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Abstract. In this paper we address the question of synchronizing ran-
dom automata in the critical settings of almost-group automata. Group
automata are automata where all letters act as permutations on the set
of states, and they are not synchronizing (unless they have one state). In
almost-group automata, one of the letters acts as a permutation on n−1
states, and the others as permutations. We prove that this small change
is enough for automata to become synchronizing with high probability.
More precisely, we establish that the probability that a strongly con-

nected almost-group automaton is not synchronizing is 2k−1−1

n2(k−1) (1+o(1)),
for a k-letter alphabet.

1 Introduction

A deterministic automaton is called synchronizing when there exists a word that
brings every state to the same state. If it exists, such a word is called reset or
synchronizing.

Synchronizing automata serve as natural models of error-resistant systems
because a reset word allows to turn a system into a known state, thus reestab-
lishing the control over the system. For instance, prefix code decoders can be
represented by automata. If an automaton corresponding to a decoder is syn-
chronizing, then decoding a reset word, after an error appeared in the process,
would recover the correct decoding process.

There has been a lot of research done on synchronizing automata since pio-
neering works of Černý [3]. Two questions that attract major interest here are
whether an automaton is synchronizing and what is the length of shortest reset
words if the answer to the first question is ‘yes’? These questions are also studied
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from different perspectives such as algorithmic, general statements etc. and in
variety of settings, e.g. for particular classes of automata, random settings, etc.
The reader is referred to the survey of Volkov [10] for a brief introduction to the
theory of synchronizing automata.

One of the most studied direction of research in this field is the long-standing
conjecture of Černý, which states that if an automaton is synchronizing, then it
admits a reset word of length at most (n− 1)2, where n is the number of states
of the automaton. This bound is best possible, as shown by Černý. However,
despite many efforts, only cubic upper bounds have been obtained so far [7, 8].

It is the probabilistic settings that interest us in this article. During the
attempts to tackle the conjecture of Černý, lots of experiments have been done,
showing that random automata seem to be synchronizing with high probability,
and that their reset words seem to be quite small in expectation. This was proved
quite recently in a series of articles:

– Skvortsov and Zaks [11] obtained some results for large alphabets (where
the number of letters grows with n);

– Berlinkov [2] proved that the probability that a random automaton is not
synchronizing is in O(n−k/2), where k is the number of letters, for any k ≥ 2
(this bound is tight for k = 2);

– Nicaud [6] proved that with high probability a random automaton admits a
reset word of length O(n log3 n), for k ≥ 2 (but with less precise error terms
than in [2]).

All these results hold for the uniform distribution on the set of deterministic and
complete automata with n states on an alphabet of size k, where all automata
have the same probability. And it is, indeed, the first probability distribution to
study. The reader is refered to the survey [5] for more information about random
deterministic automata.

In this article we study a distribution on a restricted set of deterministic
automata, the almost-group automata, which will be defined later in this in-
troduction. In order to motivate our choice, we first need to outline the main
features of the uniform distribution on deterministic automata and how they
were used in the proofs of the articles cited above.

In a deterministic and complete automaton, one can consider each letter as
a map from the set of states Q to itself, which is called its action. The action
of a given letter in a uniform random automaton is a uniform random mapping
from Q to Q. Properties of uniform random mappings have been long studied
and most of their typical3 statistics are well known. The functional graph proved
to be a useful tool to describe a mapping; it is the directed graph of vertex set
Q, built from a mapping f : Q→ Q by adding an edge i→ j whenever j = f(i).

3 In all the informal statements of this article, typical means with high probability as
the size of the object (cardinality of the set, number of states of the automaton, ...)
tends to infinity.



Such a graph can be decomposed as a set of cycles of trees. Vertices that are in
a cycle consists of elements q ∈ Q such that f `(q) = q for some positive `. They
are called cyclic vertices.

The expected number of cyclic vertices in a uniform random mapping on a
set of size n is in Θ(

√
n). This is used in [6] and [2] to obtain the synchronization

of most automata. The intuitive idea is that after reading an, the set of states
already shrinks to a much smaller set, in a uniform random automaton; this
gives enough leverage, combined with the action of the other letters, to fully
synchronize a typical automaton.

