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– Déroulement du cours –

Organisation :
I 5 séances de 2h de cours
I 10 séances de 2h de TD
I 15 séances de 2h de TP

Evaluation :
I une note de TD : il y a une rapide interrogation écrite au début de

chaque TD (sauf le premier)
I une note de TP : vous rendez chaque TP, certains seront notés
I un projet de programmation
I un examen



Lorsque vous voyez le python

`

a gauche, cela signifie

qu’il y a une d

´

emonstration d’

´

ecriture et d’ex

´

ecution de

programme pendant le cours. Ces d

´

emonstrations ne

sont pas sur les transparents.



– Définition dans le Trésor –

Programmer : (Empl. intrans.) “Écrire un pro-
gramme d’ordinateur” (Ging.-Lauret 1982), fractionner
un problème en instructions codifiées acceptables par la
machine.



– Introduction sur un exemple –

Un exemple de programme en Python 3 :

def p u i s s a n c e ( x , n ) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e ( 1 2 , 6 )
p r i n t ( y )

C’est un programme un peu avancé . . .

mais essayons de comprendre
ce qu’il fait.
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– Les différents mots –

def p u i s s a n c e ( x , n ) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e ( 1 2 , 6 )
p r i n t ( y )

Les couleurs sont un ajout pratique pour la lisibilité, elle peuvent
changer d’un éditeur à l’autre. Ici on a :

I en orange des mots-clés du langage Python
I en violet des fonctions du langage Python
I en bleu des noms choisis par le programmeur



– Les différents mots –

def p u i s s a n c e ( x , n ) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e ( 1 2 , 6 )
p r i n t ( y )

Les mots de Python, en orange et en violet, sont en anglais.

def = define = définir while = tant que
return = retourner print = imprimer



– L’indentation –

def p u i s s a n c e ( x , n ) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

y = p u i s s a n c e ( 1 2 , 6 )
p r i n t ( y )

I Les lignes ne commencent pas
toutes au même endroit.

I Ce n’est pas un détail !

I Le positionnement (on dit
l’indentation) des lignes est impor-
tant pour leur signification.

Si on masque temporairement les lignes indentées, on obtient :

def p u i s s a n c e ( x , n ) :
. . .

y = p u i s s a n c e ( 1 2 , 6 )
p r i n t ( y )



def p u i s s a n c e ( x , n ) :
. . .

y = p u i s s a n c e ( 1 2 , 6 )
p r i n t ( y )

I def définit une fonction qui s’appelle ici puissance
I La fonction puissance(x,n) calcule la valeur x

n (on verra
comment plus tard)

I puissance(12,6) appelle la fonction puissance avec les
paramètres 12 et 6, qui calcule donc 126

I y = puissance(12,6) stocke la valeur 126 dans y
I print est une fonction de Python qui affiche la valeur de son

paramètre à l’écran

Essayons un peu le programme et des variantes ...



– La fonction puissance –

def p u i s s a n c e ( x , n ) :
r e s = 1
i = 1
whi le i <= n :

r e s = r e s ⇤ x
i = i + 1

re turn r e s

L’indentation signifie que toutes
les lignes font partie de la fonction
puissance

I La fonction prend deux paramètres x et n

I Au début on met la valeur 1 dans res et i

I while (= tant que) possède
I une condition i  n

I deux lignes indentées
I ces deux lignes sont répétées “tant que” la condition est vraie

I return (= retourner) termine la fonction en renvoyant la valeur
de res



– Détail de la boucle while –

whi l e i <= n :
r e s = r e s ⇤ x
i = i + 1

Pour l’exemple x = 2 et n = 4

Au début res et i valent 1

x n res i

Avant de commencer 2 4 1 1
Etape 1 2 4 2 2
Etape 2 2 4 4 3
Etape 3 2 4 8 4
Etape 4 2 4 16 5

A la fin, “return res” retourne donc la valeur 16 qui est bien 24

Essayons diverses variantes ...
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– Robustesse du programme –

Qu’est-ce qui se passe si n = 0 ? ou x = 4.5 ? ou n = -4 ?

Essayons ...

On va corriger le problème si n est négatif, en rajoutant un test et en
traitant le cas séparément. On va ajouter au début de puissance :

i f n < 0 :
p r i n t (’erreur : pas de n n

´

egatif’ )
re turn

I if (= si) est un test, ici on regarde si n est strictement négatif
I les deux lignes indentées ne sont effectuées que si la condition

du if est vraie
I si n < 0, on affiche un message d’erreur et return termine la

fonction en ne retournant rien
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– La nouvelle fonction puissance –

def p u i s s a n c e ( x , n ) : # calcule x puissance n

i f n < 0 : # cas n < 0 non g

´

er

´

e

p r i n t (’erreur : pas de n n

´

egatif’ )
re turn

r e s = 1
i = 1
whi le i <= n : # on fait n fois

r e s = r e s ⇤ x # multiplier res par x

i = i + 1 # ajouter 1

`

a i

re turn r e s

I On a ajouté des commentaires :
I le caractère # indique que la suite de la ligne est un commentaire
I les commentaires sont ignorés par Python
I ils servent à décrire le programme pour les êtres humains qui le

lisent
I Les commentaires sont très importants en programmation ... on y

reviendra



– En résumé –

I On a vu un exemple avancé, qui nous a permis de voir, dans les
grandes lignes, à quoi ressemble un programme

I On a vu
I que les lignes sont des instructions à effectuer, dans l’ordre
I qu’on peut stocker des valeurs (dans y, x, ...)
I qu’on peut effectuer des calculs (res * x)
I que des lignes peuvent être effectuées plusieurs fois (while), ou

seulement si une condition est vérifiée (if)
I qu’on peut créer des fonctions (puissance) ou utiliser des

fonctions de Python (print)
I ...

I Dans la suite, on va apprendre pas à pas et dans le détail toutes
ces notions (et bien d’autres), afin que vous maı̂trisiez les bases
de la programmation
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Python pas à pas

Variables, types et opérations



– Types de valeurs –

I Les valeurs de base possèdent un type
I Le type va notamment déterminer ce qui se passe quand on fait

une opération sur des valeurs

Les principaux types :
I entier (int) : 12 -4 123545 . . .
I flottant (float) : 3.14159 -1.5 12. 4.56e12 . . .
I booléen (bool) : True (vrai) ou False (faux)
I indéfini, rien : None
I chaı̂ne de caractères (str pour “string”) : ’chaı̂ne de caractères’

’IUT info’, . . .

Les majuscules/minuscules sont importantes :
True 6= true



– Transtypage –

I La fonction type() permet de connaı̂tre le type d’une valeur
I On peut demander à Python de changer le type d’une valeur
I On peut par exemple toujours transformer une valeur de base en

chaı̂ne de caractères avec la fonction str()
I Par exemple str(51) renvoie la chaı̂ne ’51’
I Attention : le nombre 51 et la chaı̂ne ’51’ ce n’est pas la même

chose pour Python. On y reviendra.
I int() convertit en entier, quand cela est possible
I float() convertit en flottant, quand cela est possible
I bool() convertit en booléen

Essayons dans un terminal Python ...



– Quelques exemples –

int (4.5) ! 4 int (-4.5) ! 4 int (’0345’) ! 345
int (’IUT’) ! erreur float (4) ! 4. float (’4.5’) ! 4.5
str (4) ! ’4’ str (True ) ! ’True’ str (-4.5) ! ’-4.5’
bool (4) ! True bool (0) ! False bool (’IUT’) ! True

En pratique, on se sert surtout de :
I str qui fonctionne tout le temps
I int et float appliqués à une chaı̂ne de caractères qui correspond à

un nombre
I int appliqué à un float pour tronquer les décimales



– Opérations sur les nombres –

I Sur les int et sur les float on a l’addition +, la soustraction -, la
multiplication * et la division /

I Si on compose deux int on obtient un int , sauf la division qui
renvoie un float

I Si on compose deux float , ou un int et un float , on obtient un
float

I On dipose également de la division Euclidienne, avec quotient et
reste comme en primaire. Le quotient de x et y est x // y et leur
reste est x % y

I Il y a enfin l’opération puissance qui se note x ** y
I Les opérations suivent les règles de priorités usuelles et on peut

utiliser des parenthèses : (4+2)*1.2

Quelques exemples ...



