
Saburo, a tool for I/O and concurrency
management in servers

Gautier Loyauté Rémy Forax Gilles Roussel

Université de Marne la Vallée
Laboratoire d’Informatique de l’Institut Gaspard-Monge

UMR-CNRS 8049
F-77454 Marne la Vallée, Cedex 2, France

25 April 2006

1



More and more protocol

ICMP

SMTP

Gnutella

FTP

LDAP

TCP

IP

DNS

UDP

Chord

HTTP

PPTP

ARP

Telnet

RARP

?

IPSec

SNMP

2



Internet constraints

More and more clients:

• Google: 250 millions queries per day

Increasing demands for:

• scalability
• minimization of latency
• maximisation of bandwidth

Interlace the handling of several requests

3



Servers more and more complex

Increasing demands for:

• effectiveness
• dynamicity
• dynamic variability

Induce an increasing number of errors:

• random behavior
• deadlocks
• livelocks

Need tools that helps the implementation

4



Concurrency

Interlacing the handling of several requests ?

Two phylosophies:

• competition: only one process is selected to handle a
request

• cooperation: communication between processes in order
to handle a request

5



Taxonomy of the server’s architectures

Input/Output

Threads

Single Thread Same Role Different Roles

B
lo

ck
in

g
N

on
bl

oc
ki

ng

SPED Multi-SPED SEDA

Iterative Multi-Threaded Pipeline

No consensus on the best model

6



Description of Saburo

Directed graph: models the application
Specified by developer using a UI
Reusable code

Business code: stage (or vertex) of the graph
Zero or one I/O call
Sequence of instructions
Specified by developer using Java
Reusable code

Concurrency code: context (or edge) of the graph
Channels between stages

method calls
local queues
sockets

Generated

7



Development process illustration

Describe the implementation of a simple “Echo” server:

• The Echo graph modeled by the code below:

accept read write

StageManagerImpl manager = new StageManagerImpl();

manager.connect(AcceptStage.class, ReadStage.class);

manager.connect(ReadStage.class, WriteStage.class);

8



Communications between stages

Defines input/output event interfaces for each stage:

• allow the communication between stages
• according to the position of a stage in the graph
• direct/centralized

AcceptStage

(Socket)

(S
oc

ke
t)

ReadStage

(B
uffer)

WriteStage

9



The Echo’s description of events

accept read write

public interface OutputAcceptEvent {
public void setAcceptSaburoSocket(SaburoSocket s);

}

public interface InputReadEvent {
public SaburoSocket getAcceptSaburoSocket();

}

public interface OutputReadEvent {
public void setReadByteBuffer(ByteBuffer b);

}

public interface InputWriteEvent {
public SaburoSocket getAcceptSaburoSocket();
public ByteBuffer getReadByteBuffer();

}

10



Description of stages

Implementation of the stages:

• handle(...) method: business code
• its parameters are the context and input/output events

AcceptStage

Saburo API

IO API

(Socket)

(S
oc

ke
t)

ReadStage

Saburo API

IO API

(B
uffer)

WriteStage

Saburo API

IO API

11



The Echo’s description of stages

accept read write

public class ReadStage {
public void handle(StageContext ctx,

InputReadEvent in,
OutputReadEvent out) {

SaburoSocket client = in.getAcceptSaburoSocket();
ByteBuffer buffer;

while((buffer = client.read()) != null) {
buffer.flip();
// send to successor

}
}

}

12



Connection of stages

The context is the way to reach successor(s) in the graph:

• according to the concurrency model
• automatically generated (Java or bytecode)

AcceptStage

dispatchToSuccessor

Saburo API

IO API

(Socket)

(S
oc

ke
t)

ReadStage

dispatchToSuccessor

Saburo API

IO API

(B
uffer)

WriteStage

Saburo API

IO API

13



The Echo’s description of stages

accept read write

public class ReadStage {
public void handle(StageContext ctx,

InputReadEvent in,
OutputReadEvent out) {

SaburoSocket client = in.getAcceptSaburoSocket();
ByteBuffer buffer = null;

while((buffer = client.read()) != null) {
buffer.flip();
out.setReadByteBuffer(buffer); // <---
ctx.dispatchToSuccessor(out); // <---

}
}

}

14



Generation of the Echo concurrency: Iterative model

Generation of the ReadContext:

public class ReadContext implements StageContext{
private WriteStage successor;

public void dispatchToSuccessor(EchoEvent event){
successor.handle(event);

}
}

If there is only one process, the context is a function call

Generation of the Iterative model:

public class IterativeModel {
public void service() throws Exception {

while(true)
acceptStageWrapper.handle();

}
} 15



Generation of the Echo concurrency: Seda model

Generation of the ReadContext:

public class ReadContext implements StageContext{
private WriteQueue successor;

public void dispatchToSuccessor(EchoEvent event){
successor.pushInQueue(event);

}
}

If several processes, we use queues to implement it

accept read write

16



Generation of the Echo concurrency: Seda model
public class SedaModel {

public void service() throws Exception {
new Thread(new Runnable() {
public void run() {

while(true) {
writeSelector.doSelect();

}
}

}).start();

new Thread(new Runnable() {
public void run() {

while(true) {
readSelector.doSelect();

}
}

}).start();

while(true) {
acceptSelector.doSelect();

}
}

}
17



Finally the “Echo” server

AcceptStage

dispatchToSuccessor

Saburo API

IO API

(Socket)

(S
oc

ke
t)

ReadStage

dispatchToSuccessor

Saburo API

IO API

(B
uffer)

WriteStage

Saburo API

IO API

18



Development process steps

Input / Output interfaces specified in Java by user

Events generated from interfaces

Functionnal code of a stage specified in Java by user

Technical code of a stage generated from concurrency

Stages’s connection
specified by user using UI

Select the concurrency

Concurrency generated from concurrency

19



Summary
Weak interlacing between business code and
concurrency:

• separation of concerns + code generation

Switch easily between different concurrent models:

• select the model best adapted to underlying architecture
• at compile time or runtime

Extend very quickly applications:

• addition of vertices and edges in a graph
• at compile time or runtime

Specifications and code generations are 100% Java:

• ensure the portability of the applications
20



Future

Distributed applications:

• the context establishes the connection between peers

HTTP & non blocking parser

Static analysis the application:

• applying model checker such as SPIN
• detect deadlock
• unreachable states
• temporal properties

21


