Random Automata

Cyril Nicaud

LIGM – Université Gustave Eiffel & CNRS

GASCOM 2024
Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is contained in another string T

- Both can be solved using a computer
Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is contained in another string T

- Both can be solved using a computer
- Only **PATTERN-MATCHING** can be solved using an automaton
Introduction

PRIMALITY: check whether a given n is a prime number

PATTERN-MATCHING: check whether a given string P is contained in another string T

- Both can be solved using a computer
- Only **PATTERN-MATCHING** can be solved using an **automaton**

→ *Problems that fall within automata theory possess many beneficial properties*
A (deterministic and complete) automaton is a directed graph s.t.:

- vertices are called “states”, edges are called “transitions”
- for each state and for each letter a of a fixed alphabet A, there is exactly one outgoing transition labeled by a
- there is a distinguished initial state

For every word $u \in A^*$, δ_u is the map from the set of states to itself, obtained by following the path labeled by u.
Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

- One transition $p \xrightarrow{a} q$ outgoing from every state p for each letter a
- A distinguished initial state
- A set of final states

A word is **recognized** if it labels a path from the initial state to a final state in the automaton \mathcal{A}

The **language recognized** by \mathcal{A} is the set $L(\mathcal{A})$ of recognized words
Deterministic and complete automata

A (deterministic and complete) automaton is a directed graph s.t.:

- One transition \(p \xrightarrow{a} q \) outgoing from every state \(p \) for each letter \(a \)
- A distinguished initial state
- A set of final states

A word is **recognized** if it labels a path from the initial state to a final state in the automaton \(\mathcal{A} \)

- The **language recognized** by \(\mathcal{A} \) is the set \(L(\mathcal{A}) \) of recognized words
A (deterministic and complete) automaton is a directed graph s.t.:

- One transition \(p \xrightarrow{a} q \) outgoing from every state \(p \) for each letter \(a \)
- A distinguished initial state
- A set of final states

A word is recognized if it labels a path from the initial state to a final state in the automaton \(\mathcal{A} \)

The language recognized by \(\mathcal{A} \) is the set \(L(\mathcal{A}) \) of recognized words

\[\text{bab} \notin L(\mathcal{A}) \]
Accessible states, accessible automata

- State 6 and state 7 are useless (not accessible from the initial state)

An automaton is accessible when all its states are accessible

Question

Can we design an efficient algorithm to generate accessible automata with \(n \) states uniformly at random?
Korshunov’s idea

- Consider automata where each state, except possibly the initial one, has an incoming transition.
- This is a necessary condition for accessibility.
- It’s a surjection from the set of “arrows” (transition or initial →) onto the set of states.

![Diagram of automata states and transitions]
Korshunov’s idea

- Consider automata where each state, except possibly the initial one, has an incoming transition.
- This is a necessary condition for accessibility.
- It’s a surjection from the set of “arrows” (transition or initial \rightarrow) onto the set of states.
Korshunov’s idea

- Consider automata where each state, except possibly the initial one, has an incoming transition.
- This is a necessary condition for accessibility.
- It’s a surjection from the set of “arrows” (transition or initial →) onto the set of states.
Korshunov’s idea

- Consider automata where each state, except possibly the initial one, has an incoming transition.
- This is a necessary condition for accessibility.
- It’s a surjection from the set of “arrows” (transition or initial \rightarrow) onto the set of states.
Korshunov’s idea

- Consider automata where each state, except possibly the initial one, has an incoming transition.
- This is a necessary condition for accessibility.
- It’s a surjection from the set of “arrows” (transition or initial \rightarrow) onto the set of states.
Korshunov’s theorem

An asymptotically constant proportion of surjections of \([kn + 1]\) onto \([n]\) produces accessible automata (\(\approx 74.5\%\) for \(k = 2\))

We can generate such surjections:

