Clôture transitive

Problème

G = (S, A) graphe (orienté)

Calculer H = (S, B) où B est la clôture réflexive et transitive de A.

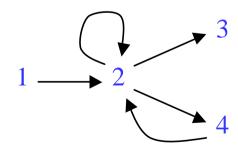
Note : $(s,t) \in B$ ssi il existe un chemin de s à t dans G

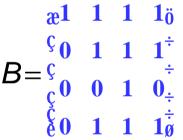
graphe G graphe H1 24

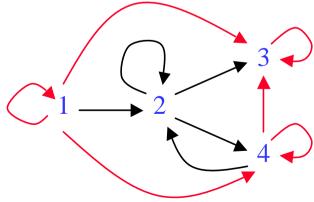
Représentations matricielles

Matrices nxn où n = card S

- A matrice d'adjacence de G
 - = matrice des chemins de longueur 1
- B matrice d'adjacence de H
 - = matrice des chemins de G







Clôture par produits

Notation

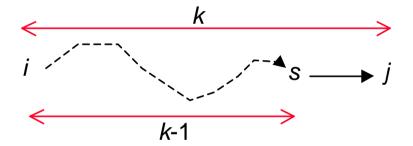
 A_k = matrice des chemins de longueur k dans G

 $A_0 = I$ (matrice identité)

 A_1 = matrice des chemins de longueur 1 = A

Lemme

Pour tout k^3 0, $A_k = A^k$



Preuve

$$A_k[i,j] = 1 \text{ ssi } S S \hat{I} S A_{k-1}[i,s] = 1 \text{ et } A[s,j] = 1$$

soit
$$A_k[i,j] = \Sigma_s A_{k-1}[i,s]$$
. $A[s,j]$ (Σ somme booléenne)

soit
$$A_k = A_{k-1}.A$$
 et $A_0 = I$

donc
$$A_k = A^k$$

Clôture par produits (suite)

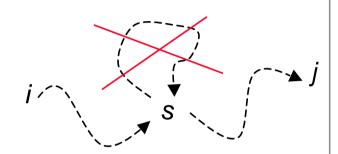
Chemin simple:

chemin qui passe une seule fois par chacun de ses sommets

Lemme

\$ chemin de *i* à *j* dans *G* ssi

\$ chemin simple de i à j dans G



$$B[i,j] = 1$$
 ssi \$ chemin de i à j dans G

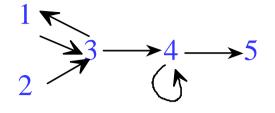
ssi \$ chemin simple de i à j dans G

ssi
$$\S k \ 0 \ \pounds k \ \pounds \ cardS - 1 \ A_k[i,j] = 1$$

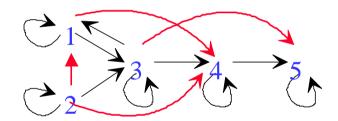
ssi
$$k \in \mathbb{R}$$
 card $S - 1$ $A^k[i,j] = 1$

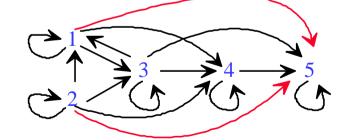
donc
$$B = I + A + A^2 + ... + A^{cardS-1}$$

Calcul de *B* par schéma de Hörner en temps $O(n^4)$ avec produit de matrice ordinaire Améliorable en temps $< O(n^4)$ avec produit efficace de matrices booléennes



$$\begin{array}{c} 3 \\ 2 \\ \end{array}$$





3 produits de matrices

$$A = \begin{pmatrix} 0.0100 \\ 0.0100 \\ 10010 \\ 0.0011 \\ 0.0000 \end{pmatrix}$$

$$I + A = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$I + A + A^{2}$$

$$= I + (I + A) \cdot A = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$I + A + A^{2} + A^{3}$$

$$= I + (I + A + A^{2}) \cdot A = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= I + A + A^2 + A^3 + A^4$$

= $I + (I + A + A^2 + A^3).A = B$

Autre récurrence

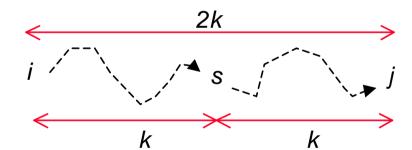
Notation

 B_k = matrice des chemins de longueur £ k dans G

 $B_0 = I$ (matrice identité)

