·6733 1·2526 1·0496 0·62140·6003
9 1·9960 0·6549 0·6209 0·6263 1·2398 1·0765 0·55690·5450
10 1·9980 0·6121 0·5815 0·5851 1·2139 1·0929 0·51270·5064
20 1·9999 0·4505 0·4280 0·4350 1·2680 1·1130 0·29420·2941
40 2·0001 0·3291 0·3135 0·3220 1·2320 1·0951 0·16960·1695
80 2·0000 0·2700 0·2560 0·2633 1·2547 1·0824 0·09700·0967
160 2·0006 0·2104 0·2002 0·2071 1·2272 1·0893 0·05600·0554
320 2·0011 0·1815 0·1724 0·1803 1·2466 1·0859 0·03380·0326
640 2·0019 0·1598 0·1513 0·1574 1·2835 1·1057 0·02380·0211

Figure 18. Text character inspections for a binary alphabet—short patterns

Alphabet of size 20

For small patterns the QS algorithm is the most efficient. Then form= 20 BM-
like algorithms are the best. For longer patterns RF-like algorithms are the most
efficient (seeTable VIII and Figures 24and 25).

Text in natural language

For m# 10 the QS algorithm is the most efficient. This case corresponds to the
typical search for words in a text editor for instance. For longer patterns RF-like
algorithms are better (seeTable IX and Figures 26and 27).
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Figure 19. Text character inspections for a binary alphabet—long patterns

Figure 20. Text character inspections for an alphabet of size 4—short patterns

C code

For small patterns (m # 4) the QS algorithm is the most efficient. Then for pattern
lengths between 5 and 20 the AG algorithm is the best. This is due to the great
amount of repetitions which are present in a C program. Then for very long patterns
(m $ 40) the TRF algorithm is the best (seeTable X and Figures 28and 29).

Genome

The results are very similar to those for an alphabet of size 4 though the
distribution of the four nucleotides is not uniform, except that this time BM-like
algorithms are efficient up to pattern length 6 (seeTable XI and Figures 30and 31).
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Figure 21. Text character inspections for an alphabet of size 4—long patterns

Table VI. Text character inspections for an alphabet of size 4

m BF BM AG TBM BMH QS RF TRF

2 1·2499 0·7142 0·7053 0·7142 0·71420·6038 0·8839 0·7857
3 1·3124 0·5716 0·5675 0·5711 0·58920·5454 0·6631 0·6287
4 1·3281 0·4845 0·4821 0·4839 0·5136 0·4894 0·5320 0·5213
5 1·3319 0·4238 0·4220 0·4233 0·4581 0·4416 0·4464 0·4432
6 1·3329 0·3960 0·3945 0·3954 0·4382 0·4269 0·39280·3919
7 1·3332 0·3579 0·3564 0·3573 0·4091 0·3959 0·34470·3445
8 1·3333 0·3493 0·3478 0·3488 0·4051 0·3902 0·31520·3151
9 1·3332 0·3287 0·3272 0·3279 0·3961 0·3731 0·28510·2850
10 1·3332 0·3084 0·3073 0·3079 0·3681 0·36590·2653 0·2653
20 1·3332 0·2713 0·2701 0·2709 0·3809 0·3588 0·15420·1541
40 1·3333 0·2257 0·2247 0·2254 0·3596 0·3562 0·08990·0898
80 1·3334 0·2011 0·2001 0·2016 0·3848 0·3667 0·05140·0513
160 1·3335 0·1736 0·1729 0·1748 0·3994 0·3750 0·02950·0292
320 1·3337 0·1542 0·1535 0·1553 0·3740 0·3650 0·01790·0171
640 1·3341 0·1400 0·1394 0·1414 0·3987 0·3800 0·01250·0112

We can make some remarks on these tests regarding the number of inspections
of text characters. It seems that BMH algorithm is not very efficient from this point
of view.

For long patterns

1. The difference between the number of text character inspections performed by
the BM algorithm and the number of text characer inspections performed by
the AG algorithm decreases: this means that the AG algorithm then performs
few jumps (except for C code).

