
Introduction à l’algorithmique
et à la programmation

IUT 1ère année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

– Cours 1 / 5 –

– Déroulement du cours –

Organisation :
I 5 séances de 2h de cours
I 10 séances de 2h de TD
I 15 séances de 2h de TP

Evaluation :
I une note de TD : il y a une rapide interrogation écrite au début de

chaque TD (sauf le premier)
I une note de TP : vous rendez chaque TP, certains seront notés
I un projet de programmation
I un examen

Lorsque vous voyez le python

`

a gauche, cela signifie

qu’il y a une d

´

emonstration d’

´

ecriture et d’ex

´

ecution de

programme pendant le cours. Ces d

´

emonstrations ne

sont pas sur les transparents.

– Définition dans le Trésor –

Programmer : (Empl. intrans.) “Écrire un pro-
gramme d’ordinateur” (Ging.-Lauret 1982), fractionner
un problème en instructions codifiées acceptables par la
machine.

– Introduction sur un exemple –

Un exemple de programme en Python 3 :

def p u i s s a n c e (x , n) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

C’est un programme un peu avancé . . .

mais essayons de comprendre
ce qu’il fait.

– Introduction sur un exemple –

Un exemple de programme en Python 3 :

def p u i s s a n c e (x , n) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

C’est un programme un peu avancé . . . mais essayons de comprendre
ce qu’il fait.

– Les différents mots –

def p u i s s a n c e (x , n) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

Les couleurs sont un ajout pratique pour la lisibilité, elle peuvent
changer d’un éditeur à l’autre. Ici on a :

I en orange des mots-clés du langage Python
I en violet des fonctions du langage Python
I en bleu des noms choisis par le programmeur

– Les différents mots –

def p u i s s a n c e (x , n) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

Les mots de Python, en orange et en violet, sont en anglais.

def = define = définir while = tant que
return = retourner print = imprimer

– L’indentation –

def p u i s s a n c e (x , n) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

I Les lignes ne commencent pas
toutes au même endroit.

I Ce n’est pas un détail !

I Le positionnement (on dit
l’indentation) des lignes est impor-
tant pour leur signification.

Si on masque temporairement les lignes indentées, on obtient :

def p u i s s a n c e (x , n) :
. . .

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

def p u i s s a n c e (x , n) :
. . .

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

I def définit une fonction qui s’appelle ici puissance
I La fonction puissance(x,n) calcule la valeur x

n (on verra
comment plus tard)

I puissance(12,6) appelle la fonction puissance avec les
paramètres 12 et 6, qui calcule donc 126

I y = puissance(12,6) stocke la valeur 126 dans y
I print est une fonction de Python qui affiche la valeur de son

paramètre à l’écran

Essayons un peu le programme et des variantes ...

– La fonction puissance –

def p u i s s a n c e (x , n) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

L’indentation signifie que toutes
les lignes font partie de la fonction
puissance

I La fonction prend deux paramètres x et n

I Au début on met la valeur 1 dans res et i

I while (= tant que) possède
I une condition i  n

I deux lignes indentées
I ces deux lignes sont répétées “tant que” la condition est vraie

I return (= retourner) termine la fonction en renvoyant la valeur
de res

– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i

Avant de commencer 2 4 1 1
Etape 1 2 4 2 2
Etape 2 2 4 4 3
Etape 3 2 4 8 4
Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...

– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i
Avant de commencer 2 4 1 1

Etape 1 2 4 2 2
Etape 2 2 4 4 3
Etape 3 2 4 8 4
Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...

– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i
Avant de commencer 2 4 1 1

Etape 1 2 4 2 2

Etape 2 2 4 4 3
Etape 3 2 4 8 4
Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...

– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i
Avant de commencer 2 4 1 1

Etape 1 2 4 2 2
Etape 2 2 4 4 3

Etape 3 2 4 8 4
Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...

– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i
Avant de commencer 2 4 1 1

Etape 1 2 4 2 2
Etape 2 2 4 4 3
Etape 3 2 4 8 4

Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...

– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i
Avant de commencer 2 4 1 1

Etape 1 2 4 2 2
Etape 2 2 4 4 3
Etape 3 2 4 8 4
Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...

– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i
Avant de commencer 2 4 1 1

Etape 1 2 4 2 2
Etape 2 2 4 4 3
Etape 3 2 4 8 4
Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...

– Robustesse du programme –

Qu’est-ce qui se passe si n = 0 ? ou x = 4.5 ? ou n = -4 ?

Essayons ...

On va corriger le problème si n est négatif, en rajoutant un test et en
traitant le cas séparément. On va ajouter au début de puissance :

i f n < 0 :
p r i n t (’erreur : pas de n n

´

egatif’)
re turn

I if (= si) est un test, ici on regarde si n est strictement négatif
I les deux lignes indentées ne sont effectuées que si la condition

du if est vraie
I si n < 0, on affiche un message d’erreur et return termine la

fonction en ne retournant rien

– Robustesse du programme –

Qu’est-ce qui se passe si n = 0 ? ou x = 4.5 ? ou n = -4 ?

Essayons ...

On va corriger le problème si n est négatif, en rajoutant un test et en
traitant le cas séparément. On va ajouter au début de puissance :

i f n < 0 :
p r i n t (’erreur : pas de n n

´

egatif’)
re turn

I if (= si) est un test, ici on regarde si n est strictement négatif
I les deux lignes indentées ne sont effectuées que si la condition

du if est vraie
I si n < 0, on affiche un message d’erreur et return termine la

fonction en ne retournant rien

– La nouvelle fonction puissance –

def p u i s s a n c e (x , n) : # calcule x puissance n

i f n < 0 : # cas n < 0 non g

´

er

´

e

p r i n t (’erreur : pas de n n

´

egatif’)
re turn

r e s = 1
i = 1
whi le i <= n : # on fait n fois

r e s = r e s ⇤ x # multiplier res par x

i = i + 1 # ajouter 1

`

a i

re turn r e s

I On a ajouté des commentaires :
I le caractère # indique que la suite de la ligne est un commentaire
I les commentaires sont ignorés par Python
I ils servent à décrire le programme pour les êtres humains qui le

lisent
I Les commentaires sont très importants en programmation ... on y

reviendra

– En résumé –

I On a vu un exemple avancé, qui nous a permis de voir, dans les
grandes lignes, à quoi ressemble un programme

I On a vu
I que les lignes sont des instructions à effectuer, dans l’ordre
I qu’on peut stocker des valeurs (dans y, x, ...)
I qu’on peut effectuer des calculs (res * x)
I que des lignes peuvent être effectuées plusieurs fois (while), ou

seulement si une condition est vérifiée (if)
I qu’on peut créer des fonctions (puissance) ou utiliser des

fonctions de Python (print)
I ...

I Dans la suite, on va apprendre pas à pas et dans le détail toutes
ces notions (et bien d’autres), afin que vous maı̂trisiez les bases
de la programmation

– En résumé –

I On a vu un exemple avancé, qui nous a permis de voir, dans les
grandes lignes, à quoi ressemble un programme

I On a vu
I que les lignes sont des instructions à effectuer, dans l’ordre
I qu’on peut stocker des valeurs (dans y, x, ...)
I qu’on peut effectuer des calculs (res * x)
I que des lignes peuvent être effectuées plusieurs fois (while), ou

seulement si une condition est vérifiée (if)
I qu’on peut créer des fonctions (puissance) ou utiliser des

fonctions de Python (print)
I ...

I Dans la suite, on va apprendre pas à pas et dans le détail toutes
ces notions (et bien d’autres), afin que vous maı̂trisiez les bases
de la programmation

Python pas à pas

Variables, types et opérations

– Types de valeurs –

I Les valeurs de base possèdent un type
I Le type va notamment déterminer ce qui se passe quand on fait

une opération sur des valeurs

Les principaux types :
I entier (int) : 12 -4 123545 . . .
I flottant (float) : 3.14159 -1.5 12. 4.56e12 . . .
I booléen (bool) : True (vrai) ou False (faux)
I indéfini, rien : None
I chaı̂ne de caractères (str pour “string”) : ’chaı̂ne de caractères’

’IUT info’, . . .

Les majuscules/minuscules sont importantes :
True 6= true

– Transtypage –

I La fonction type() permet de connaı̂tre le type d’une valeur
I On peut demander à Python de changer le type d’une valeur
I On peut par exemple toujours transformer une valeur de base en

chaı̂ne de caractères avec la fonction str()
I Par exemple str(51) renvoie la chaı̂ne ’51’
I Attention : le nombre 51 et la chaı̂ne ’51’ ce n’est pas la même

chose pour Python. On y reviendra.
I int() convertit en entier, quand cela est possible
I float() convertit en flottant, quand cela est possible
I bool() convertit en booléen

Essayons dans un terminal Python ...

– Quelques exemples –

int (4.5) ! 4 int (-4.5) ! 4 int (’0345’) ! 345
int (’IUT’) ! erreur float (4) ! 4. float (’4.5’) ! 4.5
str (4) ! ’4’ str (True) ! ’True’ str (-4.5) ! ’-4.5’
bool (4) ! True bool (0) ! False bool (’IUT’) ! True

En pratique, on se sert surtout de :
I str qui fonctionne tout le temps
I int et float appliqués à une chaı̂ne de caractères qui correspond à

un nombre
I int appliqué à un float pour tronquer les décimales

– Opérations sur les nombres –

I Sur les int et sur les float on a l’addition +, la soustraction -, la
multiplication * et la division /

I Si on compose deux int on obtient un int , sauf la division qui
renvoie un float

I Si on compose deux float , ou un int et un float , on obtient un
float

I On dipose également de la division Euclidienne, avec quotient et
reste comme en primaire. Le quotient de x et y est x // y et leur
reste est x % y

I Il y a enfin l’opération puissance qui se note x ** y
I Les opérations suivent les règles de priorités usuelles et on peut

utiliser des parenthèses : (4+2)*1.2

Quelques exemples ...