 B_1 = matrice des chemins de longueur £ 1 = I + A

 B_{n-1} = matrice des chemins simples = B

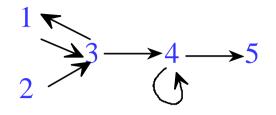


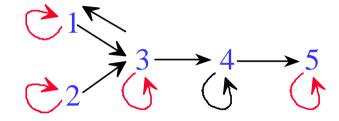
Lemme

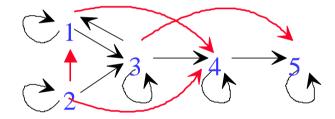
Pour tout k = 1, $B_{2k} = B_k$. B_k

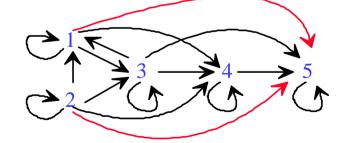
car
$$B_{2k}[i,j] = 1$$
 ssi $B_k[i,j] = 1$ ou (\$ s \hat{1} S $B_k[i,s] = 1$ et $B_k[s,j] = 1$)

Calcul de *B* comme une puissance n-1 en temps $O(n^3 \log n)$









2 produits de matrices

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$B_1 = \begin{pmatrix} 10100 \\ 01100 \\ 10110 \\ 00011 \\ 00001 \end{pmatrix}$$

$$B_2 = \begin{pmatrix} 10110\\11110\\10111\\000011\\000001 \end{pmatrix}$$

$$B = B_4 = \begin{pmatrix} 10111 \\ 11111 \\ 10111 \\ 00011 \\ 00001 \end{pmatrix}$$

Algorithme de Warshall

$$G = (S, A)$$
 avec $S = \{1, 2, ..., n\}$

Chemin de longueur $k: i \otimes s_1 \otimes s_2 \dots s_{k-1} \otimes j$

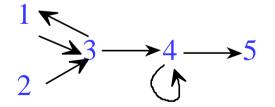
Sommets intermédiaires: s_1 , s_2 , ..., s_{k-1}

Notation

 C_k = matrice des chemins de G dont les sommets intermédiaires sont tous £ k

$$C_0 = I + A$$

 C_n = matrice des chemins de G = B

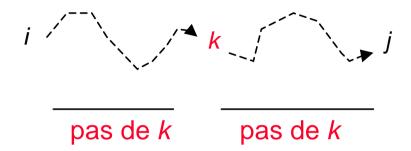


Chemin de 2 à 4 : (2,3), (3,1), (1,3), (3,4), (4,4)

sommets intermédiaires: 1, 3, 4

Récurrence

Chemin simple

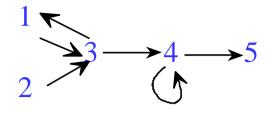


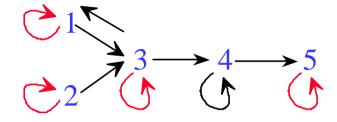
Lemme Pour tout k^3 1,

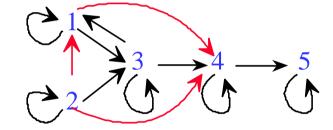
$$C_k[i,j] = 1$$
 ssi $C_{k-1}[i,j] = 1$ ou ($C_{k-1}[i,k] = 1$ et $C_{k-1}[k,j] = 1$)

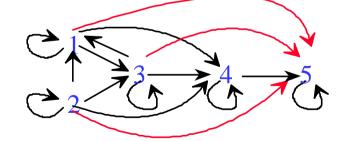
Calcul

de C_k à partir de C_{k-1} en temps $O(n^2)$ de $B = C_n$ en temps $O(n^3)$









~1 produit de matrice

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$C_0 = C_1 = C_2 = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$C_3 = \begin{pmatrix} 10110 \\ 11110 \\ 10110 \\ 00011 \\ 00001 \end{pmatrix}$$

$$B = C_4 = C_5 = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

```
fonction clôture (graphe G = (S, A)) : matrice ;
 début
     n \leftarrow \text{card } S;
     pour i \leftarrow 1 à n faire
        pour j \leftarrow 1 à n faire
            si i = j ou A[i,j] = 1 alors
                   B[i,j] \leftarrow 1;
            sinon
                   B[i,j] \leftarrow 0;
     pour k \leftarrow 1 à n faire
        pour i \leftarrow 1 à n faire
            pour j \leftarrow 1 à n faire
                   B[i,j] \leftarrow B[i,j] + B[i,k] \cdot B[k,j];
 retour B;
fin
        + est la somme booléenne ; temps d'exécution O(n^3)
```

Distances

$$G = (S, A, v)$$
 graphe valué $S = \{1, 2, ..., n\}$ $v : A \rightarrow \mathbf{N}$

