Efficient validation and construction of border arrays

J.-P. Duval T. Lecroq A. Lefebvre

Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes
University of Rouen, France

JM 2006
30/08/2006 Rennes, France
1. Recalls

2. New results

3. Conclusions and perspectives
Outline

1. Recalls
2. New results
3. Conclusions and perspectives
Definition
A string u is a border of a string w if u is both a prefix and a suffix of w such that $u \neq w$.

Definition
The border of a string w is the longest of its borders. It is denoted by $\text{Border}(w)$.
Definition

Given a string $w[1..n]$ of length n, the array f defined by

$$f[i] = |Border(w[1..i])|$$

for $1 \leq i \leq n$ is called the **border array** of w.

It constitutes the “failure function” of the Morris-Pratt (1970) string matching algorithm.
Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>12</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>$f[i]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
The DFA $\mathcal{D}(w)$ recognizing the language Σ^*w is defined by $\mathcal{D}(w[1..n]) = (Q, \Sigma, q_0, T, F)$ where

- $Q = \{0, 1, \ldots, n\}$ is the set of states;
- Σ is the alphabet;
- $q_0 = 0$ is the initial state;
- $T = \{n\}$ is the set of accepting states;
- $F = \{(i, w[i+1], i+1) \mid 1 \leq i \leq n\} \cup \{(i, a, |\text{Border}(w[1..i]a)|) \mid 0 \leq i < n \text{ and } a \in \Sigma \setminus \{w[i+1]\}\}$ is the set of transitions.

The underlying unlabeled graph is called the skeleton of the automaton.
DFA

Example

$D(aabab)$: transitions leading to state 0 are omitted.
Definition

For $0 \leq i \leq n$:

- $\delta(i) = \{ j \mid (i, a, j) \in F \text{ with } a \in A \text{ and } j \neq 0 \}$;
- $\delta'(i) = \{ j \mid (i, a, j) \in F \text{ with } a \in A \text{ and } j \notin \{0, i + 1\} \}$.

In words:

- $\delta(i)$ is the list of the targets of the significant transitions leaving state i;
- $\delta'(i)$ is the list of the targets of the backward significant transitions leaving state i.
Example

\[D(aabab): \text{transitions leading to state 0 are omitted.} \]

\[\delta(4) = (5, 2) \text{ and } \delta'(4) = (2). \]
Theorem 1 [Simon 1993]

There are at most n significant backward transitions in $D(w[1..n])$.
Definition

An integer array $f[1..n]$ is a valid array (or is valid) if and only if it is the border array of at least one string $w[1..n]$.
The main problems

Validation
Given an integer array, is it valid? On which alphabet size?

Construction of a string
Given a valid array, exhibit a string for which this array is the border array?

Construction of border arrays
Construct all the distinct border arrays for some length.
Motivations

Theoretical interest

Generating minimal test sets for various string algorithms
Previous works

Counting distinct strings.

Verifying a border array in linear time.

J.-P. Duval, T. Lecroq, and A. Lefebvre.
Border array on bounded alphabet.
Previous works

Web site

http://al.jalix.org/Baba/Applet/baba.php
The candidates

Definition

For $1 \leq i \leq n$, we define

- $f^1[i] = f[i]$; and,
- $f^\ell[i] = f[f^{\ell-1}[i]]$ for $f[i] > 0$;
- $C(f, i) = (1 + f[i - 1], 1 + f^2[i - 1], \ldots, 1 + f^m[i - 1])$ where $f^m[i - 1] = 0$.
There are two necessary and sufficient conditions for an integer array f to be valid:

1. $f[1] = 0$ and for $2 \leq i \leq n$, we have $f[i] \in (0) \cup C(f, i)$;
2. for $i \geq 2$ and for every $j \in C(f, i)$ with $j > f[i]$, we have $f[j] \neq f[i]$.
Validation

Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>12</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f[i]$</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>?</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The candidates for $f[16]$ are in $C(f, 16) \cup (0) = (6, 4, 2, 1, 0)$.

Among these values 2 is not valid since $f[4] = 2$.
Validation

Theorem 2 [FGLRSSY 02]
The validation of an array f of n integers can be done in $O(n)$.

Theorem 3 [FGLRSSY 02]
The delay (time spent on one element) is in $O(n)$.
Validation

Example

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w[i]$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>$f[i]$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Outline

1. Recalls
2. New results
3. Conclusions and perspectives
Recalls

New results

Conclusions and perspectives

\[f \rightarrow \delta \]

Proposition 1

\[\delta(0) = (1) \text{ and } \]
\[\delta(j) = (j + 1) \cup \delta(f[j]) \cup (f[j + 1]) \text{ for } 1 \leq j < n \text{ and } \]
\[\delta(n) = \delta(f[n]). \]
Recalls

\[f \rightarrow \delta \]