- using the recursive method: precomputation in \(\Theta(n^2)\) and generation in \(\Theta(n)\) arithmetic operations [N. 2000]
- using Boltzmann sampler: \(\Theta(n^{3/2})\) time for exact sampling [Bassino, N. 2006]
Korshunov’s theorem

Theorem [Korshunov 1978]
An asymptotically constant proportion of surjections of \([kn + 1]\) onto \([n]\) produces accessible automata (\(\approx 74.5\% \text{ for } k = 2\))

We can generate such surjections:

- using the **recursive method**: precomputation in \(\Theta(n^2)\) and generation in \(\Theta(n)\) arithmetic operations [N. 2000]
- using **Boltzmann sampler**: \(\Theta(n^{3/2})\) time for exact sampling [Bassino, N. 2006]
- **Mixed method** in \(\Theta(n)\) [Bassino, Sportiello, 2013]

\(\Rightarrow\) This yields efficient algorithm to generate uniform accessible \(n\)-state automata using a simple **rejection algorithm**
Remark: no symmetry

- Changing state labels doesn’t change the recognized language
- Each state is **uniquely identified** by its minlex shortest word that labels a path from the initial state
- There are \(n! \) different ways to label the states (no symmetry)
- *not true for non-accessible automata*

So we could have worked on *partitions* instead of *surjections*
Counting accessible automata

Theorem [Korshunov 1978]

The number of \(n \)-state accessible automata is asymptotically equivalent to

\[
E_k \cdot n! \cdot \binom{kn + 1}{n} \cdot 2^n
\]

\(\binom{n}{k} \) is the number of partitions of \([n]\) into \(k \) parts, the Stirling numbers of the second kind:

\[
\binom{n}{k} = \binom{n-1}{k-1} + k\binom{n-1}{k}
\]

Proof. Saddle point method

Theorem [Good 1961]

We have the asymptotic equivalent for fixed \(k \)

\[
\binom{kn}{n} \sim \alpha_k \cdot \beta_k^n \cdot n^{(k-1)n-1/2}
\]
Regular languages

- The *alphabet* is Σ, e.g. $\Sigma = \{a, b\}$
- A *language* is a subset of Σ^*
- *Concatenation*: $u \cdot v = u_0 \cdots u_{\ell-1} \cdot v_0 \cdots v_{m-1}$, extended to languages $K \cdot L = \{u \cdot v : u \in K, v \in L\}$
- *Kleene star*: concatenations of an arbitrary number of words

$$L^* = \{\varepsilon\} \cup L \cup L \cdot L \cup L \cdot L \cdot L \cup \ldots$$

The set \mathcal{R} of *regular languages* is inductively defined by \emptyset, $\{\varepsilon\}$ and $\{a\}$ are in \mathcal{R} for $a \in \Sigma$ and closed by union, concatenation and Kleene star.

Kleene’s Theorem

A language is recognized by an automaton iff it is regular.
A *regular expression* is a formula that follows the inductive definition:

\[a \cdot b \cdot (a + a \cdot c)^* + \varepsilon \]

The *Glushkov automaton* of a regular expression is obtained by:

- Distinguishing the letters \(a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon \)
- Use an initial state \(q_0 \) and one state by letter
A **regular expression** is a formula that follows the inductive definition:

\[a \cdot b \cdot (a + a \cdot c)^* + \varepsilon \]

The **Glushkov automaton** of a regular expression is obtained by:

- Distinguishing the letters \(a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon \)
- Use an initial state \(q_0 \) and one state by letter
- Add \(q_0 \xrightarrow{\alpha} \alpha \) if \(\alpha \) starts a word of the language
Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

\[a \cdot b \cdot (a + a \cdot c)^* + \varepsilon \]

The Glushkov automaton of a regular expression is obtained by:

- Distinguishing the letters \(a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon \)
- Use an initial state \(q_0 \) and one state by letter
- Add \(\alpha \xrightarrow{\beta} \beta \) if \(\alpha \beta \) is a factor of a word of the language
Regular expressions, Glushkov automaton