– Opérations avec booléens –

I On a les opérations sur les booléens :
I and c’est le ET logique, x and y vaut True seulement quand x et

y valent True
I or c’est le OU logique, x or y vaut False seulement quand x et y

valent False
I not c’est la négation logique, not (True ) = False et not (False )

= True
I Les comparaisons produisent des booléens :

I Le test d’égalité se fait avec ==
I Le test de différence se fait avec !=
I On a aussi < <= > >= pour comparer selon l’ordre usuel

(ordre du dictionnaire pour les chaı̂nes)

Encore des exemples . . .



– Opérations sur les chaı̂nes de caractères –

I Si on utilise + sur deux chaı̂nes de caractères, on effectue la
concaténation des deux chaı̂nes :
’IUT’ + ’info’ ! ’IUTinfo’

I Si on “multiplie” une chaı̂ne par un entier n, on la répère n fois :
’IUT’ * 3 ! ’IUTIUTIUT’

– Autres opérations –

I Il existe beaucoup d’autres opérations sur les chaı̂nes
I On a accès à plein d’opérations mathématiques (cosinus, . . . )
I On verra ça plus tard dans le semestre



– Nommage –

Dans le programme d’introduction, on a utilisé nos propres noms, en
bleu :

def p u i s s a n c e ( x , n ) :
. . .

y = p u i s s a n c e ( 1 2 , 6 )
p r i n t ( y )

Les règles de nommage pour ce cours sont les suivantes :
I le caractère “underscore” (le tiret bas de la touche 8) est

considéré comme une lettre
I on n’utilise jamais d’accent, de cédille, . . .
I Les noms commencent par une lettre majuscule ou minuscule,

puis sont composés de lettres et de nombres :
exemple ex2 Ex2mpl1 2013iut

I les mots réservés de Python sont interdits
I il y a aussi des conventions, plus tard ...



– Mots réservés –

Les mots suivants sont réservés pour le langage :

and as assert break class continue
def del elif else except finally
for from global if import in
is lambda nonlocal not or pass
raise return try while with yield

I On n’utilisera pas non plus comme nom :True , False , None
I Pour voir la liste des mots réservés, dans un terminal Python

taper :
import keyword
print(keyword.kwlist)



– Variables –

I une variable est un nom qui référence une valeur dans la
mémoire

I on peut s’en servir dans les calculs
I elle a le même type que la valeur qu’elle référence

– Affectation –

I L’affectation d’une variable consiste à lier un nom à une valeur
I La syntaxe : nom = expression, où expression est une valeur ou

un calcul qui produit une valeur :
x = 3 y = ’IUT’ z = x + 2

I On peut affecter à nouveau une même variable, on perd le lien
avec l’ancienne valeur

Ce n’est pas du tout le = des mathématiques. Il
faut le lire comme “prend la valeur” : x = x + 1



– Etapes de l’affectation –

x = 40 + 2
I On commence par calculer le membre droit, ici on trouve 42

42

I Ensuite on crée le nom pour x (sauf s’il a déjà été créé)

x 42

I Enfin on relie la variable à sa valeur

x 42

I En cas de réaffectation, le lien d’avant est perdu : x= -6.5

x
42

-6.5



Python pas à pas

Instructions et blocs



– Instructions et séquence d’instructions –

p r i n t (’a xˆ2 + b x + c = 0’ )
a = f l o a t ( input (’a = ’ ) )
b = f l o a t ( input (’b = ’ ) )
c = f l o a t ( input (’c = ’ ) )
d e l t a = b⇤b�4⇤a⇤c
i f d e l t a > 0 :

p r i n t (’deux solutions’ )
e l i f d e l t a == 0 :

p r i n t (’une solution’ )
e l s e :

p r i n t (’pas de solution’ )

I Comme on a vu dans l’introduction, les instructions sont
effectuées dans l’ordre, de haut en bas

I En Python, il n’y a qu’une instruction par ligne
I Le flot d’instructions peut-être modifié / redirigé par des

conditions (if), des boucles (while), . . .



– Au passage ... input –

a = f l o a t ( input (’a = ’ ) )

I On a utilisé une nouvelle fonction, la fonction input(str )
I Cette fonction permet à l’utilisateur de saisir une valeur au

clavier
I Quand on écrit a= input(’valeur = ’), la chaı̂ne ’valeur = ’ est

affichée à l’écran (comme avec print) et le programme attend
que soit rentré une valeur, qu’il met dans la variable x, c’est une
affectation normale

I La fonction input renvoie toujours une chaı̂ne de caractères
I On a donc utilisé le transtypage avec la fonction float

Quelques exemples avec input



– Blocs d’instructions –

Certaines instructions sont regroupées en blocs de la façon suivante :

entête du bloc:
instruction 1 du bloc
instruction 2 du bloc
instruction 3 du bloc

instruction hors bloc

I L’indentation (le décalage) se fait avec la tabulation (la touche
au-dessus du capslock sur le clavier, cf TP)

I On peut insérer un bloc dans un bloc, un bloc dans un bloc dans
un bloc, . . .

I L’indentation fait partie du langage Python, changer
l’indentation change la signification du programme



Python pas à pas

Instruction conditionnelle (if)



– La conditionnelle : le if –

i f d e l t a > 0 :
p r i n t (’deux solutions’ )

e l i f d e l t a == 0 :
p r i n t (’une solution’ )

e l s e :
p r i n t (’pas de solution’ )

I Sur l’exemple on commence par tester si delta> 0
I Si c’est le cas, on effectue le bloc qui suit, et on affiche deux

solutions
I Sinon, on teste si delta== 0

I Si oui, on indique qu’il y a une seule solution

I Sinon on indique qu’il n’y a pas de solution



– La conditionnelle : le if –

La forme la plus simple est

if expression:
instruction 1 du if
instruction 2 du if
...

instruction après if

I expression est une expression qui retourne un booléen, qui est
donc évaluée à True ou False

I les instructions du bloc du if sont effectuées uniquement si
l’expression est évaluée à True

I dans tous les cas, le programme reprend à l’instruction après if



– La conditionnelle : le if avec else –

La forme avec else (= sinon) :

if expression:
instruction 1 du if
...

else:
instruction 1 du else
...

instruction après if/else

I les instructions du bloc du if sont effectuées uniquement si
l’expression est évaluée à True

I les instructions du bloc du else sont effectuées uniquement si
l’expression est évaluée à False

I dans tous les cas, le programme continue à l’instruction après
if/else



– La conditionnelle : le elif –

La forme avec elif (= contraction de else et if) :
if expression1:

bloc du if

elif expression2:
bloc du elif

else:
bloc du else

instruction après if/elif/else

I les instructions du bloc du if sont effectuées uniquement si
expression1 vaut True

I les instructions du bloc du elif sont effectuées uniquement si
expression1 vaut False et expression2 vaut True

I les instructions du bloc du else sont effectuées uniquement si
expression1 vaut False et expression2 vaut False

I On peut mettre plusieurs elif, les conditions sont évaluées dans
l’ordre, et seule la première qui vaut True est considérée



– La conditionnelle : le elif –

La forme avec elif (= contraction de else et if) :
if expression1:

bloc du if

elif expression2:
bloc du elif

else:
bloc du else

instruction après if/elif/else

I les instructions du bloc du if sont effectuées uniquement si
expression1 vaut True

I les instructions du bloc du elif sont effectuées uniquement si
expression1 vaut False et expression2 vaut True

I les instructions du bloc du else sont effectuées uniquement si
expression1 vaut False et expression2 vaut False

I On peut mettre plusieurs elif, les conditions sont évaluées dans
l’ordre, et seule la première qui vaut True est considérée



Attention Python 2 6= Python 3
Les deux versions ne sont pas compatibles !