In a nutshell, uniform random automata are made of uniform random map-
pings, and each uniform random mapping is already likely to synchronize most
of the states, due to their inherent typical properties. At this point, it seems
natural to look for ”harder” random instances with regard to synchronization,
and it was a common question asked when the authors presented their works.

In this article, to prevent easy synchronization from the separate action of
the letter, we propose to study what we call almost-group automata, where the
action of each letter is a permutation, except for one of them which has only one
non-cyclic vertex. An example of such an automaton is depicted on Fig: 1.
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Fig. 1. An almost-group automaton with 7 states. The action of b is a permutation.
The action of a is not, as 1 has no preimage by a; but if state 1 is removed, a acts as
a permutation on the remaining states.

Since a group automaton with more than one state cannot be synchronizing,
almost-group automata can be seen as the automata with the maximum num-
ber of cyclic states (considering all its letters) that can be synchronizing. The
question we investigate in this article is the following.

Question: For the uniform distribution, what is the probability that a strongly
connected almost-group automaton is synchronizing?

For this question, we consider automata with n states on a k-letter alphabet,
with k ≥ 2, and try to answer asymptotically as n tends to infinity. We prove
that such an automaton is synchronizing with probability that tends to 1. We
also provide a precise asymptotic estimation of the probability that it is not syn-
chronizing. In other words, one can state our result as follows: group automata
are always non-synchronizing when there are at least two states, but if one al-
lows just one letter to act not bijectively for just one state, then the automaton



is synchronizing with high probability. This suggests that from a probabilistic
point of view, it is very difficult to achieve non-synchronization.

This article starts with recalling some basic definitions and notations in Sec-
tion 2. Then some interesting properties of this set of automata regarding syn-
chronization are described in Section 3. Finally, we rely on this properties and
some elementary counting techniques to establish our result in Section 4.

2 Basic Definitions and Notations

Automata and synchronization. Throughout the article, we consider au-
tomata on a fixed k-letter alphabet Σ = {a0, . . . , ak−1}. Since we are only in-
terested in synchronizing properties, we only focus on the transition structure
of automata: we do not specify initial nor final states, and will never actually
consider recognized languages in the sequel. From now on a deterministic and
complete automaton (DFA) A on the alphabet A is just a pair (Q, ·), where Q is
a non-empty finite set of states and ·, the transition mapping, is a mapping from
Q×A to Q, where the image of (q, a) ∈ Q×A is denoted q · a. It is inductively
extended to a mapping from Q×A∗ to Q by setting q ·ε = q and q ·ua = (q ·u) ·a,
for any word u ∈ A∗ and any letter a ∈ A, where ε denote the empty word.

Let A = (Q, ·) be a DFA. A word u ∈ A∗ is a synchronizing word or a reset
word if for every q, q′ ∈ Q, q · u = q′ · u. An automaton is synchronizing if it
admits a synchronizing word. A subset of states S ⊆ Q is synchronized by a
word u ∈ A∗ if |S · u| = 1.

Observe that if an automaton contains two or more terminal strongly con-
nected components4, then it is not synchronizing. Moreover if it has only one
terminal strongly connected component S, then it is synchronizing if and only if
S is synchronized by some word u. For this reason, most works on synchroniza-
tion focus on strongly connected automata, and this paper is no exception.

Almost-group automata. Let Sn be the set of all permutations of En =
{0, . . . , n−1}. A cyclic point of a mapping f is an element x such that f `(x) = x
for some positive `. An almost-permutation of En is a mapping from En to itself
with exactly n−1 cyclic points; its unique non-cyclic point is called dangling point
(or dangling state later on, when we use this notion for automata). Equivalently,
an almost-permutation is a mapping that acts as a permutation on a subset
of size n − 1 of En and that is not a permutation. Let S ′n denote the set of
almost-permutations on En.

An almost-group automaton is a DFA such that one letter act as an almost-
permutation and all others as permutations. An example of such an automaton is
given in Fig. 1. For counting reasons, we need to normalize the automata, and de-
fine Gn,k as the set of all almost-group automata on the alphabet {a0, . . . , ak−1}
whose state set is En and such that a0 is the almost-permutation letter.

