Saburo, a tool for /0O and concurrency
management in servers

Gautier Loyauté Rémy Forax Gilles Roussel

Université de Marne la Vallée
Laboratoire d’Informatique de I'Institut Gaspard-Monge
UMR-CNRS 8049
F-77454 Marne la Vallée, Cedex 2, France

25 April 2006

% CENTRE NATIONAL /@/
DE LA RECHERCHE . .
SCIENTIFIQUE MIVERSITE.

a’:/“f)w-éz\/&&

1

More and more protocol

PPTP
:) Gnutella
[)

RARP SNMP
ICMP

SMTP FTP
Chord
LDAP
UDP
TCP DNS
HTTP Telnet

IPSec ARD

Internet constraints

More and more clients:

e Google: 250 millions queries per day

Increasing demands for:

e scalability
e minimization of latency
e maximisation of bandwidth

Interlace the handling of several requests

Servers more and more complex

Increasing demands for:

o effectiveness
e dynamicity
e dynamic variability

Induce an increasing number of errors:

e random behavior
e deadlocks
e livelocks

Need tools that helps the implementation

Concurrency

Interlacing the handling of several requests ?

Two phylosophies:
e competition: only one process is selected to handle a

request

e cooperation: communication between processes in order
to handle a request

Taxonomy of the server’s architectures

Input/Output
A

SPED Multi-SPED SEDA
...........’...? t e e et e et e e e e e e e e .?

Non blocking

Itera;tive Multi-Threaded Pipéline
oo o e o e s ...’. t e s e e e e e e e e e e e .

Blocking

Threads

Single Thread Same Role Different Roles

No consensus on the best model

6

Description of Saburo

Directed graph: models the application
e Specified by developer using a Ul
¢ Reusable code

Business code: stage (or vertex) of the graph
® Zero or one |/O call
e Sequence of instructions
e Specified by developer using Java

e Reusable code

Concurrency code: context (or edge) of the graph

e Channels between stages
* method calls
» local queues
* sockets

e Generated

Development process illustration

Describe the implementation of a simple “Echo” server:

e The Echo graph modeled by the code below:

() (\ (7T
1 accept e————>e read —— > write |
{) { J \ /

StageManagerImpl manager = new StageManagerImpl ();
manager .connect (AcceptStage.class, ReadStage.class);

manager .connect (ReadStage.class, WriteStage.class);

Communications between stages

Defines input/output event interfaces for each stage:

e allow the communication between stages
e according to the position of a stage in the graph
e direct/centralized

AcceptStage
~

The Echo’s description of events

() (\ (7T
1 accept e————>e read ——— > write |
{) { J \ /

—_——_—— — = _—_——_——

public interface OutputAcceptEvent ({

public void setAcceptSaburoSocket (SaburoSocket s);
}

public interface InputReadEvent {

public SaburoSocket getAcceptSaburoSocket();
}

public interface OutputReadEvent ({
public void setReadByteBuffer (ByteBuffer Db);
}

public interface InputWriteEvent ({

public SaburoSocket getAcceptSaburoSocket();
public ByteBuffer getReadByteBuffer();

}

Description of stages

Implementation of the stages:

e handle(...) method: business code
e its parameters are the context and input/output events

The Echo’s description of stages

(T T T T T \ (T T T T
—)Il accept 9—>T read 0—”\ write ——>
Vi -7 _—__7

public class ReadStage {
public void handle(StageContext ctx,
InputReadEvent in,
OutputReadEvent out) {
SaburoSocket client = in.getAcceptSaburoSocket();
ByteBuffer buffer;

while((buffer = client.read()) != null) {
buffer.flip();
// send to successor
}
}
}

Connection of stages

The context is the way to reach successor(s) in the graph:

¢ according to the concurrency model
e automatically generated (Java or bytecode)

The Echo’s description of stages

(T T T T \ (T T T T
—)Il accept 9—>? read 0—>°\ write ——>
Vi -7 _—__7

public class ReadStage {
public void handle (StageContext ctx,
InputReadEvent in,
OutputReadEvent out) {
SaburoSocket client = in.getAcceptSaburoSocket();
ByteBuffer buffer = null;

while((buffer = client.read()) != null) {
buffer.flip();
out.setReadByteBuffer (buffer); // <—-—-
ctx.dispatchToSuccessor (out); // <—-—
}
}
}

Generation of the Echo concurrency: lterative model

Generation of the ReadContext:

public class ReadContext implements StageContext{
private WriteStage successor;

public void dispatchToSuccessor (EchoEvent event) {
successor.handle (event) ;

}

If there is only one process, the context is a function call

Generation of the Iterative model:

public class IterativeModel {
public void service() throws Exception {

while (true)
acceptStageWrapper.handle();

1 15

Generation of the Echo concurrency: Seda model

Generation of the ReadContext:

public class ReadContext implements StageContext{
private WriteQueue successor;

public void dispatchToSuccessor (EchoEvent event) {
successor.pushInQueue (event) ;

}

If several processes, we use queues to implement it

accept —— 1lll read |—> 10kl write

Generation of the Echo concurrency: Seda model

public class SedaModel {
public void service() throws Exception {
new Thread (new Runnable () {
public void run() {
while (true) {
writeSelector.doSelect () ;
}
}
}) .start();

new Thread(new Runnable () {
public void run() {
while (true) {
readSelector.doSelect () ;
}

}
}) .start();

while(true) {
acceptSelector.doSelect () ;

}

Finally the “Echo” server

b WriteStage
Saburo API

Development process steps

Input / Output interfaces

specified in Java by user

Events

generated from interfaces

Functionnal code of a stage

specified in Java by user

Technical code of a stage

generated from concurrency

Stages’s connection

Select the concurrency

specified by user using Ul

Concurrency

generated from concurrency

Summary

Weak interlacing between business code and
concurrency:

e separation of concerns + code generation

Switch easily between different concurrent models:
¢ select the model best adapted to underlying architecture
e at compile time or runtime
Extend very quickly applications:
 addition of vertices and edges in a graph
e at compile time or runtime
Specifications and code generations are 100% Java:

e ensure the portability of the applications

20

Future

Distributed applications:

e the context establishes the connection between peers

HTTP & non blocking parser

Static analysis the application:

e applying model checker such as SPIN
¢ detect deadlock

e unreachable states

e temporal properties

21