– Opérations avec booléens –

I On a les opérations sur les booléens :
I and c’est le ET logique, x and y vaut True seulement quand x et

y valent True
I or c’est le OU logique, x or y vaut False seulement quand x et y

valent False
I not c’est la négation logique, not (True) = False et not (False)

= True
I Les comparaisons produisent des booléens :

I Le test d’égalité se fait avec ==
I Le test de différence se fait avec !=
I On a aussi < <= > >= pour comparer selon l’ordre usuel

(ordre du dictionnaire pour les chaı̂nes)

Encore des exemples . . .

– Opérations sur les chaı̂nes de caractères –

I Si on utilise + sur deux chaı̂nes de caractères, on effectue la
concaténation des deux chaı̂nes :
’IUT’ + ’info’ ! ’IUTinfo’

I Si on “multiplie” une chaı̂ne par un entier n, on la répère n fois :
’IUT’ * 3 ! ’IUTIUTIUT’

– Autres opérations –

I Il existe beaucoup d’autres opérations sur les chaı̂nes
I On a accès à plein d’opérations mathématiques (cosinus, . . .)
I On verra ça plus tard dans le semestre

– Nommage –

Dans le programme d’introduction, on a utilisé nos propres noms, en
bleu :

def p u i s s a n c e (x , n) :
. . .

y = p u i s s a n c e (1 2 , 6)
p r i n t (y)

Les règles de nommage pour ce cours sont les suivantes :
I le caractère “underscore” (le tiret bas de la touche 8) est

considéré comme une lettre
I on n’utilise jamais d’accent, de cédille, . . .
I Les noms commencent par une lettre majuscule ou minuscule,

puis sont composés de lettres et de nombres :
exemple ex2 Ex2mpl1 2013iut

I les mots réservés de Python sont interdits
I il y a aussi des conventions, plus tard ...

– Mots réservés –

Les mots suivants sont réservés pour le langage :

and as assert break class continue
def del elif else except finally
for from global if import in
is lambda nonlocal not or pass
raise return try while with yield

I On n’utilisera pas non plus comme nom :True , False , None
I Pour voir la liste des mots réservés, dans un terminal Python

taper :
import keyword
print(keyword.kwlist)

– Variables –

I une variable est un nom qui référence une valeur dans la
mémoire

I on peut s’en servir dans les calculs
I elle a le même type que la valeur qu’elle référence

– Affectation –

I L’affectation d’une variable consiste à lier un nom à une valeur
I La syntaxe : nom = expression, où expression est une valeur ou

un calcul qui produit une valeur :
x = 3 y = ’IUT’ z = x + 2

I On peut affecter à nouveau une même variable, on perd le lien
avec l’ancienne valeur

Ce n’est pas du tout le = des mathématiques. Il
faut le lire comme “prend la valeur” : x = x + 1

– Etapes de l’affectation –

x = 40 + 2
I On commence par calculer le membre droit, ici on trouve 42

42

I Ensuite on crée le nom pour x (sauf s’il a déjà été créé)

x 42

I Enfin on relie la variable à sa valeur

x 42

I En cas de réaffectation, le lien d’avant est perdu : x= -6.5

x
42

-6.5

Python pas à pas

Instructions et blocs

– Instructions et séquence d’instructions –

p r i n t (’a xˆ2 + b x + c = 0’)
a = f l o a t (input (’a = ’))
b = f l o a t (input (’b = ’))
c = f l o a t (input (’c = ’))
d e l t a = b⇤b�4⇤a⇤c
i f d e l t a > 0 :

p r i n t (’deux solutions’)
e l i f d e l t a == 0 :

p r i n t (’une solution’)
e l s e :

p r i n t (’pas de solution’)

I Comme on a vu dans l’introduction, les instructions sont
effectuées dans l’ordre, de haut en bas

I En Python, il n’y a qu’une instruction par ligne
I Le flot d’instructions peut-être modifié / redirigé par des

conditions (if), des boucles (while), . . .

– Au passage ... input –

a = f l o a t (input (’a = ’))

I On a utilisé une nouvelle fonction, la fonction input(str)
I Cette fonction permet à l’utilisateur de saisir une valeur au

clavier
I Quand on écrit a= input(’valeur = ’), la chaı̂ne ’valeur = ’ est

affichée à l’écran (comme avec print) et le programme attend
que soit rentré une valeur, qu’il met dans la variable x, c’est une
affectation normale

I La fonction input renvoie toujours une chaı̂ne de caractères
I On a donc utilisé le transtypage avec la fonction float

Quelques exemples avec input

– Blocs d’instructions –

Certaines instructions sont regroupées en blocs de la façon suivante :

entête du bloc:
instruction 1 du bloc
instruction 2 du bloc
instruction 3 du bloc

instruction hors bloc

I L’indentation (le décalage) se fait avec la tabulation (la touche
au-dessus du capslock sur le clavier, cf TP)

I On peut insérer un bloc dans un bloc, un bloc dans un bloc dans
un bloc, . . .

I L’indentation fait partie du langage Python, changer
l’indentation change la signification du programme

Python pas à pas

Instruction conditionnelle (if)

– La conditionnelle : le if –

i f d e l t a > 0 :
p r i n t (’deux solutions’)

e l i f d e l t a == 0 :
p r i n t (’une solution’)

e l s e :
p r i n t (’pas de solution’)

I Sur l’exemple on commence par tester si delta> 0
I Si c’est le cas, on effectue le bloc qui suit, et on affiche deux

solutions
I Sinon, on teste si delta== 0

I Si oui, on indique qu’il y a une seule solution

I Sinon on indique qu’il n’y a pas de solution

– La conditionnelle : le if –

La forme la plus simple est

if expression:
instruction 1 du if
instruction 2 du if
...

instruction après if

I expression est une expression qui retourne un booléen, qui est
donc évaluée à True ou False

I les instructions du bloc du if sont effectuées uniquement si
l’expression est évaluée à True

I dans tous les cas, le programme reprend à l’instruction après if

– La conditionnelle : le if avec else –

La forme avec else (= sinon) :

if expression:
instruction 1 du if
...

else:
instruction 1 du else
...

instruction après if/else

I les instructions du bloc du if sont effectuées uniquement si
l’expression est évaluée à True

I les instructions du bloc du else sont effectuées uniquement si
l’expression est évaluée à False

I dans tous les cas, le programme continue à l’instruction après
if/else

– La conditionnelle : le elif –

La forme avec elif (= contraction de else et if) :
if expression1:

bloc du if

elif expression2:
bloc du elif

else:
bloc du else

instruction après if/elif/else

I les instructions du bloc du if sont effectuées uniquement si
expression1 vaut True

I les instructions du bloc du elif sont effectuées uniquement si
expression1 vaut False et expression2 vaut True

I les instructions du bloc du else sont effectuées uniquement si
expression1 vaut False et expression2 vaut False

I On peut mettre plusieurs elif, les conditions sont évaluées dans
l’ordre, et seule la première qui vaut True est considérée

– La conditionnelle : le elif –

La forme avec elif (= contraction de else et if) :
if expression1:

bloc du if

elif expression2:
bloc du elif

else:
bloc du else

instruction après if/elif/else

I les instructions du bloc du if sont effectuées uniquement si
expression1 vaut True

I les instructions du bloc du elif sont effectuées uniquement si
expression1 vaut False et expression2 vaut True

I les instructions du bloc du else sont effectuées uniquement si
expression1 vaut False et expression2 vaut False

I On peut mettre plusieurs elif, les conditions sont évaluées dans
l’ordre, et seule la première qui vaut True est considérée

Attention Python 2 6= Python 3
Les deux versions ne sont pas compatibles !

Installez la version 3.1 ou 3.2

Introduction

`

a l’algorithmique

et

`

a la programmation

IUT 1

`

ere ann

´

ee

2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

– Cours 2 / 5 –

Graphiques

La librairie iutk

– Pr

´

esentation g

´

en

´

erale –

I
iutk est une librairie développée pour vous

I elle permet de faire des graphiques et des animations visuelles
I c’est juste une surcouche simplifiée d’une librairie Python

nommée tkinter

I Que peut-on faire ?

I ouvrir une fenêtre
I dessiner des cercle, des rectangles, du texte, ...
I gérer des couleurs
I gérer des événements de la souris ou du clavier

I Pourquoi ne pas utiliser tkinter directement ?
I

tkinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours

I
iutk sert justement à cacher les aspects “objet”

I Est-ce que iutk permet de faire la même chose que tkinter ?
I Non, il y a plus de possibilités dans tkinter, mais iutk nous

suffira pour ce semestre

– Pr

´

esentation g

´

en

´

erale –

I
iutk est une librairie développée pour vous

I elle permet de faire des graphiques et des animations visuelles
I c’est juste une surcouche simplifiée d’une librairie Python

nommée tkinter

I Que peut-on faire ?
I ouvrir une fenêtre
I dessiner des cercle, des rectangles, du texte, ...
I gérer des couleurs
I gérer des événements de la souris ou du clavier

I Pourquoi ne pas utiliser tkinter directement ?

I
tkinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours

I
iutk sert justement à cacher les aspects “objet”

I Est-ce que iutk permet de faire la même chose que tkinter ?
I Non, il y a plus de possibilités dans tkinter, mais iutk nous

suffira pour ce semestre

– Pr

´

esentation g

´

en

´

erale –

I
iutk est une librairie développée pour vous

I elle permet de faire des graphiques et des animations visuelles
I c’est juste une surcouche simplifiée d’une librairie Python

nommée tkinter

I Que peut-on faire ?
I ouvrir une fenêtre
I dessiner des cercle, des rectangles, du texte, ...
I gérer des couleurs
I gérer des événements de la souris ou du clavier

I Pourquoi ne pas utiliser tkinter directement ?
I

tkinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours

I
iutk sert justement à cacher les aspects “objet”

I Est-ce que iutk permet de faire la même chose que tkinter ?