A regular expression is a formula that follows the inductive definition:

\[a \cdot b \cdot (a + a \cdot c)^* + \varepsilon \]

The Glushkov automaton of a regular expression is obtained by:
- Distinguishing the letters \(a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon \)
- Use an initial state \(q_0 \) and one state by letter
- \(\alpha \) is final if it ends a word of the language
Regular expressions, Glushkov automaton

A *regular expression* is a formula that follows the inductive definition:

\[a \cdot b \cdot (a + a \cdot c)^* + \varepsilon \]

The *Glushkov automaton* of a regular expression is obtained by:

- Distinguishing the letters \(a_1 \cdot b_2 \cdot (a_3 + a_4 \cdot c_5)^* + \varepsilon \)
- Use an initial state \(q_0 \) and one state by letter
- Remove the letter indices
Non-deterministic automata

This automaton is neither deterministic nor complete
A word u is accepted by such an automaton if there is a path from an initial state to a final state labeled by u

Theorem
Non-deterministic automata and deterministic automata recognize the same languages (regular languages)
This automaton is neither deterministic nor complete.

A word u is accepted by such an automaton if there is a path from an initial state to a final state labeled by u.

Theorem:
Non-deterministic automata and deterministic automata recognize the same languages (regular languages).
Non-deterministic automata

- This automaton is neither deterministic nor complete
- A word u is accepted by such an automaton if there is a path from an initial state to a final state labeled by u

Theorem

Non-deterministic automata and deterministic automata recognize the same languages (regular languages)
A regular expression and its Glushkov automaton describe the same language

\[a \cdot b \cdot (a + a \cdot c)^* + \varepsilon \]

Theorem [Glushkov 1961]

A regular expression and its Glushkov automaton describe the same language.

It has up to a **quadratic** number of transitions.
A regular expression can be seen as a tree, i.e. for
\[a \cdot b \cdot (a + a \cdot c)^* + \varepsilon \]

In expectation, the Glushkov automaton of a size-\(n\) regular expression taken uniformly at random has \(O(n)\) transitions

\[\rightarrow \] followed by several results on other similar constructions
Wait a minute . . .

\((a + b)^*\) is an absorbing pattern for the union \(+\) on \(\Sigma = \{a, b\}\):

\[
E + (a + b)^* \equiv (a + b)^* + E \equiv (a + b)^*
\]

Theorem [Koechlin, N., Rotondo 2021]

The expected size of a random regular expression after applying the bottom-up simplification algorithm is **bounded by a constant**.
Wait a minute . . .

$(a + b)^*$ is an absorbing pattern for the union $+$ on $\Sigma = \{a, b\}$:

$$E + (a + b)^* \equiv (a + b)^* + E \equiv (a + b)^*$$

The expected size of a random regular expression after applying the bottom-up simplification algorithm is bounded by a constant [Koechlin, N., Rotondo 2021]

- Works for many kind of expression, when there is an absorbing pattern
- Works in very general uniform settings
Wait a minute . . .

\[(a + b)^*\] is an absorbing pattern for the union \(+\) on \(\Sigma = \{a, b\}\):

\[E + (a + b)^* \equiv (a + b)^* + E \equiv (a + b)^*\]

Theorem [Koechlin, N., Rotondo 2021]

The expected size of a random regular expression after applying the bottom-up simplification algorithm is \textit{bounded by a constant}

▶ Works for many kind of expression, when there is an \textit{absorbing pattern}

▶ Works in \textit{very general uniform settings}

→ Uniform random expressions induce a \textit{degenerate distribution} on regular languages

→ \textit{What about the languages recognized by random automata?}
Exercice: multiples of 6 in binary

We take $\Sigma = \{0, 1\}$ and L_6 is the language of the binary representations of multiples of 6 and ε:

$$L_6 = \{\varepsilon, 0, 110, 0110, 1100, \ldots\}$$
Exercice: multiples of 6 in binary

We take $\Sigma = \{0, 1\}$ and L_6 is the language of the binary representations of multiples of 6 and ε:

$$L_6 = \{\varepsilon, 0, 110, 0110, 1100, \ldots\}$$

- Adding a 0 on the right = multiply by 2
- Adding a 1 on the right = multiply by 2 and add 1
Equivalent states

Two states are equivalent when, placing the initial state on either of them, we recognize the same language.