Probabilities. In this article, we equip non-empty finite sets with the uniform
distribution, where all elements have same probability. The sets under consider-
ation are often sequences of sets, such as Sn; by abuse of notation, we say that

4 A strongly connected component S is terminal when S · u ⊆ S for every u ∈ A∗.



a property hold with high probability for Sn when the probability that it holds,
which is defined for every n, tends to 1 as n tends to infinity.

3 Synchronization of Almost-Group Automata

In this section we introduce the main tools that we use to describe the structure
of synchronizing and of non-synchronizing almost-group automata.

The notion of a stable pair, introduced by Kari [4], has proved to be fruitful
mostly by Trahtman, who managed to use it for solving the famous Road Color-
ing Problem [9]. We make use of this definition in our proof as well, along with
some ideas coming from [9].

A pair of states {p, q} is called stable, if for every word u there is a word v
such that p · uv = q · uv. The stability relation given by the set of stable pairs
joined with a diagonal set {(p, p) | p ∈ Q} is invariant under the actions of
the letters and complete whenever A is synchronizing. The definition on pairs is
sound as stability is a symmetric binary relation. It is also transitive whence it
is an equivalence relation on Q which is a congruence, i.e. invariant under the
actions of the letters.

Notice also, that an automaton is synchronizing if and only if its stability
relation is complete, that is, all pairs are stable. Because of that, if an automaton
is not synchronizing and admits a stable pair, then one can consider a non-
trivial factorization of the automaton by the stability relation. So, we aim at
characterizing stable pairs in a strongly-connected non-synchronizing almost-
permutation automaton, in order to show there is a slim chance for such a
factorization to appear when switching to probabilities.

For this purpose, we need the definition of a deadlock, which is a pair that
cannot be merged into one state by any word (somehow opposite to the notion
of stable pair). A subset S ⊆ Q is called an F -clique of A if it is a set of
maximum size such that each pair of states from S is a deadlock. It follows from
the definition that all F -cliques have same size and that the image of F -clique
by a letter or a word is also an F -clique.

Let us reformulate [9, Lemma 2] for our purposes and present a proof for
self-completeness.

Lemma 1. If S and T are two F -cliques such that S \T = {p} and T \S = {q},
for some states p and q, then {p, q} is a stable pair.

Proof. By contradiction, suppose there is a word u such that {p · u, q · u} is a
deadlock. Then (S∪T ) ·u is an F -clique because all its pairs are deadlocks. Since
p · u 6= q · u, we have |S ∪ T | = |S|+ 1 > |S| contradicting maximality of S. ut

Lemma 2. Each strongly-connected almost-group automaton A ∈ Gn,k with at
least two states, admits a stable pair containing the dangling state that is syn-
chronized by a0.

Proof. If A is synchronizing, then we are done because all pairs are stable. In
the opposite case, there must be an F -clique F1 of size at least two.



Let p0 be the dangling state (which is not permuted by a0) and let d be
the product of all cycle lengths of a0. Since A is strongly-connected there is a
word u such that p0 ∈ F1 · u. By the property of F -cliques, F2 = F1 · u and
F3 = F2 · ad0 are F -cliques too. Notice that p0 is the only state which does
not belong to the cycles of a0 and all the cycle states remains intact under the
action ad0, by construction of d. Hence F2 \ F3 = {p0} and F3 \ F2 = {p0 · ad0}.
Hence, by Lemma 1, {p0, p0 · ad0} is a stable pair. This concludes the proof since
p0 · a0 = p0 · ad+1

0 . ut

To characterize elements of Gn,k that are not synchronizing, we build their
factor automata, which is defined as follows. Let A be a DFA with stability
relation ρ. Let C = {C1,. . . , C`} denote its classes for ρ. The factor automaton
of A, denoted by A/ρ, is the automaton of set of states C with transition function
defined by Ci · a = Cj in A/ρ if and only if Ci · a ⊆ Cj in A. Or equivalently, if
and only if there exists q ∈ Ci such that q · a ∈ Cj in A.