I Non, il y a plus de possibilités dans tkinter, mais iutk nous
suffira pour ce semestre

– Pr

´

esentation g

´

en

´

erale –

I
iutk est une librairie développée pour vous

I elle permet de faire des graphiques et des animations visuelles
I c’est juste une surcouche simplifiée d’une librairie Python

nommée tkinter

I Que peut-on faire ?
I ouvrir une fenêtre
I dessiner des cercle, des rectangles, du texte, ...
I gérer des couleurs
I gérer des événements de la souris ou du clavier

I Pourquoi ne pas utiliser tkinter directement ?
I

tkinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours

I
iutk sert justement à cacher les aspects “objet”

I Est-ce que iutk permet de faire la même chose que tkinter ?
I Non, il y a plus de possibilités dans tkinter, mais iutk nous

suffira pour ce semestre

– Exemple 1 : cr

´

eer une fen

ˆ

etre –

from i u t k import ⇤

c r e e F e n e t r e (4 0 0 , 6 0 0)
a t t e n t e C l i c ()
f e r m e F e n e t r e ()

I la première ligne sert à appeler la bibliotheque iutk

I on crée la fenêtre avec la fonction creeFenetre(... , ...), en
indiquant la hauteur et la largeur en nombre de pixels

I
attenteClic() attend que l’utilisateur clique dans la fenêtre avant
de continuer

I
fermeFenetre() détruit la fenêtre à la fin du programme (ne pas
oublier de le faire).

– Fen

ˆ

etre et pixels –

I Un écran ou une fenêtre est un objet à deux dimensions
I Ce sont des “damiers” dont les cases sont des points (carrés) de

couleur appelés des pixels

I 1600 x 1200 est un standard pour un écran, 640 x 960 pour un
iphone 4s

I les pixels ont un système de coordonn

´

ees cart

´

esiennes

I
Attention : le coin en haut à gauche est de coordonnées (0, 0)

I les coordonnées augmentent vers le bas et vers la droite

15 x 10 pixels

(0,0)

(14,9)

(3,2)

– Lignes, rectangles et cercles –

On a des commandes pour dessiner dans la fenêtre :
I des segments avec ligne et ligneCouleur, en donant les

coordonnées des deux extrémités et éventuellement la couleur
I des rectangles avec rectangle, rectangleCouleur et

rectanglePlein, en donnant les coordonnées de deux coins
opposés, et éventuellement la couleur

I des rectangles avec cercle, cercleCouleur et cerclePlein, en
donnant les coordonnées de deux coins opposés, et
éventuellement la couleur

– Affichages –

I
miseAJour() à appeler après avoir dessiné, sans quoi le résultat
est incertain

I
effaceTout() enlève tous les dessins

– Autres –

Voir la documentation pour les autres fonctionalités, notamment la
récupération d’événements clavier et souris.

– Lignes, rectangles et cercles –

On a des commandes pour dessiner dans la fenêtre :
I des segments avec ligne et ligneCouleur, en donant les

coordonnées des deux extrémités et éventuellement la couleur
I des rectangles avec rectangle, rectangleCouleur et

rectanglePlein, en donnant les coordonnées de deux coins
opposés, et éventuellement la couleur

I des rectangles avec cercle, cercleCouleur et cerclePlein, en
donnant les coordonnées de deux coins opposés, et
éventuellement la couleur

– Affichages –

I
miseAJour() à appeler après avoir dessiné, sans quoi le résultat
est incertain

I
effaceTout() enlève tous les dessins

– Autres –

Voir la documentation pour les autres fonctionalités, notamment la
récupération d’événements clavier et souris.

– Lignes, rectangles et cercles –

On a des commandes pour dessiner dans la fenêtre :
I des segments avec ligne et ligneCouleur, en donant les

coordonnées des deux extrémités et éventuellement la couleur
I des rectangles avec rectangle, rectangleCouleur et

rectanglePlein, en donnant les coordonnées de deux coins
opposés, et éventuellement la couleur

I des rectangles avec cercle, cercleCouleur et cerclePlein, en
donnant les coordonnées de deux coins opposés, et
éventuellement la couleur

– Affichages –

I
miseAJour() à appeler après avoir dessiné, sans quoi le résultat
est incertain

I
effaceTout() enlève tous les dessins

– Autres –

Voir la documentation pour les autres fonctionalités, notamment la
récupération d’événements clavier et souris.

– Un exemple –

from i u t k import ⇤

c r e e F e n e t r e (4 0 0 , 2 0 0)

l i g n e (1 0 , 1 0 , 3 0 0 , 1 0 0)
c e r c l e C o u l e u r (5 0 , 5 0 , 1 0 ,’blue’)
r e c t a n g l e P l e i n (2 5 0 , 4 0 , 3 5 0 , 1 0 0 ,’red’)

miseAJour ()
a t t e n t e C l i c ()
f e r m e F e n e t r e ()

A tester ...

Python pas

`

a pas

Utilisation des modules

– Modules –

I un module est un ensemble de fonctions déjà programmées,
prêtes à être utilisées

I il existe des blue modules de base en python (math par
exemple), mais vous pouvez en récupérer sur internet ou en créer
vous-même

I utilisé pour organiser les programmes (on en reparlera)

Il y a deux façons d’utiliser une fonction toto() d’un module
monModule:

I
from monModule import toto : on utilise alors normalement la
fonction

I
import monModule : la fonction s’appelle monModule.toto()

I on peut aussi utiliser from monModule import * pour charger
toutes les fonctions du module monModule, sauf celles qui
commencent par

– Modules –

I un module est un ensemble de fonctions déjà programmées,
prêtes à être utilisées

I il existe des blue modules de base en python (math par
exemple), mais vous pouvez en récupérer sur internet ou en créer
vous-même

I utilisé pour organiser les programmes (on en reparlera)

Il y a deux façons d’utiliser une fonction toto() d’un module
monModule:

I
from monModule import toto : on utilise alors normalement la
fonction

I
import monModule : la fonction s’appelle monModule.toto()

I on peut aussi utiliser from monModule import * pour charger
toutes les fonctions du module monModule, sauf celles qui
commencent par

– Un exemple –

from math import ⇤

p r i n t (’pi = ’ , p i)
p r i n t (cos (p i / 2))

– Quelques modules utiles –

I
random : des fonctions pour faire des tirages au sort

I
math : les fonctions et les constantes mathématiques usuelles
comme exp, cos, ⇡, . . .

I
time : pour mesurer le temps, connaı̂tre l’heure, ou attendre un
certain temps

I
iutk !

Python pas

`

a pas

La boucle while

– Exemple –

r e s = 1
i = 1
whi le i < n :

r e s = r e s ⇤ x
i = i + 1

p r i n t (r e s)

I on avait vu le while lors du cours 1
I c’est une instruction de boucle : son bloc associé est répété tant

que la condition est vraie

while condition:

instruction 1 du while

instruction 2 du while

...

instruction apr

`

es while

I chaque exécution de la séquence d’instructions du while est
appelé une it

´

eration

– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i

Avant de commencer 1
Fin it

´

eration 1 2
Fin it

´

eration 2 3
...

Fin it

´

eration n-1 n
Fin it

´

eration n n+1

– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i
Avant de commencer 1

Fin it

´

eration 1 2
Fin it

´

eration 2 3
...

Fin it

´

eration n-1 n
Fin it

´

eration n n+1

– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i
Avant de commencer 1

Fin it

´

eration 1 2

Fin it

´

eration 2 3
...

Fin it

´

eration n-1 n
Fin it

´

eration n n+1

– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i
Avant de commencer 1

Fin it

´

eration 1 2
Fin it

´

eration 2 3

...

Fin it

´

eration n-1 n
Fin it

´

eration n n+1

– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i
Avant de commencer 1

Fin it

´

eration 1 2
Fin it

´

eration 2 3
...

Fin it

´

eration n-1 n
Fin it

´

eration n n+1

– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i
Avant de commencer 1

Fin it

´

eration 1 2
Fin it

´

eration 2 3
...

Fin it

´

eration n-1 n

Fin it

´

eration n n+1

– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i
Avant de commencer 1

Fin it

´

eration 1 2
Fin it

´

eration 2 3
...

Fin it

´

eration n-1 n
Fin it

´

eration n n+1

– Deux exemples –

nbr = i n t (input (’Combien ? ’))
i = 1
whi le i <= nbr :

p r i n t (’bonjour’)
i = i + 1

p r i n t (’Fini !’)

from t ime import s l e e p
nbr = i n t (input (’Combien de secondes ? ’))
i = nbr
whi le i > 0 :

p r i n t (s t r (i) + ’...’)
s l e e p (1)
i = i � 1

p r i n t (’BOOOM !’)

– Deux exemples –

nbr = i n t (input (’Combien ? ’))
i = 1
whi le i <= nbr :

p r i n t (’bonjour’)
i = i + 1

p r i n t (’Fini !’)

from t ime import s l e e p
nbr = i n t (input (’Combien de secondes ? ’))
i = nbr
whi le i > 0 :

p r i n t (s t r (i) + ’...’)
s l e e p (1)
i = i � 1

p r i n t (’BOOOM !’)

