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Internet constraints

More and more clients:

• Google: 250 millions queries per day

Increasing demands for:

• scalability
• minimization of latency
• maximisation of bandwidth

Interlace the handling of several requests
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Servers more and more complex

Increasing demands for:

• effectiveness
• dynamicity
• dynamic variability

Induce an increasing number of errors:

• random behavior
• deadlocks
• livelocks

Need tools that helps the implementation
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Concurrency

Interlacing the handling of several requests ?

Two phylosophies:

• competition: only one process is selected to handle a
request

• cooperation: communication between processes in order
to handle a request
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Taxonomy of the server’s architectures
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Description of Saburo

Directed graph: models the application
Specified by developer using a UI
Reusable code

Business code: stage (or vertex) of the graph
Zero or one I/O call
Sequence of instructions
Specified by developer using Java
Reusable code

Concurrency code: context (or edge) of the graph
Channels between stages

method calls
local queues
sockets

Generated
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Development process illustration

Describe the implementation of a simple “Echo” server:

• The Echo graph modeled by the code below:

accept read write

StageManagerImpl manager = new StageManagerImpl();

manager.connect(AcceptStage.class, ReadStage.class);

manager.connect(ReadStage.class, WriteStage.class);
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Communications between stages

Defines input/output event interfaces for each stage:

• allow the communication between stages
• according to the position of a stage in the graph
• direct/centralized
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The Echo’s description of events

accept read write

public interface OutputAcceptEvent {
public void setAcceptSaburoSocket(SaburoSocket s);

}

public interface InputReadEvent {
public SaburoSocket getAcceptSaburoSocket();

}

public interface OutputReadEvent {
public void setReadByteBuffer(ByteBuffer b);

}

public interface InputWriteEvent {
public SaburoSocket getAcceptSaburoSocket();
public ByteBuffer getReadByteBuffer();

}
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Description of stages

Implementation of the stages:

• handle(...) method: business code
• its parameters are the context and input/output events
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The Echo’s description of stages

accept read write

public class ReadStage {
public void handle(StageContext ctx,

InputReadEvent in,
OutputReadEvent out) {

SaburoSocket client = in.getAcceptSaburoSocket();
ByteBuffer buffer;

while((buffer = client.read()) != null) {
buffer.flip();
// send to successor

}
}

}
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Connection of stages

The context is the way to reach successor(s) in the graph:

• according to the concurrency model
• automatically generated (Java or bytecode)
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The Echo’s description of stages

accept read write

public class ReadStage {
public void handle(StageContext ctx,

InputReadEvent in,
OutputReadEvent out) {

SaburoSocket client = in.getAcceptSaburoSocket();
ByteBuffer buffer = null;

while((buffer = client.read()) != null) {
buffer.flip();
out.setReadByteBuffer(buffer); // <---
ctx.dispatchToSuccessor(out); // <---

}
}

}
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Generation of the Echo concurrency: Iterative model

Generation of the ReadContext:

public class ReadContext implements StageContext{
private WriteStage successor;

public void dispatchToSuccessor(EchoEvent event){
successor.handle(event);

}
}

If there is only one process, the context is a function call

Generation of the Iterative model:

public class IterativeModel {
public void service() throws Exception {

while(true)
acceptStageWrapper.handle();

}
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Generation of the Echo concurrency: Seda model

Generation of the ReadContext:

public class ReadContext implements StageContext{
private WriteQueue successor;

public void dispatchToSuccessor(EchoEvent event){
successor.pushInQueue(event);

}
}

If several processes, we use queues to implement it

accept read write
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Generation of the Echo concurrency: Seda model
public class SedaModel {

public void service() throws Exception {
new Thread(new Runnable() {
public void run() {

while(true) {
writeSelector.doSelect();

}
}

}).start();

new Thread(new Runnable() {
public void run() {

while(true) {
readSelector.doSelect();

}
}

}).start();

while(true) {
acceptSelector.doSelect();

}
}

}
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Finally the “Echo” server
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Development process steps

Input / Output interfaces specified in Java by user

Events generated from interfaces

Functionnal code of a stage specified in Java by user

Technical code of a stage generated from concurrency

Stages’s connection
specified by user using UI

Select the concurrency

Concurrency generated from concurrency
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Summary
Weak interlacing between business code and
concurrency:

• separation of concerns + code generation

Switch easily between different concurrent models:

• select the model best adapted to underlying architecture
• at compile time or runtime

Extend very quickly applications:

• addition of vertices and edges in a graph
• at compile time or runtime

Specifications and code generations are 100% Java:

• ensure the portability of the applications
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Future

Distributed applications:

• the context establishes the connection between peers

HTTP & non blocking parser

Static analysis the application:

• applying model checker such as SPIN
• detect deadlock
• unreachable states
• temporal properties
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