Installez la version 3.1 ou 3.2
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Graphiques

La librairie iutk



– Pr

´

esentation g

´

en

´

erale –

I
iutk est une librairie développée pour vous

I elle permet de faire des graphiques et des animations visuelles
I c’est juste une surcouche simplifiée d’une librairie Python

nommée tkinter

I Que peut-on faire ?

I ouvrir une fenêtre
I dessiner des cercle, des rectangles, du texte, ...
I gérer des couleurs
I gérer des événements de la souris ou du clavier

I Pourquoi ne pas utiliser tkinter directement ?
I

tkinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours

I
iutk sert justement à cacher les aspects “objet”

I Est-ce que iutk permet de faire la même chose que tkinter ?
I Non, il y a plus de possibilités dans tkinter, mais iutk nous

suffira pour ce semestre
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I Pourquoi ne pas utiliser tkinter directement ?
I

tkinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours

I
iutk sert justement à cacher les aspects “objet”

I Est-ce que iutk permet de faire la même chose que tkinter ?
I Non, il y a plus de possibilités dans tkinter, mais iutk nous

suffira pour ce semestre



– Exemple 1 : cr

´

eer une fen

ˆ

etre –

from i u t k import ⇤

c r e e F e n e t r e ( 4 0 0 , 6 0 0 )
a t t e n t e C l i c ( )
f e r m e F e n e t r e ( )

I la première ligne sert à appeler la bibliotheque iutk

I on crée la fenêtre avec la fonction creeFenetre(... , ...), en
indiquant la hauteur et la largeur en nombre de pixels

I
attenteClic() attend que l’utilisateur clique dans la fenêtre avant
de continuer

I
fermeFenetre() détruit la fenêtre à la fin du programme (ne pas
oublier de le faire).



– Fen

ˆ

etre et pixels –

I Un écran ou une fenêtre est un objet à deux dimensions
I Ce sont des “damiers” dont les cases sont des points (carrés) de

couleur appelés des pixels

I 1600 x 1200 est un standard pour un écran, 640 x 960 pour un
iphone 4s

I les pixels ont un système de coordonn

´

ees cart

´

esiennes

I
Attention : le coin en haut à gauche est de coordonnées (0, 0)

I les coordonnées augmentent vers le bas et vers la droite

15 x 10 pixels

(0,0)

(14,9)

(3,2)



– Lignes, rectangles et cercles –

On a des commandes pour dessiner dans la fenêtre :
I des segments avec ligne et ligneCouleur, en donant les

coordonnées des deux extrémités et éventuellement la couleur
I des rectangles avec rectangle, rectangleCouleur et

rectanglePlein, en donnant les coordonnées de deux coins
opposés, et éventuellement la couleur

I des rectangles avec cercle, cercleCouleur et cerclePlein, en
donnant les coordonnées de deux coins opposés, et
éventuellement la couleur

– Affichages –

I
miseAJour() à appeler après avoir dessiné, sans quoi le résultat
est incertain

I
effaceTout() enlève tous les dessins

– Autres –

Voir la documentation pour les autres fonctionalités, notamment la
récupération d’événements clavier et souris.
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– Un exemple –

from i u t k import ⇤

c r e e F e n e t r e ( 4 0 0 , 2 0 0 )

l i g n e ( 1 0 , 1 0 , 3 0 0 , 1 0 0 )
c e r c l e C o u l e u r ( 5 0 , 5 0 , 1 0 ,’blue’ )
r e c t a n g l e P l e i n ( 2 5 0 , 4 0 , 3 5 0 , 1 0 0 ,’red’ )

miseAJour ( )
a t t e n t e C l i c ( )
f e r m e F e n e t r e ( )

A tester ...
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Utilisation des modules



– Modules –

I un module est un ensemble de fonctions déjà programmées,
prêtes à être utilisées

I il existe des blue modules de base en python (math par
exemple), mais vous pouvez en récupérer sur internet ou en créer
vous-même

I utilisé pour organiser les programmes (on en reparlera)

Il y a deux façons d’utiliser une fonction toto() d’un module
monModule:

I
from monModule import toto : on utilise alors normalement la
fonction

I
import monModule : la fonction s’appelle monModule.toto()

I on peut aussi utiliser from monModule import * pour charger
toutes les fonctions du module monModule, sauf celles qui
commencent par
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– Un exemple –

from math import ⇤

p r i n t (’pi = ’ , p i )
p r i n t ( cos ( p i / 2 ) )

– Quelques modules utiles –

I
random : des fonctions pour faire des tirages au sort

I
math : les fonctions et les constantes mathématiques usuelles
comme exp, cos, ⇡, . . .

I
time : pour mesurer le temps, connaı̂tre l’heure, ou attendre un
certain temps

I
iutk !
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La boucle while



– Exemple –

r e s = 1
i = 1
whi le i < n :

r e s = r e s ⇤ x
i = i + 1

p r i n t ( r e s )

I on avait vu le while lors du cours 1
I c’est une instruction de boucle : son bloc associé est répété tant

que la condition est vraie

while condition:

instruction 1 du while

instruction 2 du while

...

instruction apr

`

es while

I chaque exécution de la séquence d’instructions du while est
appelé une it

´

eration



– Utilisation : faire un nombre fix

´

e de fois –

i = 1

while i <= n:

instruction 1 du while

instruction 2 du while

...

i = i + 1

instruction apr

`

es while

i

Avant de commencer 1
Fin it

´

eration 1 2
Fin it

´

eration 2 3
...

Fin it

´

eration n-1 n
Fin it

´

eration n n+1
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´
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– Deux exemples –

nbr = i n t ( input (’Combien ? ’ ) )
i = 1
whi le i <= nbr :

p r i n t (’bonjour’ )
i = i + 1

p r i n t (’Fini !’ )

from t ime import s l e e p
nbr = i n t ( input (’Combien de secondes ? ’ ) )
i = nbr
whi le i > 0 :

p r i n t ( s t r ( i ) + ’...’ )
s l e e p ( 1 )
i = i � 1

p r i n t (’BOOOM !’ )



– Deux exemples –

nbr = i n t ( input (’Combien ? ’ ) )
i = 1
whi le i <= nbr :

p r i n t (’bonjour’ )
i = i + 1

p r i n t (’Fini !’ )
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i = nbr
whi le i > 0 :
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i = i � 1

p r i n t (’BOOOM !’ )



– Un exemple graphique –

from i u t k import ⇤
c r e e F e n e t r e ( 4 0 0 , 4 0 0 )
i = 0
whi le i < 1 0 :

i f i % 2 == 1 :
c o u l e u r = ’blue’

e l s e :
c o u l e u r = ’yellow’

r e c t a n g l e P l e i n ( i ⇤4 0 , 1 0 0 , ( i +1 )⇤40 ,140 , c o u l e u r )
i = i + 1

miseAJour ( )
a t t e n t e C l i c ( )
f e r m e F e n e t r e ( )

I On notera l’utilisation du reste de la division pour alterner les
couleurs

I Les pavés font 40 pixels de côtés, on calcule les coordonnées de
chaque carré en fonction de i



– Nombre d’it

´

erations non fix

´

e –

Redemander un nombre tant que nécessaire :

a = i n t ( input (’Nombre entre 1 et 10 : ’ ) )
whi le a < 1 or a > 1 0 :

a = i n t ( input (’Erreur, entre 1 et 10 :’ ) )
p r i n t (’Bravo, votre nombre est ’ + s t r ( a ) )