– Un exemple graphique –

from i u t k import ⇤
c r e e F e n e t r e (4 0 0 , 4 0 0)
i = 0
whi le i < 1 0 :

i f i % 2 == 1 :
c o u l e u r = ’blue’

e l s e :
c o u l e u r = ’yellow’

r e c t a n g l e P l e i n (i ⇤4 0 , 1 0 0 , (i +1)⇤40 ,140 , c o u l e u r)
i = i + 1

miseAJour ()
a t t e n t e C l i c ()
f e r m e F e n e t r e ()

I On notera l’utilisation du reste de la division pour alterner les
couleurs

I Les pavés font 40 pixels de côtés, on calcule les coordonnées de
chaque carré en fonction de i

– Nombre d’it

´

erations non fix

´

e –

Redemander un nombre tant que nécessaire :

a = i n t (input (’Nombre entre 1 et 10 : ’))
whi le a < 1 or a > 1 0 :

a = i n t (input (’Erreur, entre 1 et 10 :’))
p r i n t (’Bravo, votre nombre est ’ + s t r (a))

Combien de tirages de deux dés pour faire 12 :

from random import r a n d i n t
des = 0
nbr = 0
whi le des != 1 2 :

des = r a n d i n t (1 , 6) + r a n d i n t (1 , 6)
nbr = nbr + 1

p r i n t (s t r (nbr)+’ tirages pour faire 12’)

– Nombre d’it

´

erations non fix

´

e –

Redemander un nombre tant que nécessaire :

a = i n t (input (’Nombre entre 1 et 10 : ’))
whi le a < 1 or a > 1 0 :

a = i n t (input (’Erreur, entre 1 et 10 :’))
p r i n t (’Bravo, votre nombre est ’ + s t r (a))

Combien de tirages de deux dés pour faire 12 :

from random import r a n d i n t
des = 0
nbr = 0
whi le des != 1 2 :

des = r a n d i n t (1 , 6) + r a n d i n t (1 , 6)
nbr = nbr + 1

p r i n t (s t r (nbr)+’ tirages pour faire 12’)

– Nombre d’it

´

erations non fix

´

e –

Redemander un nombre tant que nécessaire :

a = i n t (input (’Nombre entre 1 et 10 : ’))
whi le a < 1 or a > 1 0 :

a = i n t (input (’Erreur, entre 1 et 10 :’))
p r i n t (’Bravo, votre nombre est ’ + s t r (a))

Combien de tirages de deux dés pour faire 12 :

from random import r a n d i n t
des = 0
nbr = 0
whi le des != 1 2 :

des = r a n d i n t (1 , 6) + r a n d i n t (1 , 6)
nbr = nbr + 1

p r i n t (s t r (nbr)+’ tirages pour faire 12’)

– Un peu de physique –

I On veut simuler la chute d’une goutte d’eau
I La goutte commence à vitesse nulle et tombe sous l’effet de la

gravité
I Elle a une accélération constante ~g, qui est un vecteur dirigé vers

le bas

I L’accélération est la dérivée de la vitesse : à “chaque instant de
temps”, la vitesse verticale diminue de g

I A “chaque instant de temps”, la position verticale de la goutte
diminue de sa vitesse

I On va identifier “itération de boucle” et “instant de temps”
I Il faut garder la vitesse verticale et la position verticale en

mémoire (la position horizontale ne change pas)
I A chaque itération on met à jour les deux variables
I

Attention : dans la fenêtre les ordonnées augmentent vers le
bas !

I On recalcule le graphique en fonction des nouvelles valeurs
I On s’arrête quand on touche le sol

– Un peu de physique –

I On veut simuler la chute d’une goutte d’eau
I La goutte commence à vitesse nulle et tombe sous l’effet de la

gravité
I Elle a une accélération constante ~g, qui est un vecteur dirigé vers

le bas
I L’accélération est la dérivée de la vitesse : à “chaque instant de

temps”, la vitesse verticale diminue de g

I A “chaque instant de temps”, la position verticale de la goutte
diminue de sa vitesse

I On va identifier “itération de boucle” et “instant de temps”
I Il faut garder la vitesse verticale et la position verticale en

mémoire (la position horizontale ne change pas)
I A chaque itération on met à jour les deux variables
I

Attention : dans la fenêtre les ordonnées augmentent vers le
bas !

I On recalcule le graphique en fonction des nouvelles valeurs
I On s’arrête quand on touche le sol

– Un peu de physique –

I On veut simuler la chute d’une goutte d’eau
I La goutte commence à vitesse nulle et tombe sous l’effet de la

gravité
I Elle a une accélération constante ~g, qui est un vecteur dirigé vers

le bas
I L’accélération est la dérivée de la vitesse : à “chaque instant de

temps”, la vitesse verticale diminue de g

I A “chaque instant de temps”, la position verticale de la goutte
diminue de sa vitesse

I On va identifier “itération de boucle” et “instant de temps”
I Il faut garder la vitesse verticale et la position verticale en

mémoire (la position horizontale ne change pas)
I A chaque itération on met à jour les deux variables
I

Attention : dans la fenêtre les ordonnées augmentent vers le
bas !

I On recalcule le graphique en fonction des nouvelles valeurs
I On s’arrête quand on touche le sol

– La goutte d’eau –

from i u t k import ⇤
c r e e F e n e t r e (4 0 0 , 4 0 0)
a t t e n t e C l i c ()
y = 0
vy = 0
whi le y < 400 : # on n’a pas encore touche le sol

e f f a c e T o u t ()
c e r c l e P l e i n (2 0 0 , y , 1 0 ,’blue’)
miseAJour () # ne pas oublier !
vy = vy + 0 . 1 # ici g = 0.1
y = y + vy # mise a jour de la position

a t t e n t e C l i c ()
f e r m e F e n e t r e ()

I Il faut ajuster la valeur de g pour avoir un bon rendu

– break et continue –

I Il existe deux moyens de modifier le flot normal des itérations
d’une boucle

I Ces moyens sont à éviter, sauf quand ils rendent le programme
plus clair (ce qui arrive)

I l’instruction break arrête la boucle, et continue donc l’exécution
du programme après la boucle

I l’instruction continue arrête l’itération en cours, et reprend à
l’itération suivante de la boucle

while:

break

suite du prog

while:

continue

suite du prog

– Un exemple avec break –

from random import r a n d i n t
de = r a n d i n t (1 , 1 0 0)
whi le True :

a = i n t (input (’Devinez un nombre (1-100) : ’))
i f a == de :

b r e a k
i f a < de :

p r i n t (’trop petit’)
i f a > de :

p r i n t (’trop grand’)
p r i n t (’Bravo !’)

I
while True boucle indéfiniment, la condition est toujours vérifiée

I On utilise break pour arrêter les itérations quand le nombre est
deviné

– Boucles infinies –

Si la condition de boucle est toujours vraie, et
qu’il n’y a pas de break pour en sortir, le pro-
gramme reste bloqu

´

e en tournant ind

´

efiniment

dans la boucle ! C’est une erreur classique.

I Pour forcer l’arrêt d’un programme, dans idle ou un terminal
python faire control+C

I Pour forcer la fermeture faire control+D

– Les boucles imbriqu

´

ees –

I On peut utiliser des boucles dans des boucles, des boucles dans
des boucles ...

I Cela arrive fréquemment quand on veut gérer des objets à deux
dimensions, mais aussi dans d’autres situations (voir les
algorithmes de tri dans l’autre cours)

i = 1
whi le i < 5 :

j = 1
whi le j < 4 :

p r i n t (’(’+ s t r (i)+’,’+ s t r (j)+’)’)
j = j + 1

i = i + 1

– Exemple du damier –

On souhaite paver la fenêtre de carrés colorés :

from i u t k import ⇤
c r e e F e n e t r e (4 0 0 , 4 0 0)
i = 0
whi le i < 1 0 :

j = 0
whi le j < 1 0 :

i f (i + j) % 2 == 1 :
c o u l e u r = ’blue’

e l s e :
c o u l e u r = ’yellow’

r e c t a n g l e P l e i n (i ⇤40 , j ⇤4 0 , (i +1)⇤40 , . . .
j = j + 1

i = i + 1
miseAJour ()
a t t e n t e C l i c ()
f e r m e F e n e t r e ()

– Exemple du damier –

On souhaite paver la fenêtre de carrés colorés :

from i u t k import ⇤
c r e e F e n e t r e (4 0 0 , 4 0 0)
i = 0
whi le i < 1 0 :

j = 0
whi le j < 1 0 :

i f (i + j) % 2 == 1 :
c o u l e u r = ’blue’

e l s e :
c o u l e u r = ’yellow’

r e c t a n g l e P l e i n (i ⇤40 , j ⇤4 0 , (i +1)⇤40 , . . .
j = j + 1

i = i + 1
miseAJour ()
a t t e n t e C l i c ()
f e r m e F e n e t r e ()

Python pas

`

a pas

Les listes

– Pr

´

esentation –

I La liste est un type avanc

´

e de donn

´

ees, elle sert à stocker une
séquence de valeurs

I On peut créer une liste par une affectation normale, où on met
entre crochets et séparés par des virgules les différentes valeurs
de la liste

lst = [3, ’toto’, 4.5, False]

I Il y a une liste particulière, la liste vide [] qui ne contient aucun
élément

I On peut accéder au i-ème élément d’une liste en utilisant les
crochets, le i-ème élément de lst est lst[i]

I
Attention : les indices commencent à 0 et non à 1 !

lst = [3, ’toto’, 4.5, False]

print(lst[1])

>>> ’toto’

– Affectations et listes –

Il y a des subtilités ici, à bien travailler.

I Une liste est un objet modifiable, on peut modifier ses valeurs,
ses éléments, etc sans créer de nouvelle liste

I Ce n’est pas vrai pour les autres types qu’on a vu, notamment les
chaı̂nes de caractères

I On peut changer la i-ème valeur de lst avec une affectation
classique : lst[2] = ’titi’

I Si lst est une liste, lst2 = lst associe au nom lst2 la même liste
(qui est modifiable).