Lemma 3. If A ∈ Gn,k is strongly-connected, then its factor automaton A/ρ is
a strongly-connected permutation automaton.

Proof. Strong-connectivity follows directly from the definition. If one of the let-
ters was not a permutation on the factor automaton, then there would be a
stable class S in A which has no incoming transition by this letter. It would
follow that there is no incoming transition to every state of S in A either. How-
ever, this may happen only for the letter a0 and the (unique) dangling state p0
by this letter. Due to Lemma 2, the dangling state p0 must belong to a stable
pair whence there is another state in S: this contradicts that p0 is the only state
with no incoming transition by a0. ut

Lemma 4. Let A ∈ Gn,k and let D be the stable class of A that contains the
dangling state p0. Then the set of stable classes can be divided into two disjoint,
but possibly empty, subsets B and S such that

• D ∈ B and |B| = |D| for every B ∈ B;
• |S| = |D| − 1 for every S ∈ S;
• The a0-cycle of A/ρ that contains D only contains elements of S besides D;
• Every other cycle in A/ρ lies entirely in either B or S.

Proof. Since stable pairs are mapped to stable pairs, the image of a stable class
by any letter must be included in a stable class. Recall that by Lemma 3 all
letters in A/ρ act as permutations on the stable classes. Our proof consists in
examining the different cycles of the group automaton A/ρ. Let us consider
any cycle of a letter a in A/ρ, made of the stable classes C0, C1, . . . , Cr−1 with
Cj · a ⊆ Cj+1 (mod r), for any j ∈ {0, . . . r − 1}.

If a 6= a0 then the letter a acts as a permutation in A, and for each j, we
have |Cj | ≤ |Cj+1 (mod r)|, since a does not merge pairs of states. Therefore,

|C0| ≤ |C1| · · · ≤ |Cr−1| ≤ |C0|.



As a direct consequence, all |Cj | have same cardinality.
If a = a0, then observe that the same argument can be used when one

removes the dangling state p0 and its outgoing transition by a0: the action of
a0 on Q \ {p0} becomes a well-defined permutation. Henceforth, if this cycle
does not degenerate to a simple loop consisting of only D, then all the other
elements of the cycle are stable classes of size |D| − 1. And this is the only place
where changes of size may happen in A/ρ. The lemma follows from the strong-
connectivity of A/ρ. ut

Notice that an almost-group automaton is non-synchronizing if and only if
it has at least two stable classes. The following theorem is a consequence of this
fact and of Lemma 4.

Theorem 1. A strongly-connected almost-group automaton A is non-synchro-
nizing if and only if its partitioning described in Lemma 4 is such that |B∪S| > 1.

4 Counting Non-synchronizing Almost-Group Automata

In this section, we use counting arguments to establish our main result: a pre-
cise estimation of the asymptotic number of strongly connected almost-group
automata that are not synchronizing.

Recall that our working alphabet isΣ = {a0, . . . , ak−1}, that En = {0, . . . , n−
1} and that Gn,k is the set of almost-group automata on Σ with set of states
En. Our first counting lemma is immediate.

Lemma 5. For any n ≥ 1, there are exactly (n − 1)n! almost-permutations of
En. The number of elements of Gn,k is therefore equal to (n− 1)n!k.

Proof. An almost-permutation of En is characterized by its element with no
preimage x0, the way it permutes En \ {x0} and the image of x0 in En \ {x0}.
Since there are n choices for x0, (n − 1)! ways to permute the other elements
and n− 1 choices for the image of x0, the result follows. ut

4.1 Strong-Connectivity

Our computations below focus on strong-connectivity. We shall need an esti-
mation of the number of strongly connected group automata and almost-group
automata. The proofs of the following lemmas are kind of folklore and thus
presented only in the extended version [1] due to a space limit.

Lemma 6. There are at most n(n − 1)!k(1 + o(1)) group automata with set of
states En that are not strongly-connected. Henceforth, there are n!k(1+o(n1−k))
strongly-connected group automata.