- State 1 and state 4 have the same "future"
- We can merge them without changing the recognized language
- Same for state 2 and state 5

State 1 and state 4 have the same "future"
We can merge them without changing the recognized language
Same for state 2 and state 5

Two states are equivalent when, placing the initial state on either of them, we recognize the same language.
Minimal automaton

If we merge equivalent states, we obtain the *minimal automaton*.

The minimal automaton is the smallest deterministic and complete automaton that recognizes \(L(A) \). It is unique up to the labels of the states.
State complexity

Theorem

The minimal automaton is the smallest deterministic and complete automaton that recognizes $L(A)$. It is unique up to the labels of the states.

There is a bijection between regular languages and their (normalized) minimal automata.

The state complexity of a regular language is the number of states of its minimal automaton.
Moore’s state minimization algorithm

- The algorithm computes the **minimal automaton** of an automaton by approaching the state equivalence.
- Two states p and q are i-equivalent, $p \sim_i q$, if they recognize the same words of length at most i.
- \sim_0 is easily computed.
- \sim_{i+1} is computed from \sim_i in linear time.
- \sim_n is the equivalence of states.

Theorem [Moore 1956]

Moore’s state minimization algorithm computes the minimal automaton of $L(A)$ in $\mathcal{O}(n^2)$ time.

- There is a $\mathcal{O}(n \log n)$ time algorithm [Hopcroft 1971].
Average case analysis

Theorem [Bassino, David, N. 2009]

The average running time of Moore’s state minimization algorithm is $O(n \log n)$

- The result is very robust on the shape of the automata
- For uniform random automata (not necessarily connected) it is $O(n \log \log n)$ [David 2010]
- The algorithm is used in practice (Hopcroft’s algorithm is way more complicated to implement)
Average case analysis

Theorem [Bassino, David, N. 2009]

The average running time of Moore’s state minimization algorithm is $O(n \log n)$

- The result is very robust on the shape of the automata
- For uniform random automata (not necessarily connected) it is $O(n \log \log n)$ [David 2010]
- The algorithm is used in practice (Hopcroft’s algorithm is way more complicated to implement)

→ *Is it good news, or is it because the distribution on regular languages is degenerated too?*
The probability that an accessible automaton taken uniformly at random is minimal tends to a positive constant if \(k = 2 \) and to 1 if \(k \geq 3 \).

\[\begin{align*}
\text{M-Pattern for } k = 2 & \quad \text{M-Pattern for } k = 3 & \quad \text{Unlikely for } k = 2
\end{align*} \]
Proportion of minimal automata

Theorem (Bassino, David, Sportiello 12)

The probability that an accessible automaton taken uniformly at random is minimal tends to a positive constant if \(k = 2 \) and to 1 if \(k \geq 3 \).

Quite wrong justification (for uniform and independent \(p \xrightarrow{\alpha} \)):

\[
\begin{align*}
\binom{n}{4} \frac{1}{n^4} &\sim \frac{1}{4!} \\
\binom{n}{5} \frac{1}{n^6} & = \mathcal{O} \left(\frac{1}{n} \right) \\
\binom{n}{2} \frac{1}{n^4} & = \mathcal{O} \left(\frac{1}{n^2} \right)
\end{align*}
\]
Proportion of minimal automata

Theorem (Bassino, David, Sportiello 2012)

The probability that an accessible automaton taken uniformly at random is minimal tends to a positive constant if $k = 2$ and to 1 if $k \geq 3$.