2. The difference between the number of text character inspections performed by
the RF algorithm and the number of text character inspections performed by
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Table VII. Text character inspections for an alphabet of size 8

m BF BM AG TBM BMG QS RF TRF

2 1·1249 0·6000 0·5989 0·6000 0·60000·4625 0·6740 0·6501
3 1·1406 0·4341 0·4339 0·4341 0·43710·3771 0·4808 0·4767
4 1·1425 0·3453 0·3452 0·3453 0·35030·3177 0·3810 0·3804
5 1·1428 0·2948 0·2948 0·2948 0·29980·2811 0·3236 0·3235
6 1·1428 0·2603 0·2602 0·2603 0·26650·2560 0·2832 0·2832
7 1·1428 0·2344 0·2344 0·2344 0·2414 0·2344 0·2516 0·2516
8 1·1428 0·2167 0·2167 0·2167 0·2236 0·2194 0·2272 0·2272
9 1·1428 0·2025 0·2025 0·2025 0·2105 0·2076 0·2091 0·2091
10 1·1428 0·1911 0·1910 0·1911 0·2007 0·1966 0·1929 0·1929
20 1·1428 0·1519 0·1519 0·1519 0·1652 0·1637 0·11320·1131
40 1·1428 0·1305 0·1304 0·1305 0·1494 0·1478 0·06380·0637
80 1·1428 0·1271 0·1271 0·1272 0·1524 0·1511 0·03610·0360
160 1·1427 0·1169 0·1168 0·1170 0·1544 0·1492 0·02050·0204
320 1·1427 0·1102 0·1102 0·1104 0·1564 0·1522 0·01210·0117
640 1·1426 0·1018 0·1018 0·1020 0·1524 0·1491 0·00790·0073

Figure 22. Text character inspections for an alphabet of size 8—short patterns

the TRF algorithm decreases: this means that TRF algorithm scarcely reaches
the decision point (except for C code).

For long patterns or for small alphabets the TRF algorithm is always the best. For
the other cases the QS algorithm is efficient.

However, all these algorithms do not make the same use of text characters: for
BMH, BM, AG, TBM and QS text characters are used to perform comparisons with
pattern characters, for the RF and TRF algorithms text characters are used to perform
transitions in an automaton.

Furthermore, we have not taken into account the fact that for computing its shifts
the QS algorithm inspects a text character that has not yet been inspected.
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Figure 23. Text character inspections for an alphabet of size 8—long patterns

Table VIII. Text character inspections for an alphabet of size 20

m BF BM AG TBM BMH QS RF TRF

2 1·0499 0·5384 0·5383 0·5384 0·53840·3839 0·5653 0·5615
3 1·0524 0·3696 0·3696 0·3696 0·37000·2973 0·3908 0·3905
4 1·0526 0·2837 0·2837 0·2837 0·28410·2422 0·3020 0·3020
5 1·0525 0·2324 0·2324 0·2324 0·23310·2069 0·2500 0·2500
6 1·0526 0·1988 0·1988 0·1988 0·19930·1820 0·2158 0·2158
7 1·0526 0·1745 0·1745 0·1745 0·17520·1626 0·1903 0·1903
8 1·0526 0·1563 0·1563 0·1563 0·15700·1477 0·1709 0·1709
9 1·0526 0·1420 0·1420 0·1420 0·14300·1359 0·1556 0·1556
10 1·0526 0·1308 0·1308 0·1308 0·13180·1263 0·1436 0·1436
20 1·0526 0·0813 0·0813 0·0813 0·0822 0·0817 0·0850 0·0850
40 1·0525 0·0594 0·0594 0·0594 0·0610 0·06080·0494 0·0494
80 1·0524 0·0530 0·0530 0·0530 0·0549 0·05480·0271 0·0271
160 1·0522 0·0513 0·0513 0·0513 0·0537 0·05420·0146 0·0146
320 1·0519 0·0504 0·0504 0·0504 0·0542 0·05410·0080 0·0080
640 1·0512 0·0494 0·0494 0·0494 0·0546 0·05420·0044 0·0044

RUNNING TIMES

Though the measure of text character inspections is an objective parameter of the
performance of string matching algorithms, one can expect that the best theoretical
string matching algorithms have good running times. In order to evaluate the practical
performances of string matching algorithms, we had implemented them in C in a
homogeneous way to make the comparison significant.