Combien de tirages de deux dés pour faire 12 :

from random import r a n d i n t
des = 0
nbr = 0
whi le des != 1 2 :

des = r a n d i n t ( 1 , 6 ) + r a n d i n t ( 1 , 6 )
nbr = nbr + 1

p r i n t ( s t r ( nbr )+’ tirages pour faire 12’ )



– Nombre d’it

´

erations non fix

´

e –
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– Nombre d’it

´

erations non fix

´

e –
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des = 0
nbr = 0
whi le des != 1 2 :

des = r a n d i n t ( 1 , 6 ) + r a n d i n t ( 1 , 6 )
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– Un peu de physique –

I On veut simuler la chute d’une goutte d’eau
I La goutte commence à vitesse nulle et tombe sous l’effet de la

gravité
I Elle a une accélération constante ~g, qui est un vecteur dirigé vers

le bas

I L’accélération est la dérivée de la vitesse : à “chaque instant de
temps”, la vitesse verticale diminue de g

I A “chaque instant de temps”, la position verticale de la goutte
diminue de sa vitesse

I On va identifier “itération de boucle” et “instant de temps”
I Il faut garder la vitesse verticale et la position verticale en

mémoire (la position horizontale ne change pas)
I A chaque itération on met à jour les deux variables
I

Attention : dans la fenêtre les ordonnées augmentent vers le
bas !

I On recalcule le graphique en fonction des nouvelles valeurs
I On s’arrête quand on touche le sol
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I On va identifier “itération de boucle” et “instant de temps”
I Il faut garder la vitesse verticale et la position verticale en
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– La goutte d’eau –

from i u t k import ⇤
c r e e F e n e t r e ( 4 0 0 , 4 0 0 )
a t t e n t e C l i c ( )
y = 0
vy = 0
whi le y < 400 : # on n’a pas encore touche le sol

e f f a c e T o u t ( )
c e r c l e P l e i n ( 2 0 0 , y , 1 0 ,’blue’ )
miseAJour ( ) # ne pas oublier !
vy = vy + 0 . 1 # ici g = 0.1
y = y + vy # mise a jour de la position

a t t e n t e C l i c ( )
f e r m e F e n e t r e ( )

I Il faut ajuster la valeur de g pour avoir un bon rendu



– break et continue –

I Il existe deux moyens de modifier le flot normal des itérations
d’une boucle

I Ces moyens sont à éviter, sauf quand ils rendent le programme
plus clair (ce qui arrive)

I l’instruction break arrête la boucle, et continue donc l’exécution
du programme après la boucle

I l’instruction continue arrête l’itération en cours, et reprend à
l’itération suivante de la boucle

while:

break

suite du prog

while:

continue

suite du prog



– Un exemple avec break –

from random import r a n d i n t
de = r a n d i n t ( 1 , 1 0 0 )
whi le True :

a = i n t ( input (’Devinez un nombre (1-100) : ’ ) )
i f a == de :

b r e a k
i f a < de :

p r i n t (’trop petit’ )
i f a > de :

p r i n t (’trop grand’ )
p r i n t (’Bravo !’ )

I
while True boucle indéfiniment, la condition est toujours vérifiée

I On utilise break pour arrêter les itérations quand le nombre est
deviné



– Boucles infinies –

Si la condition de boucle est toujours vraie, et
qu’il n’y a pas de break pour en sortir, le pro-
gramme reste bloqu

´

e en tournant ind

´

efiniment

dans la boucle ! C’est une erreur classique.

I Pour forcer l’arrêt d’un programme, dans idle ou un terminal
python faire control+C

I Pour forcer la fermeture faire control+D



– Les boucles imbriqu

´

ees –

I On peut utiliser des boucles dans des boucles, des boucles dans
des boucles ...

I Cela arrive fréquemment quand on veut gérer des objets à deux
dimensions, mais aussi dans d’autres situations (voir les
algorithmes de tri dans l’autre cours)

i = 1
whi le i < 5 :

j = 1
whi le j < 4 :

p r i n t (’(’+ s t r ( i )+’,’+ s t r ( j )+’)’ )
j = j + 1

i = i + 1



– Exemple du damier –

On souhaite paver la fenêtre de carrés colorés :

from i u t k import ⇤
c r e e F e n e t r e ( 4 0 0 , 4 0 0 )
i = 0
whi le i < 1 0 :

j = 0
whi le j < 1 0 :

i f ( i + j ) % 2 == 1 :
c o u l e u r = ’blue’

e l s e :
c o u l e u r = ’yellow’

r e c t a n g l e P l e i n ( i ⇤40 , j ⇤4 0 , ( i +1)⇤40 , . . .
j = j + 1

i = i + 1
miseAJour ( )
a t t e n t e C l i c ( )
f e r m e F e n e t r e ( )
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f e r m e F e n e t r e ( )



Python pas

`

a pas

Les listes



– Pr

´

esentation –

I La liste est un type avanc

´

e de donn

´

ees, elle sert à stocker une
séquence de valeurs

I On peut créer une liste par une affectation normale, où on met
entre crochets et séparés par des virgules les différentes valeurs
de la liste

lst = [ 3, ’toto’, 4.5, False ]

I Il y a une liste particulière, la liste vide [] qui ne contient aucun
élément

I On peut accéder au i-ème élément d’une liste en utilisant les
crochets, le i-ème élément de lst est lst[i]

I
Attention : les indices commencent à 0 et non à 1 !

lst = [ 3, ’toto’, 4.5, False ]

print( lst[1] )

>>> ’toto’



– Affectations et listes –

Il y a des subtilités ici, à bien travailler.

I Une liste est un objet modifiable, on peut modifier ses valeurs,
ses éléments, etc sans créer de nouvelle liste

I Ce n’est pas vrai pour les autres types qu’on a vu, notamment les
chaı̂nes de caractères

I On peut changer la i-ème valeur de lst avec une affectation
classique : lst[2] = ’titi’

I Si lst est une liste, lst2 = lst associe au nom lst2 la même liste
(qui est modifiable).

I En conséquence, si on modifie ensuite lst, on modifie aussi lst2!

lst = [ 3, ’toto’, 4.5, False ]

lst2[1] = ’titi’

print(lst)

>>> [ 3, ’titi’, 4.5, False ]



– Affectations et listes –

lst = lst2

lst

lst2

3 ’toto’ 4.5 False

lst[1] = ’titi’

lst

lst2

3 ’titi’ 4.5 False



– Quelques op

´

erations –

I
len( lst ) retourne la longueur de lst

I
x in lst renvoie un booléen qui est True quand x est dans lst

I Le + crée une nouvelle liste qui est la concaténation de deux
listes

[ 3, 4 , 7] + [’toto’, 5]

>>> [ 3, 4, 7, ’toto’, 5]

I Si on multiplie une liste par un entier n, cela crée une nouvelle

liste où l’ancienne est répétée n fois :
lst = [ 3, 4 , 7]

lst2 = lst * 3

print(lst2)

>>> [ 3, 4, 7, 3, 4, 7, 3, 4, 7]



– Autres op

´

erations –

I Les liste sont des objets, une notion hors-programme. On peut
néanmoins utiliser certaines fonctions rattachées aux listes (on
appelle cela des méthodes)

I Pour utiliser une telle fonction sur une liste lst, on utilise
lst.nom()

I
Attention : en générale cela modifie la liste

Quelques exemples :
I

lst.append(x) ajoute la valeur de x à la fin de lst

I
lst.extend(lst2) ajoute tous les éléments de lst2 à la fin de lst

I
lst.pop() supprime le dernier élément de lst et retourne sa valeur

I
lst.pop(i) supprime le i-ème élément de lst et retourne sa valeur

I ...