I En conséquence, si on modifie ensuite lst, on modifie aussi lst2!

lst = [3, ’toto’, 4.5, False]

lst2[1] = ’titi’

print(lst)

>>> [3, ’titi’, 4.5, False]

– Affectations et listes –

lst = lst2

lst

lst2

3 ’toto’ 4.5 False

lst[1] = ’titi’

lst

lst2

3 ’titi’ 4.5 False

– Quelques op

´

erations –

I
len(lst) retourne la longueur de lst

I
x in lst renvoie un booléen qui est True quand x est dans lst

I Le + crée une nouvelle liste qui est la concaténation de deux
listes

[3, 4 , 7] + [’toto’, 5]

>>> [3, 4, 7, ’toto’, 5]

I Si on multiplie une liste par un entier n, cela crée une nouvelle

liste où l’ancienne est répétée n fois :
lst = [3, 4 , 7]

lst2 = lst * 3

print(lst2)

>>> [3, 4, 7, 3, 4, 7, 3, 4, 7]

– Autres op

´

erations –

I Les liste sont des objets, une notion hors-programme. On peut
néanmoins utiliser certaines fonctions rattachées aux listes (on
appelle cela des méthodes)

I Pour utiliser une telle fonction sur une liste lst, on utilise
lst.nom()

I
Attention : en générale cela modifie la liste

Quelques exemples :
I

lst.append(x) ajoute la valeur de x à la fin de lst

I
lst.extend(lst2) ajoute tous les éléments de lst2 à la fin de lst

I
lst.pop() supprime le dernier élément de lst et retourne sa valeur

I
lst.pop(i) supprime le i-ème élément de lst et retourne sa valeur

I ...

– Parcourir une liste –

I Une façon naturelle de parcourir une liste est d’utiliser une
boucle while, en faisant varier l’indice dans la liste

l s t = [1 , ’toto’ , 4 . 5 , F a l s e]
i = 0
whi le i < l e n (l s t) :

p r i n t (l s t [i])
i = i + 1

I Il existe d’autre moyens de parcourir une liste, que l’on verra au
prochain cours

– Exemple : statistiques sur deux d

´

es –

I On jette deux dés et on fait la somme. Comment se répartissent
les différents tirages ?

l s t = [1 , ’toto’ , 4 . 5 , F a l s e]
i = 0
whi le i < l e n (l s t) :

p r i n t (l s t [i])
i = i + 1

– Exemple : statistiques sur deux d

´

es –

I On jette deux dés et on fait la somme. Comment se répartissent
les différents tirages ?

l s t = [1 , ’toto’ , 4 . 5 , F a l s e]
i = 0
whi le i < l e n (l s t) :

p r i n t (l s t [i])
i = i + 1

– Exemple : paradoxe des anniversaires –

I A partir de combien de personnes dans une pièce des chances
importantes qu’au moins deux aient la même date
d’anniversaire ?

I On va simuler, en regardant plusieurs fois au bout de combien de
personnes on a un doublon

from random import r a n d i n t
l s t = [] # pas de dates au debut
compteur = 0
whi le True :

compteur = compteur + 1
annee = r a n d i n t (1 , 3 6 5)
i f annee in l s t : #doublon

b r e a k
l s t . append (annee)

p r i n t (compteur ,’personnes’)

– Exemple : paradoxe des anniversaires –

I A partir de combien de personnes dans une pièce des chances
importantes qu’au moins deux aient la même date
d’anniversaire ?

I On va simuler, en regardant plusieurs fois au bout de combien de
personnes on a un doublon

from random import r a n d i n t
l s t = [] # pas de dates au debut
compteur = 0
whi le True :

compteur = compteur + 1
annee = r a n d i n t (1 , 3 6 5)
i f annee in l s t : #doublon

b r e a k
l s t . append (annee)

p r i n t (compteur ,’personnes’)

Introduction à l’algorithmique
et à la programmation

IUT 1ère année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

– Cours 3 / 5 –

– Ecriture condensée –

I On a souvent besoin d’ajouter une valeur dans une variable, ce
que l’on a fait avec x = x + y

I Il existe en Python (et dans beaucoup d’autre langages) une
écriture plus compacte pour faire la même chose : x += y

I On peut l’utiliser avec d’autres opérations, et sur différents type.
Pour x entier et s chaı̂ne de caractères, on a :

x += 3 �! ajoute 3 à x
x *= 2 �! multiplie x par 2
x //= 4 �! x est changé en son quotient par 4

s += ’toto’ �! concatène ’toto’ à la fin de s
s *= 3 �! remplace s par 3 copies de s
s //= 4 �! erreur

I
il n’y a pas de notation i++ en Python

Python pas à pas

Les chaı̂nes de caractères

– Déclaration de chaı̂nes de caractères –

I On peut déclarer une chaı̂ne entre apostrophes comme on a fait
jusqu’ici : x = ’toto’ ...

I ou entre guillemets : x = "toto"

I les deux sont valides, on peut par exemple utiliser la première
quand il y a des guillemets dans la chaı̂ne et la seconde quand il
y a des apostrophes.

I Comment faire s’il y a à la fois des ’ et des ” ? on utilise les
caractères spéciaux \’ et \” :

s = ’il a dit : "à l\’abordage !"’

I Attention : \’ est un seul caractère, de même pour \” (ce sont
des caractères spéciaux) :

len(’d\’abord’) �! 7

– Déclaration sur plusieurs lignes –

I On peut déclarer une chaı̂ne sur plusieurs lignes en utilisant des
triples apostrophes ou triples guillemets comme délimiteurs :
s = ”’Ceci est une
chaine sur
plusieurs lignes.”’

I Les saut de lignes seront encodés par le caractère \n

I On peut également utiliser juste un backslash \avant la fin de
ligne et continuer sur la ligne suivante s = ’Ceci est une\
chaine sur\
plusieurs lignes.’

– Caractères spéciaux –

I Voilà quelques caractères spéciaux utiles :

\’ apostrophe \” guillemet
\n saut de ligne \t tabulation
\\ antislash \a reculer d’un

I Par exemple la chaı̂ne x = ’toto\ba’ est une chaı̂ne de
longueur 6, si on fait print(x) il s’affiche ...

>>> print(x)
tota

– Les chaı̂nes sont non-modifiables –

I Important : une chaı̂ne n’est pas modifiable.
I Si x contient une valeur de type str et que vous voulez la

changer, il faut faire une nouvelle affectation de x :
x = ’toto’
x[0] = ’p’ �! erreur on ne peut pas modifier une chaı̂ne
x = ’poto’ �! on crée une nouvelle chaı̂ne ’poto’

I Rappel : c’est le contraire avec les listes :
lst = [1,4,6,7]
lst[0] = 3 �! lst vaut [3,4,6,7]

– Opérations sur les chaı̂nes –

I On a déjà vu la concaténation + de deux chaı̂nes et la
“multiplication” par un entier

I On a accès au i-ème caractère de la chaı̂ne s avec s[i] (les indices
commencent à 0)

I len(s) retourne la longueur de s

Il y a beaucoup d’autres opérations sur les chaines, avec la notation
s.fonction() notamment :

I s.lower() renvoie une nouvelle chaı̂ne où les majuscules ont été
changées en minuscules

I s.upper() renvoie une nouvelle chaı̂ne où les minuscules ont été
changées en majuscules

I s.split(t), où t est une chaı̂ne, renvoie un tableau de chaı̂nes
obtenues en coupant s aux occurences de t

I ...

Python pas à pas

Structures itérables et boucles for

– Structure itérable –

I Une structure itérable est une structure qui contient plusieurs
valeurs avec

I une valeur initiale
I une notion de valeur suivante

I On connaı̂t déjà deux exemples de structures itérables : les
chaı̂nes de caractères et les listes :
s = ”abcdef”
lst = [1, 4, 56, 2]

I On peut changer un itérable en la liste, dans l’ordre, de ses
élément avec l’instruction list()

– les range –

I Une autre structure itérable très utilisée est retournée par la
fonction range()

I range(a,b), où a et b sont des entiers, est un itérable qui
commence à a et qui s’arrête à b-1 :
list(range(1,5)) �! [1,2,3,4]

I range(b) est une version condensée de range(0,b)
I range(a,b,c) est l’itérable qui commence à a et avance de c en c

jusqu’à arriver en b (exclu)
list(range(1,7,2)) �! [1,3,5]

I attention on s’arrête avant b dans tous les cas

– les boucles for –

I Comme while, l’instruction for est une instruction de boucle
I Elle permet de parcourir un itérable, dans l’ordre, en

commençant au premier élément et en allant de suivant en
suivant

I La syntaxe est la suivante

for x in iterable:
instruction 1 du for
instruction 2 du for
...
instruction n du for

suite du programme

– Faire une action n fois –

I l’association de for et de range rend très facile de faire une
opération n fois :

n = i n t (input (’rentrez un nombre : ’))
f o r i in r a n g e (n) :

p r i n t (’bonjour’)

I i prend les valeurs du range, à savoir 0,1,. . . n-1
I Autre exemple : les statistiques sur la somme de deux dés

from random import r a n d i n t
s t a t s = [0] ⇤ 13
f o r i in r a n g e (1 0 0 0) :

s t a t s [r a n d i n t (1 , 6) + r a n d i n t (1 , 6)] += 1
p r i n t (s t a t s)

– Utiliser la suite des valeurs d’un range –

I Afficher les nombres de 1 à n :

n = i n t (input (’rentrez un nombre : ’))
f o r i in r a n g e (n) :

p r i n t (i)

I Compte à rebours :

from t ime import s l e e p
f o r i in r a n g e (5 , 0 , �1) :

p r i n t (s t r (i)+’...’)
s l e e p (1)

p r i n t (’BOOOM’)