For each of them we count the running time of both the preprocessing phase and
the searching phase for one pattern. The running times are expressed in hundredth
of seconds.
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Figure 24. Text character inspections for an alphabet of size 20—short patterns

Figure 25. Text character inspections for an alphabet of size 20—long patterns

For the RF and TRF algorithms, the suffix automaton has been built in a table
in O(uSum) space.

Binary alphabet

We can make the same remarks as in the measure of the number of text character
inspections: BMH and QS algorithms are not efficient for a very small alphabet as
they only use the occurrence shift. The BF algorithm is linear.

The QS algorithm is efficient for very short patterns (m = 2 and m= 3) then for
pattern lengths up to 6 BM is the best, and after RF is the most efficient (see
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Table IX. Text character inspections for an English text

m BF BM AG TBM BMH QS RF TRF

2 1·0763 0·5635 0·5626 0·5635 0·56350·4115 0·6081 0·5963
3 1·0838 0·3915 0·3905 0·3910 0·39430·3219 0·4210 0·4170
4 1·0855 0·3055 0·3042 0·3047 0·30770·2687 0·3293 0·3265
5 1·0863 0·2567 0·2552 0·2556 0·25930·2330 0·2756 0·2731
6 1·0869 0·2221 0·2204 0·2208 0·22540·2055 0·2385 0·2360
7 1·0874 0·1956 0·1938 0·1942 0·19900·1842 0·2102 0·2079
8 1·0878 0·1759 0·1746 0·1749 0·18040·1689 0·1893 0·1873
9 1·0880 0·1599 0·1593 0·1594 0·16360·1556 0·1717 0·1702
10 1·0881 0·1487 0·1480 0·1481 0·15330·1459 0·1578 0·1567
20 1·0886 0·0892 0·0887 0·0888 0·0947 0·0909 0·0902 0·0896
40 1·0886 0·0600 0·0599 0·0599 0·0651 0·0633 0·05280·0526
80 1·0886 0·0424 0·0424 0·0424 0·0463 0·0455 0·03110·0308
160 1·0885 0·0338 0·0337 0·0338 0·0378 0·0362 0·01890·0184
320 1·0884 0·0282 0·0282 0·0282 0·0311 0·0309 0·01310·0121
640 1·0883 0·0253 0·0253 0·0253 0·0284 0·0279 0·01200·0098

Figure 26. Text character inspections for an English text—short patterns

Table XII and Figures 32and 33). For very long patterns, the running times for RF
and TRF algorithms increase because of the preprocessing phase, the time for which
is equal to one third of the time for the searching phase.

Alphabet of size 4

For very short patterns (m # 4) the QS algorithm is the best. Then the RF
algorithm is better (seeTable XIII and Figures 34and 35). For very long patterns,
the running times for RF and TRF algorithms increase because of the preprocessing
phase, the time for which is equal to half of the time for the searching phase.
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Figure 27. Text character inspections for an English text–—long patterns