– Parcourir une liste –

I Une façon naturelle de parcourir une liste est d’utiliser une
boucle while, en faisant varier l’indice dans la liste

l s t = [ 1 , ’toto’ , 4 . 5 , F a l s e ]
i = 0
whi le i < l e n ( l s t ) :

p r i n t ( l s t [ i ] )
i = i + 1

I Il existe d’autre moyens de parcourir une liste, que l’on verra au
prochain cours



– Exemple : statistiques sur deux d

´

es –

I On jette deux dés et on fait la somme. Comment se répartissent
les différents tirages ?

l s t = [ 1 , ’toto’ , 4 . 5 , F a l s e ]
i = 0
whi le i < l e n ( l s t ) :

p r i n t ( l s t [ i ] )
i = i + 1



– Exemple : statistiques sur deux d

´

es –

I On jette deux dés et on fait la somme. Comment se répartissent
les différents tirages ?
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i = 0
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p r i n t ( l s t [ i ] )
i = i + 1



– Exemple : paradoxe des anniversaires –

I A partir de combien de personnes dans une pièce des chances
importantes qu’au moins deux aient la même date
d’anniversaire ?

I On va simuler, en regardant plusieurs fois au bout de combien de
personnes on a un doublon

from random import r a n d i n t
l s t = [ ] # pas de dates au debut
compteur = 0
whi le True :

compteur = compteur + 1
annee = r a n d i n t ( 1 , 3 6 5 )
i f annee in l s t : #doublon

b r e a k
l s t . append ( annee )

p r i n t ( compteur ,’personnes’ )



– Exemple : paradoxe des anniversaires –

I A partir de combien de personnes dans une pièce des chances
importantes qu’au moins deux aient la même date
d’anniversaire ?

I On va simuler, en regardant plusieurs fois au bout de combien de
personnes on a un doublon

from random import r a n d i n t
l s t = [ ] # pas de dates au debut
compteur = 0
whi le True :

compteur = compteur + 1
annee = r a n d i n t ( 1 , 3 6 5 )
i f annee in l s t : #doublon

b r e a k
l s t . append ( annee )

p r i n t ( compteur ,’personnes’ )
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– Ecriture condensée –

I On a souvent besoin d’ajouter une valeur dans une variable, ce
que l’on a fait avec x = x + y

I Il existe en Python (et dans beaucoup d’autre langages) une
écriture plus compacte pour faire la même chose : x += y

I On peut l’utiliser avec d’autres opérations, et sur différents type.
Pour x entier et s chaı̂ne de caractères, on a :

x += 3 �! ajoute 3 à x
x *= 2 �! multiplie x par 2
x //= 4 �! x est changé en son quotient par 4

s += ’toto’ �! concatène ’toto’ à la fin de s
s *= 3 �! remplace s par 3 copies de s
s //= 4 �! erreur

I
il n’y a pas de notation i++ en Python



Python pas à pas

Les chaı̂nes de caractères



– Déclaration de chaı̂nes de caractères –

I On peut déclarer une chaı̂ne entre apostrophes comme on a fait
jusqu’ici : x = ’toto’ ...

I ou entre guillemets : x = "toto"

I les deux sont valides, on peut par exemple utiliser la première
quand il y a des guillemets dans la chaı̂ne et la seconde quand il
y a des apostrophes.

I Comment faire s’il y a à la fois des ’ et des ” ? on utilise les
caractères spéciaux \’ et \” :

s = ’il a dit : "à l\’abordage !"’

I Attention : \’ est un seul caractère, de même pour \” (ce sont
des caractères spéciaux) :

len(’d\’abord’) �! 7



– Déclaration sur plusieurs lignes –

I On peut déclarer une chaı̂ne sur plusieurs lignes en utilisant des
triples apostrophes ou triples guillemets comme délimiteurs :
s = ”’Ceci est une
chaine sur
plusieurs lignes.”’

I Les saut de lignes seront encodés par le caractère \n

I On peut également utiliser juste un backslash \avant la fin de
ligne et continuer sur la ligne suivante s = ’Ceci est une\
chaine sur\
plusieurs lignes.’



– Caractères spéciaux –

I Voilà quelques caractères spéciaux utiles :

\’ apostrophe \” guillemet
\n saut de ligne \t tabulation
\\ antislash \a reculer d’un

I Par exemple la chaı̂ne x = ’toto\ba’ est une chaı̂ne de
longueur 6, si on fait print(x) il s’affiche ...

>>> print(x)
tota



– Les chaı̂nes sont non-modifiables –

I Important : une chaı̂ne n’est pas modifiable.
I Si x contient une valeur de type str et que vous voulez la

changer, il faut faire une nouvelle affectation de x :
x = ’toto’
x[0] = ’p’ �! erreur on ne peut pas modifier une chaı̂ne
x = ’poto’ �! on crée une nouvelle chaı̂ne ’poto’

I Rappel : c’est le contraire avec les listes :
lst = [1,4,6,7]
lst[0] = 3 �! lst vaut [3,4,6,7]



– Opérations sur les chaı̂nes –

I On a déjà vu la concaténation + de deux chaı̂nes et la
“multiplication” par un entier

I On a accès au i-ème caractère de la chaı̂ne s avec s[i] (les indices
commencent à 0)

I len(s) retourne la longueur de s

Il y a beaucoup d’autres opérations sur les chaines, avec la notation
s.fonction() notamment :

I s.lower() renvoie une nouvelle chaı̂ne où les majuscules ont été
changées en minuscules

I s.upper() renvoie une nouvelle chaı̂ne où les minuscules ont été
changées en majuscules

I s.split(t), où t est une chaı̂ne, renvoie un tableau de chaı̂nes
obtenues en coupant s aux occurences de t

I ...



Python pas à pas

Structures itérables et boucles for



– Structure itérable –

I Une structure itérable est une structure qui contient plusieurs
valeurs avec

I une valeur initiale
I une notion de valeur suivante

I On connaı̂t déjà deux exemples de structures itérables : les
chaı̂nes de caractères et les listes :
s = ”abcdef”
lst = [1, 4, 56, 2]

I On peut changer un itérable en la liste, dans l’ordre, de ses
élément avec l’instruction list( )



– les range –

I Une autre structure itérable très utilisée est retournée par la
fonction range( )

I range(a,b), où a et b sont des entiers, est un itérable qui
commence à a et qui s’arrête à b-1 :
list(range(1,5)) �! [1,2,3,4]

I range(b) est une version condensée de range(0,b)
I range(a,b,c) est l’itérable qui commence à a et avance de c en c

jusqu’à arriver en b (exclu)
list(range(1,7,2)) �! [1,3,5]

I attention on s’arrête avant b dans tous les cas



– les boucles for –

I Comme while, l’instruction for est une instruction de boucle
I Elle permet de parcourir un itérable, dans l’ordre, en

commençant au premier élément et en allant de suivant en
suivant

I La syntaxe est la suivante

for x in iterable:
instruction 1 du for
instruction 2 du for
...
instruction n du for

suite du programme



– Faire une action n fois –

I l’association de for et de range rend très facile de faire une
opération n fois :

n = i n t ( input (’rentrez un nombre : ’ ) )
f o r i in r a n g e ( n ) :

p r i n t (’bonjour’ )

I i prend les valeurs du range, à savoir 0,1,. . . n-1
I Autre exemple : les statistiques sur la somme de deux dés

from random import r a n d i n t
s t a t s = [ 0 ] ⇤ 13
f o r i in r a n g e ( 1 0 0 0 ) :

s t a t s [ r a n d i n t ( 1 , 6 ) + r a n d i n t ( 1 , 6 ) ] += 1
p r i n t ( s t a t s )