→ The induced distribution on regular languages is not degenerated
Random (non-accessible) automata

For given n and A, we consider the uniform distribution on all deterministic automata with n states on the alphabet A.

- 1 is the initial state
- There are exactly n^{kn} such automata, with $k = |A|$
- It is the same as choosing the image of every state by every letter uniformly and independently in Q

→ Are there many accessible states?
Experiments – number of accessible states

![Graph showing the number of accessible states against the number of states, with a linear trend.]
Experiments – number of accessible states
The number of accessible states

Let C_n be the number of accessible states in a uniform random automaton with n states. Then $\mathbb{E}[C_n] \sim \omega_k n$, where ω_k is the unique positive root of the equation $x = 1 - e^{-kx}$.

Moreover, C_n is asymptotically Gaussian, with standard deviation equivalent to $\sigma_k \sqrt{n}$.

- Probabilistic proof [Grusho 1973]
- Combinatorial proof, with a local limit [Carayol & N. 2012]
- Large deviations [Berend & Kontorovich 2016]
- Refined probabilistic study [Cai, Devroye 2017]
Random automata vs random digraphs

For $A = \{a, b\}$.

- **Random automata**: each state has 2 outgoing transitions
- **Random digraph (Erdős-Rényi)**: each edge has probability $\frac{2}{n}$
- Let ω be the unique positive real solution of $1 - x = e^{-2x}$ ($\omega \approx 0.79$)

Random automaton

Random digraph [Karp 1990]
Another random generation algorithm

Question

Is there an efficient algorithm to generate random **accessible** automata uniformly at random from this result?

- **Idea:** extract the accessible part from a random automaton
- Two accessible automata of **the same size** are generated with **the same probability**
Another random generation algorithm

Question

Is there an efficient algorithm to generate random **accessible** automata uniformly at random from this result?

- **Idea:** extract the accessible part from a random automaton
- Two accessible automata of the same size are generated with the same probability

Each accessible automaton with 4 states is obtained from exactly \(\binom{5}{3}6^2 \times 2 \) automata, as 1 is the initial state
Random generation of accessible automata

The expected number of accessible states in a uniform random automaton with n states is asymptotically $\sim \omega_k n$, with a standard deviation $\sim \sigma_k \sqrt{n}$.

Theorem

- Compute ω_k
- Repeat
 - $A = \text{accessible}(\text{random automaton}(n/\omega_k))$
- Until $|A| = n$
- Return A

Average running time: $\mathcal{O}(n^{3/2})$
The expected number of accessible states in a uniform random automaton with \(n \) states is asymptotically \(\sim \omega_k n \), with a standard deviation \(\sim \sigma_k \sqrt{n} \).

Theorem

\[
\text{Compute } \alpha_k \\
\text{Repeat} \\
\quad \mathcal{A} = \text{accessible}(\text{random automaton}(n/\alpha_k)) \\
\quad \text{Until } |\mathcal{A}| = n \pm 1\% \\
\quad \text{Return } \mathcal{A}
\]

Average running time: \(\mathcal{O}(n) \)
Synchronizing automata

- An automaton is **synchronizing** when there exists a word that brings every state to one and the same state.
- Such a word is a **synchronizing word**

- \(aaba\) is a synchronizing word
- \(aba\) is a smaller synchronizing word
An automaton is **synchronizing** when there exists a word that brings every state to one and the same state.

Such a word is a **synchronizing word**.

This automaton is **not synchronizing**.
The Černý conjecture

A synchronizing automaton with \(n \) states admits a synchronizing word of length at most \((n - 1)^2 \).