Table X. Text character inspections for C code

m BF BM AG TBM BMH QS RF TRF

2 1·0458 0·5508 0·5356 0·5508 0·55080·3928 0·5864 0·5527
3 1·0634 0·4001 0·3724 0·3863 0·40490·3208 0·4250 0·3806
4 1·0783 0·3270 0·2914 0·3034 0·33330·2864 0·3528 0·3004
5 1·0909 0·2910 0·2441 0·2561 0·3065 0·2622 0·3099 0·2493
6 1·1031 0·2669 0·2099 0·2215 0·2827 0·2482 0·2840 0·2147
7 1·1147 0·2471 0·1857 0·1962 0·2663 0·2344 0·2681 0·1909
8 1·1251 0·2359 0·1655 0·1758 0·2558 0·2292 0·2541 0·1713
9 1·1352 0·2316 0·1521 0·1623 0·2559 0·2233 0·2468 0·1565
10 1·1452 0·2253 0·1377 0·1476 0·2435 0·2193 0·2418 0·1439
20 1·2322 0·2094 0·0843 0·0910 0·2484 0·2177 0·2360 0·0879
40 1·3392 0·1973 0·0549 0·0587 0·3085 0·2054 0·20380·0541
80 1·3881 0·0360 0·0349 0·0352 0·2129 0·0487 0·03580·0345
160 1·3883 0·0253 0·0236 0·0243 0·1819 0·0413 0·02250·0219
320 1·3883 0·0168 0·0164 0·0165 0·1042 0·0270 0·01670·0156
640 1·3882 0·0161 0·0153 0·0157 0·1062 0·0210 0·01580·0135

Alphabet of size 8

For pattern lengths up to 4 the QS algorithm is the best; for longer patterns the
RF algorithm is the best (seeTable XIV and Figures 36and 37). These results are
almost identical to those for an alphabet of size 4, except that the BMH and QS
algorithms are more efficient in this case. For very long patterns, the running times
for the RF and TRF algorithms increase because of the preprocessing phase, the
time for which is equal to half of the time for the searching phase.
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Figure 28. Text character inspections for C code—short patterns

Figure 29. Text character inspections for C code—long patterns

Alphabet of size 20

For m, 4 the QS algorithm is the best algorithm; then form$ 4 the RF algorithm
is the quickest (seeTable XV and Figures 38and 39). For very long patterns, the
running times for RF and TRF algorithms increase because of the preprocessing
phase, the time for which is equal to the time for the searching phase.

Text in natural language

The QS algorithm is the best for pattern lengths up to 7, which is generally the
typical search in such a text. Then, for long patterns the RF algorithm is quicker,
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Table XI. Text character inspections for a genome

m BF BM AG TBM BMH QS RF TRF

2 1·2538 0·7237 0·7069 0·7237 0·72370·5992 0·8917 0·7836
3 1·3211 0·5717 0·5652 0·5700 0·59270·5511 0·6689 0·6267
4 1·3391 0·4947 0·4918 0·4940 0·5221 0·5037 0·5450 0·5311
5 1·3438 0·4336 0·4305 0·4327 0·4888 0·4544 0·4544 0·4499
6 1·2351 0·3888 0·3863 0·3880 0·4503 0·4218 0·3908 0·3893
7 1·3455 0·3591 0·3572 0·3583 0·4189 0·3959 0·34780·3473
8 1·3455 0·3376 0·3356 0·3368 0·4065 0·3830 0·31290·3128
9 1·3456 0·3255 0·3237 0·3248 0·3960 0·3735 0·28630·2862
10 1·3456 0·3150 0·3134 0·3143 0·3866 0·36280·2643 0·2643
20 1·3456 0·2657 0·2646 0·2649 0·3762 0·37670·1560 0·1560
40 1·3455 0·2322 0·2313 0·2317 0·3721 0·3569 0·09030·0902
80 1·3454 0·2024 0·2013 0·2026 0·3761 0·3518 0·05180·0516
160 1·3453 0·1735 0·1727 0·1743 0·3661 0·3567 0·03000·0295
320 1·3450 0·1574 0·1564 0·1585 0·3964 0·3593 0·01850·0176
640 1·3444 0·1485 0·1476 0·1492 0·3754 0·3552 0·01400·0122

Figure 30. Text character inspections for a genome—short patterns

except for very long patterns, where the time for the preprocessing phase is equal
to the time for the searching phase. This is due to the fact that the length of the
text is not very great (seeTable XVI and Figures 40and 41).