– Utiliser la suite des valeurs d’un range –

I Afficher les nombres de 1 à n :

n = i n t ( input (’rentrez un nombre : ’ ) )
f o r i in r a n g e ( n ) :

p r i n t ( i )

I Compte à rebours :

from t ime import s l e e p
f o r i in r a n g e ( 5 , 0 , �1 ) :

p r i n t ( s t r ( i )+’...’ )
s l e e p ( 1 )

p r i n t (’BOOOM’ )



– Itérer sur une liste –

I Afficher un à un les éléments d’une liste :

l s t = [3 , 5 ,6 ,1 4 , �6 ,121 ]
f o r x in l s t :

p r i n t ( x )

I Changement de couleur :

l s t = [’red’ ,’blue’ ,’green’ ,’gray’ ,’black’ ]
f o r c o u l e u r in l s t :

e f f a c e T o u t ( )
c e r c l e P l e i n ( 2 0 0 , 2 0 0 , 1 0 0 , c o u l e u r )
c e r c l e ( 2 0 0 , 2 0 0 , 1 0 0 )
miseAJour ( )
s l e e p ( 1 )

a t t e n t e C l i c ( )



– Itérer sur les indices d’une liste –

I Si on a besoin des indices lors du parcours d’un itérable iterable,
on peut utiliser range(len(iterable)), vu que les indices vont de
0 à len(iterable)-1

l s t = [’bon’ ,’jour’ ,’bonjour’ ]
f o r i in r a n g e ( l e n ( l s t ) ) :

p r i n t ( i , l s t [ i ] )



– Itérer sur une chaı̂ne –

I Compter le nombre de voyelles :

s = input (’texte : ’ )
n b r V o y e l l e s = 0
f o r a in s . l ower ( ) :

i f a in [’a’ ,’e’ ,’i’ ,’o’ ,’u’ ,’y’ ] :
n b r V o y e l l e s += 1

p r i n t (’il y a’ , n b r V o y e l l e s ,’voyelles’ )

I Jeu du pendu (extrait) :

motPendu = ’’
f o r a in mot :

i f a in p r o p o s e s : # c’est une lettre proposee?
motPendu += a

e l s e :
motPendu += ’-’



– continue et break –

I On peut utiliser les instructions continue et break avec les
boucles for :

I continue reprend au for en passant à l’élément suivant de
l’itérable

I break interrompt la boucle

n = i n t ( input (’nombre : ’ ) )
f o r i in r a n g e ( 2 , n ) :

i f n % i == 0 :
p r i n t ( n ,’n\’est pas premier’ )
p r i n t (’il est divisible par’ , i )
break



– Conclusion sur la boucle for –

I On peut toujours faire une boucle while à la place ... c’est ce
qu’on a fait jusqu’ici

I L’instruction for est pluscompacte, plus lisible, et donc souvent
meilleure quand elle est utilisable

I Elle n’est typiquement pas adaptée quand on ne sait pas au début
de la boucle combien de fois on va l’effectuer (ex: deviner un
nombre)



Python pas à pas

Les fonctions



– Présentation générale –

def e s t P r e m i e r ( n ) :
i f n < 2 :

re turn F a l s e
f o r i in r a n g e ( 2 , n ) :

i f n % i == 0 :
re turn F a l s e

re turn True

I Une fonction est un bloc d’instruction réutilisable
I Cela permet d’écrire le code une seule fois pour réaliser une

même tâche répétée :
I Une fois bien testée, on s’en ressert autant qu’on veut
I Maintenance à effectuer à un seul endroit
I On peut mettre les fonctions dans un module pour les réutiliser

I Idée fondamentale en programmation : découper un programme
en sous-tâches pour gagner en lisibilité et en robustesse.



– Définir une fonction –

def nomFonction():
instruction 1 de la fonction
...
fin du bloc de la fonction

I Important : lors de la définition d’une fonction, le code n’est
pas exécuté

– Appeler une fonction –

I A tout moment dans le programme ou dans une fonction on
peut appeler la fonction avec la commande
nomFonction()

f o r i in r a n g e ( 2 , 1 0 0 ) :
i f e s t P r e m i e r ( i ) :

p r i n t ( i )



– Premier exemple –

def a p p e l ( ) :
p r i n t (’-’⇤5 ,’appel’ ,’-’⇤5)

p r i n t (’bonjour’ )
a p p e l ( )
n = i n t ( input (’nombre = ’ ) )
f o r i in r a n g e ( n ) :

a p p e l ( )

I A chaque fois qu’on utilise l’instruction appel() le programme
interrompt le flot normal d’instructions pour aller effectuer les
instructions d’appel()

I Une fois les instructions d’appel() effectuées, le programme
reprend là où il en était



– Fonction avec paramètre –

def a f f i c h e ( s ) :
p r i n t (’*’ ⇤ ( l e n ( s ) + 4 ) )
p r i n t (’* ’+s+’ *’ )
p r i n t (’*’ ⇤ ( l e n ( s ) + 4 ) )

a f f i c h e (’bonjour’ )
t e x t e = input ( )
a f f i c h e ( t e x t e )

I Une fonction peut avoir un ou plusieurs paramètres
I Ils sont nommés entre parenthèses dans la définition de la

fonction
I Lorsque l’on appelle la fonction, il faut passer les paramètres (le

bon nombre) entre parenthèses



– L’instruction return –

I l’instruction return x interrompt l’exécution de la fonction et
retourne la valeur x

I x peut être de n’importe quel type
I On récupère la valeur retournée normalement, par exemple par

une affectation :
y = maFonction(x)

I On peut aussi l’utiliser dans une expression où elle est évaluée :
y = maFonction(x) + 3
print(maFonction(x))

I Par défault, s’il n’y a pas de return ou si on met return
simplement sans argument après, la fonction retourne None



– Exemple de return –

def minimum ( l s t ) :
i f l e n ( l s t ) == 0 :

re turn
mini = l s t [ 0 ] #on initialise a lst[0]
f o r x in l s t :

i f x < mini :
min i = x

re turn mini

I Le premier return n’a pas d’argument, il retourne None et arrête
la fonction. Le programme reprend là où il en était.

I Le second return renvoie le résultat (flottant) du calcul



– Portée des variables –

Attention il y a des subtilités ici, à bien travailler.

def f ( n ) :
n = n + 1

x = 3
f ( x )
p r i n t (’x vaut’ , x )

I Le résultat est x vaut 3
I Ce qui se passe :

I à l’appel de la fonction, la valeur du paramètre de f est affecté au
n de la définition de f

I donc n vaut 3
I dans la fonction, n est augmenté de 1
I x n’a pas changé
I ... d’ailleurs n n’existe pas dans le corps du programme



– Portée des variables –

Attention il y a des subtilités ici, à bien travailler.

def f ( n ) :
n = n + 1

n = 3
f ( n )
p r i n t (’n vaut’ , n )

I Le résultat est encore n vaut 3 !
I Ce qui se passe :

I à l’appel de la fonction, la valeur du paramètre de f est affecté au
n de la définition de f

I Ce n’est pas le même n
I Il y a le n principal, et le n de f qu’on va noter n

f

I n
f

prend la valeur de n à l’appel de f et est incrémenté de 1 dans
la fonction. n ne change pas.



– Portée des variables –

Attention il y a des subtilités ici, à bien travailler.

def f ( x ) :
n = 1

n = 3
f ( n )
p r i n t (’n vaut’ , n )

I Le résultat est toujours n vaut 3 !
I Ce qui se passe :

I à l’appel de la fonction, la valeur du paramètre de f est affecté au
x de la définition de f

I L’affectation dans la fonction crée une variable locale à f,
notons-là n

f

I n
f

prend la valeur de 1 et le n principal ne change pas.