Matrice des poids : W = (W[i,j]) avec

$$W[i,j] = 0$$
 si $i = j$
 $v((i,j))$ si (i, j) \widehat{I} A
 Y sinon

Poids d'une suite $c = ((s_0, s_1), (s_1, s_2), ..., (s_{k-1}, s_k))$ où les $s_i \in S$

$$W(c) = S W[s_{i-1}, s_i]$$

Distance de s à t

$$d(s, t) = \min\{ w(c) \mid c \text{ suite de } s \text{ à } t \}$$

Plus court chemin de s à t:

chemin c, s'il existe, tel que
$$w(c) = d(s, t)$$

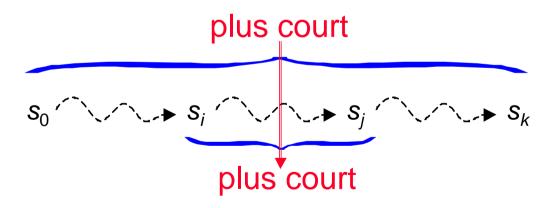
Problème

Calculer la matrice des distances $D = (d(i, j) | 1 \le i, j \le n)$

Lemme de base

 $((s_0,s_1), ..., (s_i,s_{i+1}), ..., (s_{j-1}, s_i), ..., (s_{k-1},s_k))$ plus court chemin de s_0 à s_k dans G

 $P ((s_i, s_{i+1}), ..., (s_{j-1}, s_j))$ plus court chemin de s_i à s_j dans G



Algorithme de Floyd

Notation

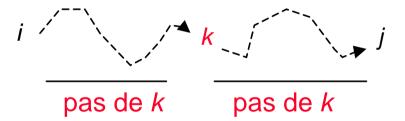
$$D_k = (D_k[i, j] \mid 1 \le i, j \le n) \text{ avec}$$

$$D_k[i, j] = \min\{ w(c) \mid c \text{ suite de } i \text{ à } j \text{ dont}$$

les sommets intermédiaires sont tous £ k}

$$D_0 = W$$

 D_n = matrice des distances de G = D



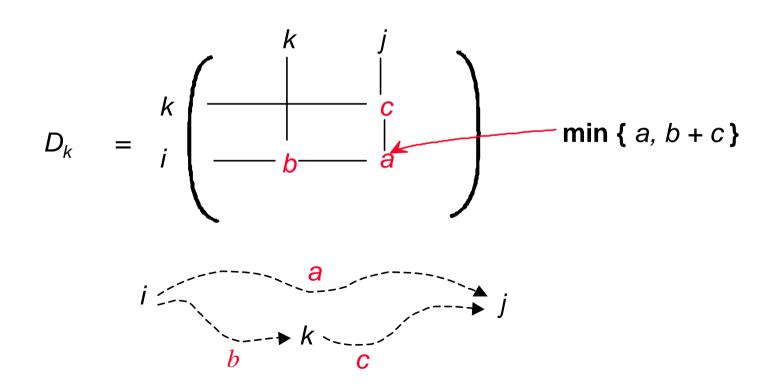
Lemme Pour tout k^3 1,

$$D_k[i,j] = \min\{ D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j] \}$$

Calcul

de
$$D_k$$
 à partir de D_{k-1} en temps $O(n^2)$
de $D = D_n$ en temps $O(n^3)$

pour
$$k \leftarrow 1$$
 à n faire
pour $i \leftarrow 1$ à n faire
pour $j \leftarrow 1$ à n faire
 $D[i, j] \leftarrow \min \{ D[i, j], D[i, k] + D[k, j] \};$



Mémorisation des chemins

Mémorisation explicite des plus courts chemins de i à j, $1 \le i$, $j \le n$ n^2 chemins de longueur maximale n-1 : espace $O(n^3)$

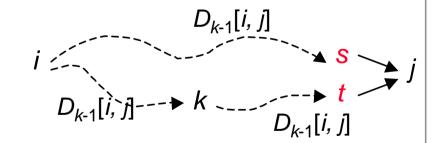
Matrice des prédécesseurs : espace $Q(n^2)$

$$P_k = (P_k[i, j] \mid 1 \le i, j \le n)$$
 avec

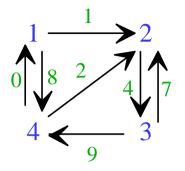
 $P_k[i, j]$ = prédécesseur de j sur un plus court chemin de i à j dont les sommets intermédiaires sont tous £ k

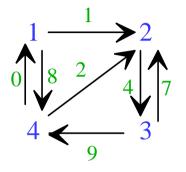
Récurrence

$$P_0[i, j] = i \operatorname{si}(i, j) \hat{I} A$$
- sinon



$$P_k[i, j] = P_{k-1}[i, j]$$
 si $D_{k-1}[i, j]$ £ $D_{k-1}[i, k] + D_{k-1}[k, j]$
 $P_{k-1}[k, j]$ sinon





Exemple de chemin

distance de 2 à $1 = D_4[2,1] = 13$

$$P_4[2,1] = 4$$
; $P_4[2,4] = 3$; $P_4[2,3] = 2$;