– Itérer sur une liste –

I Afficher un à un les éléments d’une liste :

l s t = [3 , 5 ,6 ,1 4 , �6 ,121]
f o r x in l s t :

p r i n t (x)

I Changement de couleur :

l s t = [’red’ ,’blue’ ,’green’ ,’gray’ ,’black’]
f o r c o u l e u r in l s t :

e f f a c e T o u t ()
c e r c l e P l e i n (2 0 0 , 2 0 0 , 1 0 0 , c o u l e u r)
c e r c l e (2 0 0 , 2 0 0 , 1 0 0)
miseAJour ()
s l e e p (1)

a t t e n t e C l i c ()

– Itérer sur les indices d’une liste –

I Si on a besoin des indices lors du parcours d’un itérable iterable,
on peut utiliser range(len(iterable)), vu que les indices vont de
0 à len(iterable)-1

l s t = [’bon’ ,’jour’ ,’bonjour’]
f o r i in r a n g e (l e n (l s t)) :

p r i n t (i , l s t [i])

– Itérer sur une chaı̂ne –

I Compter le nombre de voyelles :

s = input (’texte : ’)
n b r V o y e l l e s = 0
f o r a in s . l ower () :

i f a in [’a’ ,’e’ ,’i’ ,’o’ ,’u’ ,’y’] :
n b r V o y e l l e s += 1

p r i n t (’il y a’ , n b r V o y e l l e s ,’voyelles’)

I Jeu du pendu (extrait) :

motPendu = ’’
f o r a in mot :

i f a in p r o p o s e s : # c’est une lettre proposee?
motPendu += a

e l s e :
motPendu += ’-’

– continue et break –

I On peut utiliser les instructions continue et break avec les
boucles for :

I continue reprend au for en passant à l’élément suivant de
l’itérable

I break interrompt la boucle

n = i n t (input (’nombre : ’))
f o r i in r a n g e (2 , n) :

i f n % i == 0 :
p r i n t (n ,’n\’est pas premier’)
p r i n t (’il est divisible par’ , i)
break

– Conclusion sur la boucle for –

I On peut toujours faire une boucle while à la place ... c’est ce
qu’on a fait jusqu’ici

I L’instruction for est pluscompacte, plus lisible, et donc souvent
meilleure quand elle est utilisable

I Elle n’est typiquement pas adaptée quand on ne sait pas au début
de la boucle combien de fois on va l’effectuer (ex: deviner un
nombre)

Python pas à pas

Les fonctions

– Présentation générale –

def e s t P r e m i e r (n) :
i f n < 2 :

re turn F a l s e
f o r i in r a n g e (2 , n) :

i f n % i == 0 :
re turn F a l s e

re turn True

I Une fonction est un bloc d’instruction réutilisable
I Cela permet d’écrire le code une seule fois pour réaliser une

même tâche répétée :
I Une fois bien testée, on s’en ressert autant qu’on veut
I Maintenance à effectuer à un seul endroit
I On peut mettre les fonctions dans un module pour les réutiliser

I Idée fondamentale en programmation : découper un programme
en sous-tâches pour gagner en lisibilité et en robustesse.

– Définir une fonction –

def nomFonction():
instruction 1 de la fonction
...
fin du bloc de la fonction

I Important : lors de la définition d’une fonction, le code n’est
pas exécuté

– Appeler une fonction –

I A tout moment dans le programme ou dans une fonction on
peut appeler la fonction avec la commande
nomFonction()

f o r i in r a n g e (2 , 1 0 0) :
i f e s t P r e m i e r (i) :

p r i n t (i)

– Premier exemple –

def a p p e l () :
p r i n t (’-’⇤5 ,’appel’ ,’-’⇤5)

p r i n t (’bonjour’)
a p p e l ()
n = i n t (input (’nombre = ’))
f o r i in r a n g e (n) :

a p p e l ()

I A chaque fois qu’on utilise l’instruction appel() le programme
interrompt le flot normal d’instructions pour aller effectuer les
instructions d’appel()

I Une fois les instructions d’appel() effectuées, le programme
reprend là où il en était

– Fonction avec paramètre –

def a f f i c h e (s) :
p r i n t (’*’ ⇤ (l e n (s) + 4))
p r i n t (’* ’+s+’ *’)
p r i n t (’*’ ⇤ (l e n (s) + 4))

a f f i c h e (’bonjour’)
t e x t e = input ()
a f f i c h e (t e x t e)

I Une fonction peut avoir un ou plusieurs paramètres
I Ils sont nommés entre parenthèses dans la définition de la

fonction
I Lorsque l’on appelle la fonction, il faut passer les paramètres (le

bon nombre) entre parenthèses

– L’instruction return –

I l’instruction return x interrompt l’exécution de la fonction et
retourne la valeur x

I x peut être de n’importe quel type
I On récupère la valeur retournée normalement, par exemple par

une affectation :
y = maFonction(x)

I On peut aussi l’utiliser dans une expression où elle est évaluée :
y = maFonction(x) + 3
print(maFonction(x))

I Par défault, s’il n’y a pas de return ou si on met return
simplement sans argument après, la fonction retourne None

– Exemple de return –

def minimum (l s t) :
i f l e n (l s t) == 0 :

re turn
mini = l s t [0] #on initialise a lst[0]
f o r x in l s t :

i f x < mini :
min i = x

re turn mini

I Le premier return n’a pas d’argument, il retourne None et arrête
la fonction. Le programme reprend là où il en était.

I Le second return renvoie le résultat (flottant) du calcul

– Portée des variables –

Attention il y a des subtilités ici, à bien travailler.

def f (n) :
n = n + 1

x = 3
f (x)
p r i n t (’x vaut’ , x)

I Le résultat est x vaut 3
I Ce qui se passe :

I à l’appel de la fonction, la valeur du paramètre de f est affecté au
n de la définition de f

I donc n vaut 3
I dans la fonction, n est augmenté de 1
I x n’a pas changé
I ... d’ailleurs n n’existe pas dans le corps du programme

– Portée des variables –

Attention il y a des subtilités ici, à bien travailler.

def f (n) :
n = n + 1

n = 3
f (n)
p r i n t (’n vaut’ , n)

I Le résultat est encore n vaut 3 !
I Ce qui se passe :

I à l’appel de la fonction, la valeur du paramètre de f est affecté au
n de la définition de f

I Ce n’est pas le même n
I Il y a le n principal, et le n de f qu’on va noter n

f

I n
f

prend la valeur de n à l’appel de f et est incrémenté de 1 dans
la fonction. n ne change pas.

– Portée des variables –

Attention il y a des subtilités ici, à bien travailler.

def f (x) :
n = 1

n = 3
f (n)
p r i n t (’n vaut’ , n)

I Le résultat est toujours n vaut 3 !
I Ce qui se passe :

I à l’appel de la fonction, la valeur du paramètre de f est affecté au
x de la définition de f

I L’affectation dans la fonction crée une variable locale à f,
notons-là n

f

I n
f

prend la valeur de 1 et le n principal ne change pas.

– Porté des variables –

I les paramètres de la définition de la fonction sont des variables
locales, propres à la fonction

I les variable affectées dans la fonction sont des variables locales,
propres à la fonction

I ces variables locales existent pendant l’exécution de la fonction
et n’existent plus après

I les variables affectées dans le corps du programme (hors
fonctions) sont des variables globales

I les variables globales sont lisibles dans tout le programme
I les variables globales ne sont pas modifiables dans une fonction
I (si on affecte une variable globale dans une fonction, on crée une

variable locale avec le même nom)
I pour modifier une variable globale x dans une fonction, il faut la

déclarer avec le mot clé global

– Exemple de portée –

def f (n) :
g l o b a l k
i = n
k = 0
p r i n t (i , j , k)

i = 2
j = 4
k = 6
f (4 4)
p r i n t (i , j , k)

I Dans le corps de la fonction n et i sont des variables locales
I k est une variable globale modifiable
I j est visible en tant que variable globale

– Exemple : balles rebondissantes –

I Une balle est donnée par 4 valeurs [x,y,vx,vy], ses coordonnées
et son vecteur vitesse.

I On va faire une fonction qui crée une nouvelle balle avec des
stats aléatoires

I Une fonction pour dessiner une balle
I Une fonction pour déplacer une balle
I Dans le programme on crée la fenêtre, initialise une liste de

balles, puis on répète déplacements et mises à jour

– Exemple : Poker fermé –

I On joue avec un jeu de 32 cartes
I On veut des fonctions pour créer un jeu, le mélanger, piocher une

carte, piocher 5 cartes
I On veut tester s’il y a quelquechose de valeur dans le jeu (carré,

full, couleur, ...)