Example

\[
\begin{array}{cccccc}
\text{\(j + 1 \)} & \cup & \delta(f[j]) & \cup & f[j + 1] & = & \delta(j) & j & f[j] \\
(1) & \cup & & \cup & (1) & = & (1) & 0 & \\
(2) & \cup & (1) & \cup & (1) & = & (2) & 1 & 0 \\
(3) & \cup & (2) & \cup & (1) & = & (3,2) & 2 & 1 \\
(4) & \cup & (1) & \cup & (1) & = & (4) & 3 & 0 \\
(5) & \cup & (2) & \cup & (1) & = & (5,2) & 4 & 1 \\
\cup & (1) & \cup & (1) & = & (1) & 5 & 0 \\
\end{array}
\]
Important

This computation is completely independent from the underlying string(s).
Assuming that $f[1..i]$ is valid, all the values for $f[i + 1]$ are in $\delta'(i) \uplus (0)$ and they do not need to be checked.

Using Proposition 1, the skeleton of the automaton is built online during the checking of the array f.

If $f[i + 1]$ is equal to 0, it is enough to check if the cardinality of $\delta'(i)$ is strictly smaller than the alphabet size s to ensure that f is valid up to position $i + 1$.
The candidates for $f[16]$ are in $\delta'(15) \cup (0) = (6, 4, 1, 0)$.
Theorem 4

The validity of a given integer array $f[1..n]$ can be checked in time and space $O(n)$. If f is valid, a string for which w is the border array can be computed with the same complexities.

Theorem 5

The delay is $O(\min\{n, \text{card } \Sigma\})$.
Construction of all the distinct border arrays

An algorithm for generating all valid arrays becomes then obvious: all the valid candidates for $f[i]$ are in $\delta'(i - 1) \uplus (0)$.
Counting

<table>
<thead>
<tr>
<th>i</th>
<th>$B(i)$</th>
<th>$B(i, 2)$</th>
<th>$B(i, 3)$</th>
<th>$B(i, 4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>16</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>32</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td>64</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>8</td>
<td>263</td>
<td>128</td>
<td>262</td>
<td>263</td>
</tr>
<tr>
<td>9</td>
<td>630</td>
<td>256</td>
<td>626</td>
<td>630</td>
</tr>
<tr>
<td>10</td>
<td>1525</td>
<td>512</td>
<td>1509</td>
<td>1525</td>
</tr>
<tr>
<td>11</td>
<td>3701</td>
<td>1024</td>
<td>3649</td>
<td>3701</td>
</tr>
<tr>
<td>12</td>
<td>9039</td>
<td>2048</td>
<td>8872</td>
<td>9039</td>
</tr>
<tr>
<td>13</td>
<td>22,140</td>
<td>4096</td>
<td>21,640</td>
<td>22,140</td>
</tr>
<tr>
<td>14</td>
<td>54,460</td>
<td>8192</td>
<td>52,993</td>
<td>54,460</td>
</tr>
<tr>
<td>15</td>
<td>134,339</td>
<td>16,384</td>
<td>130,159</td>
<td>134,339</td>
</tr>
<tr>
<td>16</td>
<td>332,439</td>
<td>32,768</td>
<td>320,696</td>
<td>332,438</td>
</tr>
</tbody>
</table>
Number of distinct border arrays on a binary alphabet

Proposition 2

\[B(n, 2) = 2^{n-1}. \]
Number of distinct border arrays on an alphabet of size s

Proposition 3

\[B(j, s) = B(j) \text{ for } j < 2^s. \]
Proposition 4

\[B(2^s, s) = B(2^s) - 1. \]

The missing border array has the following form:
\[0..2^0 - 1 \cdot 0..2^1 - 1 \cdot \ldots 0..2^{s-1} - 1. \]

It corresponds to the string \(w_s \cdot \sigma[s + 1] \) (of length \(2^s \)) where \(w_s \) is recursively defined by:
\[w_1 = a \quad \text{and} \]
\[w_i = w_{i-1} \cdot \sigma[i] \cdot w_{i-1} \quad \text{for } i > 1. \]
Example

The following array $f[1..16]$ if valid on an alphabet of size at least 5:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_4[i]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>d</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>$f[i]$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Outline

1. Recalls
2. New results
3. Conclusions and perspectives
Conclusions

Given an integer array f we can:

- say if f is valid,
 - on an unbounded size alphabet or
 - on a bounded size alphabet;
- exhibit strings for which f is the border array.

\[
f \leftrightarrow \delta
\]

Construct all the distinct border arrays
Get exact bounds on the number of distinct border arrays.
Perspectives

Let us recall the “failure function” of the Knuth-Morris-Pratt (1977) string matching algorithm

\[g[j] = \max\{ i \mid \text{w[1..i − 1] suffix of w[1..j − 1] and \ w[i] \neq w[j]} \}. \]

We know that

\[g[j] = \max\{ \delta(j - 1) - (j) \} = \max\{ \delta(f[j - 1]) - (f[j]) \}. \]