C code

The QS algorithm is efficient up to pattern length 4, then the RF algorithm is
better except for very long patterns where the time for the preprocessing phase
equals the time for the searching phase (seeTable XVII and Figures 42and 43).
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Figure 31. Text character inspections for a genome—long patterns

Table XII. Running times for a binary alphabet

m BF BM AG TBM BMH QS RF TRF

2 13·9000 12·2000 29·7000 21·5000 14·400011·8500 18·3500 28·4500
3 15·1500 12·5500 27·4250 16·9000 13·025011·6750 16·4500 20·1250
4 16·1750 10·1250 24·6625 15·2500 12·4750 11·2500 12·9750 17·5125
5 16·4187 9·6500 22·1996 14·4125 12·0562 10·8875 10·8625 15·1375
6 16·0531 8·6592 20·9842 13·2875 12·2437 11·1250 9·3343 13·6625
7 16·0108 8·0515 20·0077 12·3484 12·2046 10·89947·9859 12·1062
8 16·5159 7·5980 19·1420 11·5280 12·2220 10·37007·3059 11·3460
9 16·4599 7·0859 18·1399 10·6460 11·9620 10·64206·4740 10·2780
10 16·5460 6·6700 17·3239 9·9719 11·8540 10·96396·0180 9·6900
20 16·5420 4·9260 13·4699 7·4920 12·2860 11·06393·9820 6·1420
40 16·5280 3·6620 10·3933 5·6480 11·8960 10·87802·6560 3·9560
80 16·5280 3·0480 8·4459 4·6540 12·1180 10·74991·8780 2·7060
160 16·5280 2·3980 6·6340 3·6740 11·8540 10·87001·2340 2·0120
320 16·5380 2·0380 5·7440 3·1680 12·0360 10·84390·9300 1·6520
640 16·5399 1·8140 4·9880 2·7600 12·4039 11·05201·2100 1·8640

Genome

The results for a genome are similar to the results for an alphabet of size 4.
Except that in this case the QS algorithm is still the best form = 5, but this is due
to the fact that the length of the text is smaller in this case (seeTable XVIII and
Figures 44and 45).

It is possible to make some observations on these results.
The BM algorithm is always faster than its refinements (the AG and TBM

algorithms). It is the same with the RF algorithm, which is always better than the
TRF algorithm. This means that the work done in order to save comparisons has a
cost too high to be efficient.
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Figure 32. Running times for a binary alphabet—short patterns

Figure 33. Running times for a binary alphabet—long patterns

The QS algorithm proves to be a very good algorithm in practice for large
alphabets and short patterns. Then it is typically suited for search in a natural
language context.

The RF algorithm is efficient for long patterns and small alphabets. In this case
it is not very annoying to implement the suffix automaton in a table. This can
be the case for search in a genome where the alphabet is composed of only
four characters.
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Table XIII. Running times for an alphabet of size 4

m BF BM AG TBM BMH QS RF TRF

2 12·1000 11·1125 23·5125 17·1500 10·58757·5875 11·1500 16·8000
3 12·3093 8·3656 18·8406 13·5218 7·77506·5000 7·6218 12·2781
4 12·2062 6·9562 16·2179 11·3151 6·63285·7648 6·0007 9·6296
5 13·1160 6·0780 14·8160 9·7439 6·0320 5·37995·1660 8·1120
6 13·1080 5·7059 14·2500 9·0700 5·6220 5·22204·5619 7·2000
7 13·1360 5·1420 13·4320 8·2479 5·2680 4·87404·0080 6·4200
8 13·1240 5·0740 13·2880 8·0440 5·2120 4·86003·7020 5·9200
9 13·0980 4·7720 12·7860 7·5800 5·1100 4·67003·3780 5·4520
10 13·1179 4·4900 12·2779 7·1020 4·7500 4·61003·1720 5·1399
20 13·1200 3·9960 10·9679 6·2840 4·9200 4·57202·1840 3·2920
40 13·1160 3·3620 9·5199 5·2679 4·6480 4·54601·5720 2·1780
80 13·1080 3·0040 8·3739 4·7160 4·9560 4·66401·1380 1·5300
160 13·1140 2·5880 7·2280 4·0880 5·1419 4·75800·6380 1·1360
320 13·1159 2·3160 6·4640 3·6480 4·8160 4·66590·5620 0·9520
640 13·1040 2·1060 5·7720 3·3199 5·1120 4·82400·8300 1·1280