Lemma 7. The number of not strongly-connected almost-group automata is at
most 2(n−1)n(n−1)!k(1+o(1)). Henceforth, almost-group automata are strongly
connected with high probability: there are (n − 1)n!k(1 + o(n1−k)) strongly con-
nected elements in Gn,k.



4.2 Non-synchronizing Almost-Group Automata: a Lower Bound

In this section we give a lower bound on the number of strongly connected ele-
ments of Gn,k that are not synchronizing. In order to do so, we build a sufficiently
large family of automata of that kind. The construction of this family is intu-
itively driven by the structure given in Lemma 4 but the formal details of the
construction can be done without mentioning this structure.

For n ≥ 3, let Fn,k be the subset of Gn,k, made of the almost-group automata
on Σ with set of states En such that:

1. there exists a state p that is not the dangling state p0 such that for every
letter a 6= a0, either p · a = p0 and p0 · a = p, or p · a = p and p0 · a = p0;

2. for at least one letter a 6= a0, we have p · a = p0 and p0 · a = p;
3. there exists a state q ∈ Q′ = En \ {p, p0} such that the action of a0 on
Q \ {p0} is a permutation with q being the image of p;

4. the image of the dangling state by a0 is p0 · a0 = q.
5. let q′ be the preimage of p by a0; if one removes the states p and p0 and

set q′ · a0 = q, then the resulting automaton is a strongly connected group
automaton;

The structure of such an automaton is depicted on Fig. 2. Clearly from the
definition, an element of Fn,k is a strongly connected almost group automaton
with the dangling state p0.
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a2, a4
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Q′

Fig. 2. The shape of an element of Fn,k, with the dangling state p0.

Lemma 8. For every n ≥ 3, every automaton of Fn,k is not synchronizing.

Proof. First observe that {p0, p} is the only pair that can be synchronized by
reading just a letter, which has to be a0. The preimage of {p0, p} is either {p0, p}
for a 6= a0 or a singleton {q′} otherwise. Hence, no other pair can be mapped to
{p0, p} and thus be synchronized by more that one letter. ut



Lemma 9. There are (2k−1− 1)n(n− 1)(n− 2)(n− 2)!k(1 + o(n1−k)) elements
in Fn,k. Thus there are at least that many strongly connected non-synchronizing
almost-group automata.

Proof. From the definition of Fn,k, we observe that there are n(n−1)(n−2) ways
to choose p0, p and q. Once it is done, we choose any strongly connected group
automaton A′ with n− 2 states in EN \ {p0, p}; there are (n− 2)!k(1 + o(n1−k))
ways to do that according to Lemma 6. We then change the transition from the
preimage q′ of q by a0 by setting q′ · a0 = p. We set p · a0 = p0 · a0 = q. Finally
we choose the actions of the letters a ∈ Σ \{a0} on {p0, p} in one of the 2k−1−1
possible ways, as at least one of them is not the identity. This concludes the
proof, since all the elements of Fn,k are built exactly once this way. ut

Observe that using the definitions of Lemma 4, an element of Fn,k consists
of exactly one stable class {p0, p} in B and n− 2 stable classes of size 1 in S.

4.3 Non-synchronizing Almost-Group Automata: an Upper Bound

In this section, we upper bound the number of non-synchronizing strongly-
connected elements of Gn,k using the characterization of Lemma 4. In the sequel,
we freely use the notations used in this lemma (the sets D, B, S, . . . ).

Let b ≥ 1, s ≥ 0 and ` ≥ 1 be three non-negative integers such that (` +
1)b + `s = n. Let Gn,k(b, s, `) denote the subset of Gn,k made of the automata
such that |B| = b, |S| = s and |D| = `+ 1.

Lemma 10. The number of non-synchroninzing strongly-connected elements of
Gn,k(b, s, `) is at most{

n!(n− 2)!k−1(n− 2)(2k−1 − 1) if b = 1, s = n− 2, and ` = 1,

n! max(1, s)`
(
b!s!(`+ 1)!b`!s

)k−1
otherwise.

Proof. Our proof consists in counting the number of ways to build, step by step,
an element of Gn,k(b, s, `).

Firstly, by elementary computations, one can easily verify that the number
of ways to split En into b subsets of size `+ 1 and s subsets of size ` is exactly

n!