– Porté des variables –

I les paramètres de la définition de la fonction sont des variables
locales, propres à la fonction

I les variable affectées dans la fonction sont des variables locales,
propres à la fonction

I ces variables locales existent pendant l’exécution de la fonction
et n’existent plus après

I les variables affectées dans le corps du programme (hors
fonctions) sont des variables globales

I les variables globales sont lisibles dans tout le programme
I les variables globales ne sont pas modifiables dans une fonction
I (si on affecte une variable globale dans une fonction, on crée une

variable locale avec le même nom)
I pour modifier une variable globale x dans une fonction, il faut la

déclarer avec le mot clé global



– Exemple de portée –

def f ( n ) :
g l o b a l k
i = n
k = 0
p r i n t ( i , j , k )

i = 2
j = 4
k = 6
f ( 4 4 )
p r i n t ( i , j , k )

I Dans le corps de la fonction n et i sont des variables locales
I k est une variable globale modifiable
I j est visible en tant que variable globale



– Exemple : balles rebondissantes –

I Une balle est donnée par 4 valeurs [x,y,vx,vy], ses coordonnées
et son vecteur vitesse.

I On va faire une fonction qui crée une nouvelle balle avec des
stats aléatoires

I Une fonction pour dessiner une balle
I Une fonction pour déplacer une balle
I Dans le programme on crée la fenêtre, initialise une liste de

balles, puis on répète déplacements et mises à jour



– Exemple : Poker fermé –

I On joue avec un jeu de 32 cartes
I On veut des fonctions pour créer un jeu, le mélanger, piocher une

carte, piocher 5 cartes
I On veut tester s’il y a quelquechose de valeur dans le jeu (carré,

full, couleur, ...)



– Cartes du poker sur un jeu de 32 –

0 = 7 pique 8 = 7 coeur 16 = 7 carreau 24 = 7 trefle
1 = 8 pique 9 = 8 coeur 17 = 8 carreau 25 = 8 trefle
2 = 9 pique 10 = 9 coeur 18 = 9 carreau 26 = 9 trefle
3 = 10 pique 11 = 10 coeur 19 = 10 carreau 27 = 10 trefle
4 = V pique 12 = V coeur 20 = V carreau 28 = V trefle
5 = D pique 13 = D coeur 21 = D carreau 29 = D trefle
6 = R pique 14 = R coeur 22 = R carreau 30 = R trefle
7 = As pique 15 = As coeur 23 = As carreau 31 = As trefle
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Python pas à pas

Structures de données avancées



– tuple –

I Les tuple sont l’équivalent de la notion mathématique de
n-uplets

I Déclaration x = (4,3,1) crée un tuple avec 3 entiers
I On peut aussi directement écrire x = 4,3,1
I Pour faire un tuple avec un seul élément, il faut utiliser une

virgule : x = (4,), sinon x est un int qui vaut 4
I On accède au i-ème élément d’un tuple comme pour les listes où

les chaı̂nes : x[i], où les indices commencent à 0
I La longueur d’un tuple est retournée par la fonction len()
I On peut changer un itérable en tuple à l’aide de la fonction

tuple() : tuple(range(5)) ) (0,1,2,3,4)
I On peut concaténer deux tuple avec +



– tuple vs list –

Même s’ils se ressemblent, tuple et list sont des
structures complètement différentes

I La principale différence c’est que :
I Une list est modifiable
I Un tuple n’est pas modifiable

I Si t est un tuple, t[0] = 3 produit une erreur car t n’est pas
modifiable

I Il n’y a pas de append() pour les tuple
I . . .
I En fait, un tuple ressemble plsu à une chaı̂ne qu’à une liste



– Set –

I Set en anglais signifie ensemble
I La structure set permet de gérer efficacement un ensemble de

donnée
I Comme c’est un ensemble, chaque élément ne peut y être violet

qu’une seule fois
I Comme c’est un ensemble, l’ordre ne compte pas
I Le mécanisme utilisé pour que cette structure soit efficace fait

que les éléments d’un set doivent être non modifiables
I Un set est un objet modifiable

On ne peut mettre dans un set que des objets non
modifiables, donc pas de liste, pas de set et pas
de dictionnaire



– Opération sur les Set –

Dans le tableau, s et t sont des set et l est un itérable :

set() crée un set vide len(s) longueur du set s
x in s teste si x 2 s x not in s teste si x /2 s

s <= t teste si s ⇢ t s | t retourne s [ t

s & t retourne s \ t s ˆ t retourne s�t

s.add(x) ajoute x dans s s.remove(x) retire x de s

s.pop() retourne et enlève s.discard(x) comme remove, mais
un élément de s pas d’erreur si x /2 s

set(l) crée un set avec l s==t teste l’égalité

I les opérations en bleu dans la table modifient le set s



– Test d’efficacité –

I On crée une list avec 10 000 entiers
I On teste si les 10 000 entiers sont dedans

I On fait la même chose avec un set
I On compare le temps d’exécution avec le module time



– Dictionnaires –

I Les dictionnaires permettent d’implanter de façon très efficace
des fonctions (partielles)

I Dans certains langages, ils sont appelés des tableaux associatifs
I Cela permet d’associer à une clé une valeur
I Exemple d’utilisation :

D = {} # dictionnaire vide

D[’toto’ ] = 4 # associe 4 a la cle ’toto’

D[’titi’ ] = 6
p r i n t (D[’toto’ ] ) # affiche 4

D[’toto’ ] = ’bonjour’ # remplace 4

p r i n t (D[’toto’ ] ) # affiche ’bonjour’

p r i n t (D)

La clé doit être un élément non modifiable



– Opération sur les dictionnaires –

Dans le tableau suivant D est un dictionnaire, x est une clé et y est une
valeur :

{} dictionnaire vide len(D) nombre de clés
D[x] = y D[x] vaut y D[x] retourne la valeur de x
del D[x] x n’a plus de valeur x in D teste si x est une clé
D.keys() la liste de clés D.values() la liste des valeurs
D.items() la liste des

couples (clé,valeur)



– Modifiables et non-modifiables –

On a vu des structures non-modifiables :
I booléens, entiers, caractères, flottants
I chaı̂nes de caractère
I tuple

Et des structures modifiables :
I listes
I ensembles
I dictionnaires

Il peut être utile de passer d’un type à l’autre. On peut par exemple
utiliser la fonction tuple() pour transformer une liste (modifiable) en
un tuple (non-modifiable)



– Affectation multiple –

I On peut affecter simultanément plusieurs variables avec la
syntaxe x,y,z = iterable

I Cela ne fonctionne que s’il y a le même nombre d’éléments à
gauche que dans l’itérable x,y,z = [5,6,8]

I Comme on peut omettre les parenthèses lors de l’écriture d’un
tuple, on peut utiliser x,y,z = 3,6,8

I On peut même écrire x,y = y,x ce qui échange les deux
variables!

I Il est possible d’utiliser pour signifer des positions qui ne nous
intéressent pas

x, , ,y = range(4)
I On peut s’en servir dans toutes les situations, par exemple

f o r key , v a l u e in D. i t e m s ( ) :
p r i n t (’cle=’ , key ,’valeur=’ , v a l u e )



Python pas à pas

Compléments sur les fonctions



– Commentaire de fonction –

I Après l’entête de la fonction, on peut mettre un descriptif de la
fonction directement dans une chaı̂ne de caractères

def pgcd ( a , b ) :
’calcule le pgcd de a et de b’

whi le b != 0 :
a , b = b , a % b

re turn a

I On accède à la description avec la fonction help dans un terminal
Python

I Certains éditeurs Python comme IDLE3 font apparaı̂tre la
description des fonctions

I Il faut prendre l’habitude de mettre une description pour toute
les fonctions importantes.