Figure 34. Running times for an alphabet of size 4—short patterns
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Table XV. Running times for an alphabet of size 20

m BF BM AG TBM BMH QS RF TRF

2 10·6635 9·2199 19·8179 15·4434 8·21805·4884 6·1625 10·9664
3 10·6187 6·2961 14·5018 10·5832 5·61904·1846 4·2906 7·5394
4 11·7100 4·9600 12·0540 8·1539 4·4040 3·56203·4440 5·9600
5 11·7040 4·1060 10·9620 6·7280 3·6500 3·08002·9140 4·9600
6 11·7040 3·5480 10·3760 5·8040 3·1540 2·75402·4140 4·3200
7 11·7160 3·1460 9·9760 5·1220 2·7960 2·48602·2760 3·8539
8 11·7560 2·8460 9·6740 4·6160 2·5320 2·27802·0980 3·5340
9 11·7239 2·6020 9·1560 4·2079 2·3160 2·11601·9680 3·2500
10 11·7240 2·4140 8·7160 3·8980 2·1600 2·01601·8260 3·0100
20 11·7120 1·6120 6·2140 2·5120 1·4400 1·43201·3400 2·0120
40 11·7120 1·2680 4·8180 1·8820 1·1260 1·24401·0340 1·4480
80 11·6920 1·1340 4·3720 1·7020 1·0260 1·12400·6300 1·0360
160 11·7019 1·0960 4·1880 1·6460 0·9980 1·13200·4320 0·7860
320 11·6900 1·0440 4·1820 1·6420 1·0140 1·15000·3740 0·6860
640 11·6919 1·0980 4·1360 1·6380 1·0320 1·15000·4400 0·6240

Figure 38. Running times for an alphabet of size 20—short patterns

22. W. Rytter, ‘A correct preprocessing algorithm for Boyer–Moore string-searching’,SIAM J. Comput. 9,
509–512 (1980).

23. G. de V. Smit, ‘A comparison of three string matching algorithms’,Software—Practice and Experience,
12, 57–66 (1982).

24. L.J. Guibas and A.M. Odlyzko, ‘A new proof of the linearity of the Boyer–Moore string searching
algorithm’, SIAM J. Comput., 9, 672–682 (1980).

25. R. Cole, ‘Tight bounds on the complexity of the Boyer–Moore string matching algorithm’,Proceedings
of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 224–233.

26. M. Crochemore, L. Gasieniec and W. Rytter, ‘Turbo-BM’,Report LITP 92.61, UniversitéParis 7, 1992.
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Figure 39. Running times for an alphabet of size 20—long patterns

Table XVI. Running times for an English text

m BF BM AG TBM BMH QS RF TRF

2 3·2100 2·8580 5·9960 4·6040 2·48401·6340 2·1920 3·4520
3 3·1420 1·9420 4·4560 3·2200 1·76801·3260 1·4560 2·3720
4 3·1960 1·5160 3·7080 2·4940 1·35601·0800 1·1700 1·8540
5 3·2040 1·2880 3·3540 2·0860 1·13200·9420 0·9640 1·5340
6 3·1680 1·1060 3·2140 1·8260 1·01600·8280 0·8540 1·3600
7 3·1720 0·9980 3·0300 1·5920 0·88600·7640 0·7920 1·1740
8 3·1920 0·8920 2·9620 1·4400 0·8180 0.70800·6960 1·0740
9 3·1940 0·8200 2·8480 1·3360 0·7500 0·67000·6340 1·0000
10 3·1940 0·7660 2·7540 1·2400 0·6980 0·63400·5860 0·9120
20 3·2000 0·4760 2·0360 0·7700 0·4580 0·41000·3780 0·5780
40 3·1800 0·3360 1·5460 0·5320 0·3260 0·30200·2860 0·3600
80 3·1760 0·2500 1·1620 0·3820 0·2360 0·23200·1940 0·2400
160 3·1780 0·1900 0·8940 0·29600·1860 0·1900 0·1940 0·2520
320 3·1820 0·1760 0·7520 0·26200·1540 0·1620 0·2560 0·3320
640 3·1640 0·1620 0·6780 0·24400·1360 0·1440 0·4220 0·6160