(`+ 1)!b`!sb!s!
. (1)

Secondly, let us count the number of ways to define the transitions at the
level of the factor automaton, i.e. between stable classes, as follows:

– Choose a permutation on B in b! ways and on S in s! ways for each of the
k − 1 letters a 6= a0.

– Choose which stable class of B is the class D, i.e. the one containing the
dangling state p0, amongst the b possibilities.

– Choose a permutation for a0 on the b− 1 classes B \ {D} in (b− 1)! ways.



– If s 6= 0, choose one of the s! permutations of S for the action of a0 on these
classes, then alter the action of a0 the following way: choose the image D′

of D by a0 in S in s ways, then insert it in the a0-cycle: if D′′ is the former
preimage of D′, then now D · a0 = D′ and D′′ · a0 = D in A/ρ.

– If s = 0, then set D · a0 = D in A/ρ.

In total, the number of ways to define the transitions of the factor automaton
A/ρ, once the stable classes are chosen is

(b!s!)k−1b(b− 1)! max(1, s)s! = b!ks!k max(1, s). (2)

Now, we need to define transitions between stable classes for all letters. For
all letters but a0, there are b injective transitions between stable classes of size
`+1 and s injective transitions between stable classes of size `, that is, there are
at most (`+ 1)!b`!s ways to define them for each of the k − 1 letters. This is an
upper bound, as some choices may result in an automaton that is, for instance,
not strongly connected. We refine this bound for the case ` = 1, b = 1, s = n−2:
one of the letters must swap the states in the single 2-element class in B for
strong connectivity, so we count just one choice instead of 2 (for (` + 1)!) to
define this letter on this component, that is, we consider only 2k−1 − 1 ways
to define all permutations on B in this case, instead of the ((`+ 1)!b)k−1 upper
bound in the general case (this refinement is used to match our lower bound).

For the action of a0, we additionally choose the dangling state p0 ∈ D in
`+ 1 ways and its image in D ·a0 in ` ways: there are ` choices in the case where
D · a0 = D, since p0 · a0 6= p0, and also when D · a0 6= D, since D · a0 ∈ S in this
case, according to Lemma 4. Then, it remains to define the injective transitions
between the B\{D} blocks in (`+1)!b−1 ways, and the s+1 injective transitions
between the S ∪ {D′} blocks in `!s+1 ways, where D′ = D \ {p0}.

Thus, the number of ways to define the transitions between stable classes is
at most ((`+ 1)!b`!s)k−1`(`+ 1)(`+ 1)!b−1`!s+1 = `(`+ 1)!bk`!sk, in the general
case, and 2(2k−1 − 1) in the case ` = 1, b = 1, s = n− 2.

Putting together (1), (2) and this last counting result yield the lemma. ut

Lemma 11. The number of non-synchroninzing strongly-connected almost-group
automata in Gn,k is at most n(2k−1 − 1)n!(n− 2)!k−1(1 + o(1/n)).

Proof. By Lemma 9 and Theorem 1, the number of non-synchroninzing strongly-
connected almost-group automata in Gn,k is at most

n!

bn/2c∑
`=1

∑
{b,s|b(`+1)+s`=n}

N`,b,s, (3)

where b ≥ 1, s ≥ 0, and b+ s ≥ 2, and where N`,b,s is defined by

N`,b,s =

{
max(1, s)`(b!s!(`+ 1)!b`!s)k−1, for (`, b, s) 6= (1, 1, n− 2)

(n− 2)!k−1(n− 2)(2k−1 − 1), for (`, b, s) = (1, 1, n− 2).
(4)



To finish the proof, it will be sufficient to prove that the sum in (3) is asymptot-
ically equivalent to the term N1,1,n−2 since n!N1,1,n−2 is asymptotically equiva-
lent to the expression stated in Lemma 11.