– Cartes du poker sur un jeu de 32 –

0 = 7 pique 8 = 7 coeur 16 = 7 carreau 24 = 7 trefle
1 = 8 pique 9 = 8 coeur 17 = 8 carreau 25 = 8 trefle
2 = 9 pique 10 = 9 coeur 18 = 9 carreau 26 = 9 trefle
3 = 10 pique 11 = 10 coeur 19 = 10 carreau 27 = 10 trefle
4 = V pique 12 = V coeur 20 = V carreau 28 = V trefle
5 = D pique 13 = D coeur 21 = D carreau 29 = D trefle
6 = R pique 14 = R coeur 22 = R carreau 30 = R trefle
7 = As pique 15 = As coeur 23 = As carreau 31 = As trefle

Introduction à l’algorithmique
et à la programmation

IUT 1ère année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

– Cours 4 / 5 –

Python pas à pas

Structures de données avancées

– tuple –

I Les tuple sont l’équivalent de la notion mathématique de
n-uplets

I Déclaration x = (4,3,1) crée un tuple avec 3 entiers
I On peut aussi directement écrire x = 4,3,1
I Pour faire un tuple avec un seul élément, il faut utiliser une

virgule : x = (4,), sinon x est un int qui vaut 4
I On accède au i-ème élément d’un tuple comme pour les listes où

les chaı̂nes : x[i], où les indices commencent à 0
I La longueur d’un tuple est retournée par la fonction len()
I On peut changer un itérable en tuple à l’aide de la fonction

tuple() : tuple(range(5))) (0,1,2,3,4)
I On peut concaténer deux tuple avec +

– tuple vs list –

Même s’ils se ressemblent, tuple et list sont des
structures complètement différentes

I La principale différence c’est que :
I Une list est modifiable
I Un tuple n’est pas modifiable

I Si t est un tuple, t[0] = 3 produit une erreur car t n’est pas
modifiable

I Il n’y a pas de append() pour les tuple
I . . .
I En fait, un tuple ressemble plsu à une chaı̂ne qu’à une liste

– Set –

I Set en anglais signifie ensemble
I La structure set permet de gérer efficacement un ensemble de

donnée
I Comme c’est un ensemble, chaque élément ne peut y être violet

qu’une seule fois
I Comme c’est un ensemble, l’ordre ne compte pas
I Le mécanisme utilisé pour que cette structure soit efficace fait

que les éléments d’un set doivent être non modifiables
I Un set est un objet modifiable

On ne peut mettre dans un set que des objets non
modifiables, donc pas de liste, pas de set et pas
de dictionnaire

– Opération sur les Set –

Dans le tableau, s et t sont des set et l est un itérable :

set() crée un set vide len(s) longueur du set s
x in s teste si x 2 s x not in s teste si x /2 s

s <= t teste si s ⇢ t s | t retourne s [t

s & t retourne s \ t s ˆ t retourne s�t

s.add(x) ajoute x dans s s.remove(x) retire x de s

s.pop() retourne et enlève s.discard(x) comme remove, mais
un élément de s pas d’erreur si x /2 s

set(l) crée un set avec l s==t teste l’égalité

I les opérations en bleu dans la table modifient le set s

– Test d’efficacité –

I On crée une list avec 10 000 entiers
I On teste si les 10 000 entiers sont dedans

I On fait la même chose avec un set
I On compare le temps d’exécution avec le module time

– Dictionnaires –

I Les dictionnaires permettent d’implanter de façon très efficace
des fonctions (partielles)

I Dans certains langages, ils sont appelés des tableaux associatifs
I Cela permet d’associer à une clé une valeur
I Exemple d’utilisation :

D = {} # dictionnaire vide

D[’toto’] = 4 # associe 4 a la cle ’toto’

D[’titi’] = 6
p r i n t (D[’toto’]) # affiche 4

D[’toto’] = ’bonjour’ # remplace 4

p r i n t (D[’toto’]) # affiche ’bonjour’

p r i n t (D)

La clé doit être un élément non modifiable

– Opération sur les dictionnaires –

Dans le tableau suivant D est un dictionnaire, x est une clé et y est une
valeur :

{} dictionnaire vide len(D) nombre de clés
D[x] = y D[x] vaut y D[x] retourne la valeur de x
del D[x] x n’a plus de valeur x in D teste si x est une clé
D.keys() la liste de clés D.values() la liste des valeurs
D.items() la liste des

couples (clé,valeur)

– Modifiables et non-modifiables –

On a vu des structures non-modifiables :
I booléens, entiers, caractères, flottants
I chaı̂nes de caractère
I tuple

Et des structures modifiables :
I listes
I ensembles
I dictionnaires

Il peut être utile de passer d’un type à l’autre. On peut par exemple
utiliser la fonction tuple() pour transformer une liste (modifiable) en
un tuple (non-modifiable)

– Affectation multiple –

I On peut affecter simultanément plusieurs variables avec la
syntaxe x,y,z = iterable

I Cela ne fonctionne que s’il y a le même nombre d’éléments à
gauche que dans l’itérable x,y,z = [5,6,8]

I Comme on peut omettre les parenthèses lors de l’écriture d’un
tuple, on peut utiliser x,y,z = 3,6,8

I On peut même écrire x,y = y,x ce qui échange les deux
variables!

I Il est possible d’utiliser pour signifer des positions qui ne nous
intéressent pas

x, , ,y = range(4)
I On peut s’en servir dans toutes les situations, par exemple

f o r key , v a l u e in D. i t e m s () :
p r i n t (’cle=’ , key ,’valeur=’ , v a l u e)

Python pas à pas

Compléments sur les fonctions

– Commentaire de fonction –

I Après l’entête de la fonction, on peut mettre un descriptif de la
fonction directement dans une chaı̂ne de caractères

def pgcd (a , b) :
’calcule le pgcd de a et de b’

whi le b != 0 :
a , b = b , a % b

re turn a

I On accède à la description avec la fonction help dans un terminal
Python

I Certains éditeurs Python comme IDLE3 font apparaı̂tre la
description des fonctions

I Il faut prendre l’habitude de mettre une description pour toute
les fonctions importantes.

– Paramètres par défaut –

I On peut spécifier des valeurs par défauts dans une fonctions

def f (x , y =4 , z = 5) :
re turn x + y + z

I Si les champs considérés ne sont pas donnés lors de l’appel à la
fonction, ils prennent la valeur par défaut :
f(2,2,2) ! 6
f(2,3) ! f(2,3,5) ! 10
f(2) ! f(2,4,5) ! 11
f() ! erreur

Il ne faut pas mettre des valeurs modifiables
comme valeurs par défaut, mais vous pouvez
mettre des tuple, string, ...

– Exemple –

def c r e e C e r c l e (x=None , y=None , c o u l e u r =None) :
’par defaut le cercle est place au hasard’

i f x == None :
x = r a n d i n t (1 ,LARGEUR)

i f y == None :
y = r a n d i n t (1 ,HAUTEUR)

i f c o u l e u r == None :
c o u l e u r = randomCouleur ()

c e r c l e P l e i n (x , y , 1 0 , c o u l e u r)

– Paramètres modifiables –

Rappel :

def f (x) :
x = x + 1

n = 3
f (n)
p r i n t (n)

I le “x” de la fonction f est une variable locale de f, le “n” global
n’est donc pas changé lors de l’appel à la fonction : cela affiche 3

Avec une liste :

def a j o u t e (L , x) :
L . append (x)

l s t = [4 , 5]
a j o u t e (l s t , 7)
p r i n t (l s t)

– Paramètres modifiables (suite) –

def f (x) :
x = x + 1 # x est incremente

n = 3
f (n) # x de f prend la valeur de n

p r i n t (n)

def a j o u t e (L , x) :
L . append (x) # on modifie L en ajoutant x

l s t = [4 , 5]
a j o u t e (l s t , 7) # L prend la valeur lst

p r i n t (l s t) # affiche [4,5,7]

– Paramètres modifiables (suite) –

def a j o u t e (L , x) :
L . append (x) # on modifie L en ajoutant x

l s t = [4 , 5]
a j o u t e (l s t , 7) # L prend la valeur lst

p r i n t (l s t) # affiche [4,5,7]

ajoute(lst,7) ! L,x = lst,7
lst

L

4 5

L.append(x)
lst

L

4 5 7

– Paramètres modifiables (fin) –

def f (L , x) :
L . append (x)
L = l i s t (r a n g e (3))
L . append (x)

l s t = [4 , 5]
f (l s t , 7)

Premier append()
lst

L

4 5 7

Second append()
lst

L

4 5 7

0 1 2 7

– Autre exemple : l’alphabet –

def a j o u t e L e t t r e s (u ,D) :
f o r x in u :

D. add (x)

A = s e t ()
whi le True :

s = input (’mot = ’)
i f s == ’stop’ :

break
a j o u t e L e t t r e s (s ,A)

p r i n t (’alphabet=’ ,A)

– Fonctions en argument –

I On peut passer une fonction en argument d’une autre fonction

def f i l t r e (L , f) :
R = []
f o r x in L :

i f f (x) :
R . append (x)

re turn R

def e s t P a i r (n) :
re turn n % 2 == 0

def t o t o (n) :
re turn n % 3 == 0

l s t = f i l t r e (r a n g e (1 0) , e s t P a i r)
p r i n t (l s t)
p r i n t (f i l t r e (r a n g e (2 0) , t o t o))

– Tri avec plusieurs fonctions de comparaison –

def t r i B u l l e (T , p lu sGrand) :
f o r i in r a n g e (l e n (T) �1 ,0 , �1):

f o r j in r a n g e (i) :
i f p lusGrand (T [j] , T [j + 1]) :

T [j] , T [j +1] = T [j + 1] , T [j]

def s u p e r i e u r D e b u t (u , v) :
re turn u [0] > v [0]

def s u p e r i e u r F i n (u , v) :
re turn u [l e n (u)�1] > v [l e n (v)�1]

def u s u e l (x , y) :
re turn x > y

– Exemple de A à Z: dessin d’une fonction –

I On va réaliser une fonction trace(f,couleur,xmax,ymax) pour
afficher une fonction

I f est le nom de la fonction à tracer
I couleur est la couleur utilisée pour la tracer
I xmax et ymax définissent la zone de dessin : entre -xmax et

+xmax en abscisse et -ymax et ymax en ordonnées

– (illusion de) retourner plusieurs valeurs –

I Comme une fonction peut retourner un tuple, on peut s’en servir
pour retourner plusieurs valeurs

def d i v E u c l i d i e n n e (a , b) :
’retourne quotient et reste’

re turn a / / b , a % b

q , r = d i v E u c l i d i e n n e (1 4 , 4)
p r i n t (’quotient=’ , q ,’, reste=’ , r)

Python pas à pas

Lecture / écriture dans un fichier

– L’instruction join() –

I l’instruction join() est une instruction (méthode) de chaı̂ne de
caractères

I On l’utilise de la façon suivante :
s.join(it)

où s est une chaı̂ne de caractères et it est un itérable contenant
des chaı̂nes de caractères.