- \((n - 1)^2 \) is best possible [Černý 1964]
- \(n^3 \) is trivial
- better bound of \(\frac{1}{6} (n^3 - n) \) [Frankl 1983] [Pin 1983]
- \(\approx 0.1664 n^3 \) [Szykuła 2017], \(\approx 0.1654 n^3 \) [Shitov 2019]
- the conjecture holds for many families of automata
Pairwise synchronized \equiv synchronizing

Two states p and q are \textit{synchronized} if there exists a word u such that $\delta_u(p) = \delta_u(q)$

\textbf{Lemma}

If every pair of states is synchronized by a word of length at most ℓ then A admits a synchronizing word of length at most $(n - 1)\ell$

\[u \cdot v \] synchronizes all three states
Synchronization of random automata

Question
Is a random automaton synchronizing with high probability?
Synchronization of random automata

Question
Is a random automaton synchronizing with high probability?

Theorem (Berlinkov 2016)
For alphabets with at least two letters, deterministic automata are synchronizing with high probability.

More precisely, a random automaton is not synchronizing with probability $\mathcal{O}\left(\frac{1}{n^{k/2}}\right)$.
Experiments (Kisielewicz, Kowalski and Szykula 13)

The graphic comes from (Kisielewicz, Kowalski and Szykula 13)
Fast synchronization of random automata

Question
What is the length of the shortest synchronizing word of a random synchronizing automaton?
Fast synchronization of random automata

Question
What is the length of the shortest synchronizing word of a random synchronizing automaton?

Theorem (N. 2016)
With at least two letters, with high probability a random automaton is synchronized by a word of length $O(n \log^3 n)$.

→ The Černý conjecture holds with high probability
Proof idea 1/2

If we only consider the action of letter \(a \) it is a random mapping

\[
\begin{align*}
9 & \rightarrow 4 & \rightarrow 2 & \rightarrow 6 \\
1 & \rightarrow 4 & & \\
12 & \rightarrow 5 & & \\
8 & \rightarrow 3 & & \\
10 & \rightarrow 3 & & \\
3 & \rightarrow 10 & & \\
7 & \rightarrow 12 & & \\
11 & \rightarrow 2 & &
\end{align*}
\]

- The cyclic part has size \(\approx \sqrt{n} \)
- The height is \(\approx \sqrt{n} \)
- Hence \(u = a^{\sqrt{n}} \) maps the \(n \) states to a set of size \(\approx \sqrt{n} \)
Proof idea 2/2

If we only consider the action of letter a it is a random mapping

\[
\begin{align*}
&\uparrow \ u = a^{\sqrt{n}} \text{ maps the } n \text{ states to a set of size } \approx \sqrt{n} \\
&\uparrow \ \text{From the } a\text{-cyclic part } C_a \text{ generate the } b\text{-transitions} \\
&\uparrow \ ba^{\sqrt{n}} \text{ is a (non-uniform) random mapping on } C_a \\
&\uparrow \ \text{hence } v = a^{\sqrt{n}}(ba^{\sqrt{n}})^{n^{1/4}} \text{ maps the } n \text{ states to a set of size } \approx n^{1/4}
\end{align*}
\]

... continue until the image has size $\approx n^{1/8}$ then pairwise-synchronize the states with high probability
A better result

Theorem (Chapuy, Perarnau 2023)

With high probability a random autmaton is synchronized by a word of length $O(\sqrt{n \log n})$.

- A random mapping is synchronizing iff it is a rooted tree
- It happens with probability $\frac{1}{n}$, by Cayley formula
- The action of the words of length $(1 + \epsilon) \log_2 n$ behave as independent uniform random random mappings
- There are sufficiently many of them to get the result (second moment method)

→ the technical details are complicated
A simpler proof

Theorem (Martinsson 2023)

With high probability at least $1 - \epsilon$ a random automaton is synchronized by a word of length $O(\epsilon^{-1} \sqrt{n \log n})$.

- $v = a^{\sqrt{n}}(ba^{\sqrt{n}})^{\log n}$ maps the n states to a set of size $\approx \sqrt{n}/\log n$
- States are pairwise synchronized by words of length $O(\log n)$ with high probability

Open question: probabilistic lower bound?
That’s all

Thank you!