To prove this, let us consider the following fraction for (`, b, s) 6= (1, 1, n−2):

N1,1,n−2

N`,b,s
=

n− 2

max(1, s)`

(n− 2)!k−1(2k−1 − 1)

(b!s!(`+ 1)!b`!s)k−1
≥
(

(n− 2)!

b!s!(`+ 1)!b`!s

)k−1

, (5)

where we used that n− 2 = s`+ b(`+ 1)− 2 ≥ s`, as b and ` are positive; thus
n− 2 ≥ max(1, s)` if s > 0; but it also holds if s = 0 since b+ s ≥ 2.

Observe that, for positive ` and m we have

(bm)!

m!b
=

(
1 · 2 · · ·m
1 · 2 · · ·m

)(
(m+ 1)(m+ 2) · · · 2m

1 · 2 · · ·m

)
· · ·
(

((b− 1)m+ 1) · · · bm
1 · 2 · · ·m

)
≥ 1m · 2m · · · bm = b!m

Hence, for m = `+ 1, we have (b(`+1))!
(`+1)!b

≥ b!`+1. Similarly, one can get that

n!

(b(`+ 1))!

1

`!s
≥
(

(b+ s)!

b!

)`

. (6)

Let M`,b,s = (n−2)!
b!s!(`+1)!b`!s

, the expression in brackets of (5). This quantity can be

bounded from below as follows.

M`,b,s =
1

n(n− 1)b!s!

(b(`+ 1))!

(`+ 1)!b
n!

(b(`+ 1))!`!s
(7)

≥ b!`+1

n(n− 1)b!s!

(
(b+ s)!

b!

)`

≥ (b+ s)!`

n2s!
. (8)

Recall that we want to prove that M`,b,s is sufficiently large, so that N1,1,n−2
is really larger than N`,b,s. Notice that there are at most quadratic in n number
of combinations (`, b, s) satisfying b(`+1)+s` = n, as for any values 1 ≤ b, ` < n
there is at most one suitable value of s. Therefore, qubic lower bound on M`,b,s

is enough in general. We distinguish two cases:
. If ` ≥ 2, then M`,b,s ≥ n−2(b+ s)!`−1. If b+ s ≥ lnn, this expression is greater
than Θ(n3) by Stirling formula. Otherwise, because b(` + 1) + s` = n, we have
` ≥ n

lnn − 1 and as b+ s ≥ 2 the same Θ(n3) lower bound holds.

. If ` = 1, then s = n − 2b and M`,b,s ≥ (n−b)!
n2(n−2b)! . Clearly, this expression

decreases as b increases; for b = 3 it is greater than Θ(n) (and there is only one
such term) and for b > 3 it is greater than Θ(n3). If b = 1, then s = n − 2 and
this is the term N1,1,n−2. The only remaining case is when b = 2, ` = 1, and
s = n− 4. For this case by (5), we get

N1,1,n−2

N`,b,s
≥
(

(n− 2)!

b!s!(`+ 1)!b`!s

)k−1

=

(
(n− 2)!

8(n− 4)!

)k−1

= Θ(n2(k−1)). (9)

Thus, we proved that the sum (3) is indeed asymptotically equal to the term
N1,1,n−2 multiplied by n!. ut



4.4 Main Result and Conclusions

Now, we are ready to prove our main result on the asymptotic number of strongly
connected elements of Gn,k that are not synchronizing.

Theorem 2. The probability that a random strongly connected almost-group au-
tomaton with n states and k ≥ 2 letters is not synchronizing is equal to

(2k−1 − 1)n−2(k−1) (1 + o(1)) . (10)

In particular, random strongly connected almost-group automata are synchroniz-
ing with high probability as n tends to infinity.

Proof. Lemma 9 and Lemma 11 give lower and upper bounds on the number of
strongly-connected non-synchronizing almost-group automata, which are both
equal to (2k−1 − 1)n3(n − 2)!k(1 + o(1/n)). We conclude the proof using the
estimation on the number of strongly-connected almost-group automata given
in Lemma 7. ut

Thus we obtained a precise estimation on the probability for strongly-connec-
ted almost-group automata of being synchronizable, for any alphabet size. It
would be natural, as in [2], to design an algorithm which would test on synchro-
nization a given random strongly-connected almost-group automaton in optimal
average time. Another, much more challenging problem, consists in estimating
the expected length of a shortest reset word for random automata in this setting.
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