I le résultat est une chaı̂ne qui contient les mots de it reliés par s
I ’:’.join([’ab’,’cd’,’efg’] ! ’ab:cd:efg’

– Ouverture et fermeture d’un fichier –

I On peut instancier une variable de type fichier, qui va permettre
de faire des opérations sur les fichiers présents sur l’ordinateur

I Pour ouvrir un fichier en python, on utilise la commande :
f = open(chemin,mode),

où f est la variable qu’on utilisera pour accéder au fichier,
chemin est le nom du fichier (éventuellement avec le chemin
pour le trouver ’../toto.txt’) et mode est le mode d’utilisation du
fichier dans le programme

I Il existe de nombreux modes d’accès aux fichiers, voilà les trois
plus communs :

I ’r’ : mode lecture seulement, c’est le mode par défaut
I ’w’ : mode écriture, le fichier est créé s’il n’existe pas, sinon il est

effacé pour pouvoir y écrire
I ’a’ : mode ajout, c’est un mode écriture à partir de la fin du fichier

I Pour fermer un fichier : f.close()

– Les objets file –

I C’est un objet modifiable : si on le fait évoluer dans une
fonction, il évolue globalement

I Il connaı̂t le fichier
I Il a une position courante dans le fichier, qui est modifiée au fur

et à mesure qu’on lit ou écrit dans le fichier

– Lecture dans un fichier –

I Il faut que le fichier soit ouvert en lecture
I On peut lire une ligne de f avec l’instruction f.readline()
I Cela déplace la position courante à la ligne suivante
I Donc on peut répéter l’appel à f.readline() pour lire toutes les

lignes une à une
I Quand il n’y a plus rien à lire, f.readline() retourne la chaı̂ne

vide ”

f = open (’filtre.py’)
l i g n e = None
whi l e l i g n e != ’’ :

l i g n e = f . r e a d l i n e ()
p r i n t (l)

f . c l o s e ()

– Solution alternative –

I Une file f peut aussi être vue comme une structure itérable de
ses lignes

I Cela permet de très facilement lire les lignes de f

f = open (’iterable.py’)
f o r l i g n e in f :

p r i n t (l i g n e)
f . c l o s e ()

Que l’on utilise readline() où le format
d’itérable, les lignes retournées conservent le car-
actère ’\ n’ à la fin. On peut l’enlever avec
l’instruction ligne = ligne[:-1] (cf dernier cours)

– Ecriture –

I Pour écrire dans un fichier, il faut l’ouvrir en écriture ’w’ ou en
ajout ’a’

I Pour écrire la chaı̂ne s dans le fichier f, on utilise l’instruction
f.write(s)

I Attention, contrairement à print(), cela ne rajoute pas un saut de
ligne à la fin

f = open (’tmp’ ,’w’)
f o r i in r a n g e (1 0) :

f . w r i t e (’ligne ’+ s t r (i)+’\n’)
f . c l o s e ()

– Exemples –

I Lister les palindromes en français
I Créer un nouveau fichier sans les accents et sans les ç
I Lister les palindromes du nouveau fichier
I Le jeu du pendu
I Recherche d’anagrammes :

I Un ensemble de lettres (avec répétitions) est vu comme un tuple
ordonné (on utilise la fonction lst.sort() qui tri la liste lst

I On stocke les anagrammes sous forme d’un dictionnaire où les
clés sont les tuples ordonnés ci-dessus, et les valeurs l’ensemble
des mots qui utilisent ces lettres

Introduction

`

a l’algorithmique

et

`

a la programmation

IUT 1

`

ere ann

´

ee

2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

– Cours 5 / 5 –

Python pas

`

a pas

Les slices

– Notion de slice –

I On a vu qu’on peut acceder au i-ème élément d’une liste ou
d’une chaı̂ne avec t[i]

I Le slice consiste à accéder à une portion d’une liste ou d’une
chaı̂ne

I
Notation : t[debut:fin] prend la sous-liste où la sous-chaı̂ne
comprise entre les indices debut et fin-1

I
Attention : c’est fin -1 comme pour les range

s = ’bonjour’

print(s[2:5]) ! ’njo’

– Indices n

´

egatifs –

I On peut utiliser des indices n

´

egatifs

I L’indice -i est le même que len - i

0 1 2 3 4 5 6
b o n j o u r

-7 -6 -5 -4 -3 -2 -1

s = ’bonjour’

print(s[-2]) ! u

print(s[1:-2]) ! onjo

– Param

`

etres par d

´

efaut –

I Dans un slice, le début est par défaut 0 : t[:4] est la même chose
que t[0:4]

I Dans un slice, la fin est par défaut len(t) : t[4:] est la même
chose que t[4:len(t)]

I
t[:7] ce sont donc les 7 premiers éléments

I
t[2:] ce sont les éléments à partir du troisième (le premier est à 0

I
t[:-2] ce sont tous les éléments sauf les 2 derniers

I
t[-5:] ce sont les 5 derniers éléments

Lors d’un slice, Python recopie la portion de
chaı̂ne (ou de liste, ...) qui est extraite.

Python pas

`

a pas

Notion d’exception

– Qu’est-ce qu’une exception ? –

I Quand un programme plante, c’est qu’il y a eu un problème qui a
lev

´

e une exception

I Le m

´

ecanisme d’exception sert à signaler une anomalie de
fonctionnement

I Quand une telle anomalie se produit, on peut dans le
programme :

I ne rien faire et laisser le programme planter
I

intercepter l’exception et traiter le problème dans le programme

Message d’erreur type :
Traceback (most recent call last):

File ”code4/erreur.py”, line 1, in <module>
x = 3 // 0

ZeroDivisionError: integer division or modulo by zero

– M

´

ecanisme d’interception –

I Pour intercepter une exception, il faut mettre le code qui risque
d’en générer une dans un bloc try:

I L’interception se fait ensuite dans un bloc except:

try:

instructions à risque
except:

instructions en cas d’exception

– Exemple : saisir un entier –

I la fonction demande un nombre et tente de le convertir en entier
avec la fonction int()

I si elle n’y arrive pas, une exception est levée, qui est interceptée
avec le except

I en cas de problème on retourne None : le programme ne plante
pas, on peut redemander le nombre

def s a i s i e N o m b r e (s=’nombre = ’) :
t r y :

re turn i n t (input (s))
e xc e p t :

re turn None

– Interception (suite) –

I Un même code peut générer plusieurs types d’erreurs

I Il peut être utile de savoir les distinguer lors de l’interception.

t r y :
n = i n t (input (’nombre = ’))
p r i n t (1 / n)

e xc ep t :
p r i n t (’il y a eu une erreur’)

– Noms d’exceptions –

I On peut paramétrer les except avec un nom d’exception
I Si un except est paramétré, il n’est exécuté que si une exception

du bon nom est levée
I Le nom de l’exception est celui indiqué sur la dernière ligne du

message d’erreur

Traceback (most recent call last):

File ”code4/erreur.py”, line 1, in <module>
x = 3 // 0

ZeroDivisionError: integer division or modulo by zero

– Exemple avec plusieurs except –

t r y :
n = i n t (input (’nombre = ’))
p r i n t (1 / n)

e xc ep t Z e r o D i v i s i o n E r r o r :
p r i n t (’Division par zero!’)

e xc ep t :
p r i n t (’il y a eu une erreur’)

– Lever sa propre exception –

I Il est possible de lever volontairement une exception pour
signaler un problème

I L’instruction est raise NameError(str), où str est un message
d’information

I
Attention : le nom d’une telle exception est NameError

def p u i s s a n c e (x , n) :
i f n < 0 :

r a i s e NameError (’pas de puissance negative’)
r = 1
f o r i in r a n g e (n) :

r ⇤= x
re turn r

Python pas

`

a pas

Les listes en compr

´

ehension

– Listes en compr

´

ehension –

I L’idée est d’avoir un moyen de décrire une liste comme on décrit
un ensemble en math

´

ematiques :

E =
�

2i | i 2 {0 · · · 10}

F = {x 2 {10 · · · 30} | x impair}

I Pour le premier, la syntaxe est [f(x) for x in iterable], où f est
une fonction :

E = [2**i for i in range(11)]

I pour ajouter une condition, on utilise if :

F = [i for i in range(11) if i%2 == 1]

– Liste en compr

´

ehension (suite) –

I On peut utiliser plusieurs for :

C = [(i,j) for i in range(5) for j in range(4)]

I On peut bien entendu s’en servir sur d’autres types que les int

s = ” Cec i e s t l e d e r n i e r c o u r s de Python ”
l s t = [(u , l e n (u)) f o r u in s . s p l i t ()]
f o r x in l s t :

p r i n t (x)
l s t 2 = [u f o r u in s . s p l i t () i f ’e’ n o t in u]
p r i n t (l s t 2)

– Quelques exemples –

I Les premières lettres de chaque mot d’une phrase
I Les nombres premiers via les nombres non-premiers
I Une application aléatoire de {1, ..., n} dans {1, ..., n}
I Les racines de x

5 � 5x

3 + 4x

I Les entêtes de fonctions dans un fichier Python

– Fonctions anonymes : fonctions lambda –

I Il peut être utile de créer une fonction à la volée pour la passer en
param

`

etre

I On peut le faire grâce au mot clé lambda, la syntaxe est

lambda x : expression(x)

qui est une fonction anonyme qui est l’équivalent de
def f(x):

return expression(x)

s = ” c e c i e s t l e d e r n i e r c o u r s de py thon ”
l s t = s . s p l i t ()
p r i n t (s o r t e d (l s t , key=lambda x : x [0]))