29. A.C. Yao, ‘The complexity of pattern matching for a random string’,SIAM J. Comput., 8, 368–
387 (1979).
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Figure 40. Running times for an English text—short patterns

Figure 41. Running times for an English text—long patterns
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Table XVII. Running times for C code

m BF BM AG TBM BMH QS RF TRF

2 3·0580 2·6240 5·6060 4·2620 2·34401·5800 2·1240 3·1560
3 3·0959 1·8060 4·1680 2·9340 1·63801·3080 1·4560 2·1120
4 3·0540 1·4580 3·5060 2·3700 1·30801·0920 1·1500 1·7800
5 3·0240 1·2660 3·2580 1·9740 1·2080 1·01200·9840 1·4300
6 3·0540 1·1000 4·0540 1·6760 1·0740 0·87800·8660 1·2800
7 3·0700 1·0240 2·9580 1·5060 0·9720 0·82600·7560 1·1260
8 3·1040 0·9780 2·8760 1·3440 0·8740 0·77200·6860 1·0260
9 3·0820 0·8440 2·6560 1·2460 0·8700 0·74200·6400 0·9340
10 3·1560 0·8180 2·5340 1·1680 0·8160 0·66800·5820 0·8640
20 3·2000 0·6240 1·9120 0·7120 0·6660 0·57400·3640 0·5680
40 3·3720 0·5060 1·3520 0·4420 0·6240 0·47200·2440 0·3560
80 3·4560 0·1880 0·9100 0·2860 0·4380 0·19800·1740 0·2640
160 3·4540 0·1260 0·5940 0·1780 0·3400 0·14800·1460 0·2760
320 3·4380 0·1060 0·6460 0·1360 0·21600·1100 0·2060 0·3300
640 3·4400 0·1020 0·3820 0·1360 0·21000·0900 0·3540 0·6060

Figure 42. Running times for C code—short patterns
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Figure 43. Running times for C code—long patterns

Table XVIII. Running times for a genome

m BF BM AG TBM BMH QS RF TRF

2 4·3820 4·1459 8·3660 6·3020 3·73202·7700 4·0220 5·7840
3 4·4540 3·0420 6·5200 4·8620 2·84602·3500 2·9500 4·3980
4 4·3540 2·5320 5·8340 4·0800 2·41802·1920 2·3140 3·5420
5 4·3880 2·2180 5·4180 3·5640 2·21401·9600 1·9780 2·9620
6 4·3600 1·9700 5·0340 3·2140 2·0400 1·81801·6540 2·5520
7 4·3920 1·8560 4·8200 2·9960 1·9260 1·73401·4760 2·2800
8 4·3840 1·7440 4·7240 2·7940 1·8680 1·67401·3480 2·0680
9 4·3740 1·6880 4·5780 2·7000 1·8200 1·65001·2440 1·9260
10 4·3520 1·6440 4·4880 2·6360 1·7940 1·60801·1360 1·8000
20 4·3660 1·4020 3·9560 2·2220 1·7440 1·69000·7620 1·1280
40 4·3560 1·2280 3·5620 1·9560 1·7300 1·61200·4920 0·7260
80 4·3520 1·0780 3·1760 1·7180 1·7460 1·58600·3400 0·4740
160 4·3460 0·9360 2·6900 1·4860 1·7040 1·61000·3040 0·4420
320 4·3600 0·8420 2·4740 1·3580 1·8200 1·62400·2640 0·5120
640 4·3560 0·8220 2·3480 1·2940 1·7460 1·60000·5140 0·7180
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Figure 44. Running times for a genome–short patterns

Figure 45. Running times for a genome—long patterns
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