– Paramètres par défaut –

I On peut spécifier des valeurs par défauts dans une fonctions

def f ( x , y =4 , z = 5 ) :
re turn x + y + z

I Si les champs considérés ne sont pas donnés lors de l’appel à la
fonction, ils prennent la valeur par défaut :
f(2,2,2) ! 6
f(2,3) ! f(2,3,5) ! 10
f(2) ! f(2,4,5) ! 11
f( ) ! erreur

Il ne faut pas mettre des valeurs modifiables
comme valeurs par défaut, mais vous pouvez
mettre des tuple, string, ...



– Exemple –

def c r e e C e r c l e ( x=None , y=None , c o u l e u r =None ) :
’par defaut le cercle est place au hasard’

i f x == None :
x = r a n d i n t ( 1 ,LARGEUR)

i f y == None :
y = r a n d i n t ( 1 ,HAUTEUR)

i f c o u l e u r == None :
c o u l e u r = randomCouleur ( )

c e r c l e P l e i n ( x , y , 1 0 , c o u l e u r )



– Paramètres modifiables –

Rappel :

def f ( x ) :
x = x + 1

n = 3
f ( n )
p r i n t ( n )

I le “x” de la fonction f est une variable locale de f, le “n” global
n’est donc pas changé lors de l’appel à la fonction : cela affiche 3

Avec une liste :

def a j o u t e ( L , x ) :
L . append ( x )

l s t = [ 4 , 5 ]
a j o u t e ( l s t , 7 )
p r i n t ( l s t )



– Paramètres modifiables (suite) –

def f ( x ) :
x = x + 1 # x est incremente

n = 3
f ( n ) # x de f prend la valeur de n

p r i n t ( n )

def a j o u t e ( L , x ) :
L . append ( x ) # on modifie L en ajoutant x

l s t = [ 4 , 5 ]
a j o u t e ( l s t , 7 ) # L prend la valeur lst

p r i n t ( l s t ) # affiche [4,5,7]



– Paramètres modifiables (suite) –

def a j o u t e ( L , x ) :
L . append ( x ) # on modifie L en ajoutant x

l s t = [ 4 , 5 ]
a j o u t e ( l s t , 7 ) # L prend la valeur lst

p r i n t ( l s t ) # affiche [4,5,7]

ajoute(lst,7) ! L,x = lst,7
lst

L

4 5

L.append(x)
lst

L

4 5 7



– Paramètres modifiables (fin) –

def f ( L , x ) :
L . append ( x )
L = l i s t ( r a n g e ( 3 ) )
L . append ( x )

l s t = [ 4 , 5 ]
f ( l s t , 7 )

Premier append()
lst

L

4 5 7

Second append()
lst

L

4 5 7

0 1 2 7



– Autre exemple : l’alphabet –

def a j o u t e L e t t r e s ( u ,D ) :
f o r x in u :

D. add ( x )

A = s e t ( )
whi le True :

s = input (’mot = ’ )
i f s == ’stop’ :

break
a j o u t e L e t t r e s ( s ,A)

p r i n t (’alphabet=’ ,A)



– Fonctions en argument –

I On peut passer une fonction en argument d’une autre fonction

def f i l t r e ( L , f ) :
R = [ ]
f o r x in L :

i f f ( x ) :
R . append ( x )

re turn R

def e s t P a i r ( n ) :
re turn n % 2 == 0

def t o t o ( n ) :
re turn n % 3 == 0

l s t = f i l t r e ( r a n g e ( 1 0 ) , e s t P a i r )
p r i n t ( l s t )
p r i n t ( f i l t r e ( r a n g e ( 2 0 ) , t o t o ) )



– Tri avec plusieurs fonctions de comparaison –

def t r i B u l l e ( T , p lu sGrand ) :
f o r i in r a n g e ( l e n ( T) �1 ,0 , �1):

f o r j in r a n g e ( i ) :
i f p lusGrand ( T [ j ] , T [ j + 1 ] ) :

T [ j ] , T [ j +1] = T [ j + 1 ] , T [ j ]

def s u p e r i e u r D e b u t ( u , v ) :
re turn u [ 0 ] > v [ 0 ]

def s u p e r i e u r F i n ( u , v ) :
re turn u [ l e n ( u )�1] > v [ l e n ( v )�1]

def u s u e l ( x , y ) :
re turn x > y



– Exemple de A à Z: dessin d’une fonction –

I On va réaliser une fonction trace(f,couleur,xmax,ymax) pour
afficher une fonction

I f est le nom de la fonction à tracer
I couleur est la couleur utilisée pour la tracer
I xmax et ymax définissent la zone de dessin : entre -xmax et

+xmax en abscisse et -ymax et ymax en ordonnées



– (illusion de) retourner plusieurs valeurs –

I Comme une fonction peut retourner un tuple, on peut s’en servir
pour retourner plusieurs valeurs

def d i v E u c l i d i e n n e ( a , b ) :
’retourne quotient et reste’

re turn a / / b , a % b

q , r = d i v E u c l i d i e n n e ( 1 4 , 4 )
p r i n t (’quotient=’ , q ,’, reste=’ , r )



Python pas à pas

Lecture / écriture dans un fichier



– L’instruction join( ) –

I l’instruction join( ) est une instruction (méthode) de chaı̂ne de
caractères

I On l’utilise de la façon suivante :
s.join(it)

où s est une chaı̂ne de caractères et it est un itérable contenant
des chaı̂nes de caractères.

I le résultat est une chaı̂ne qui contient les mots de it reliés par s
I ’:’.join([’ab’,’cd’,’efg’] ! ’ab:cd:efg’



– Ouverture et fermeture d’un fichier –

I On peut instancier une variable de type fichier, qui va permettre
de faire des opérations sur les fichiers présents sur l’ordinateur

I Pour ouvrir un fichier en python, on utilise la commande :
f = open(chemin,mode),

où f est la variable qu’on utilisera pour accéder au fichier,
chemin est le nom du fichier (éventuellement avec le chemin
pour le trouver ’../toto.txt’) et mode est le mode d’utilisation du
fichier dans le programme

I Il existe de nombreux modes d’accès aux fichiers, voilà les trois
plus communs :

I ’r’ : mode lecture seulement, c’est le mode par défaut
I ’w’ : mode écriture, le fichier est créé s’il n’existe pas, sinon il est

effacé pour pouvoir y écrire
I ’a’ : mode ajout, c’est un mode écriture à partir de la fin du fichier

I Pour fermer un fichier : f.close()



– Les objets file –

I C’est un objet modifiable : si on le fait évoluer dans une
fonction, il évolue globalement

I Il connaı̂t le fichier
I Il a une position courante dans le fichier, qui est modifiée au fur

et à mesure qu’on lit ou écrit dans le fichier



– Lecture dans un fichier –

I Il faut que le fichier soit ouvert en lecture
I On peut lire une ligne de f avec l’instruction f.readline()
I Cela déplace la position courante à la ligne suivante
I Donc on peut répéter l’appel à f.readline() pour lire toutes les

lignes une à une
I Quand il n’y a plus rien à lire, f.readline() retourne la chaı̂ne

vide ”

f = open (’filtre.py’ )
l i g n e = None
whi l e l i g n e != ’’ :

l i g n e = f . r e a d l i n e ( )
p r i n t ( l )

f . c l o s e ( )



– Solution alternative –

I Une file f peut aussi être vue comme une structure itérable de
ses lignes

I Cela permet de très facilement lire les lignes de f

f = open (’iterable.py’ )
f o r l i g n e in f :

p r i n t ( l i g n e )
f . c l o s e ( )

Que l’on utilise readline() où le format
d’itérable, les lignes retournées conservent le car-
actère ’\ n’ à la fin. On peut l’enlever avec
l’instruction ligne = ligne[:-1] (cf dernier cours)



– Ecriture –

I Pour écrire dans un fichier, il faut l’ouvrir en écriture ’w’ ou en
ajout ’a’

I Pour écrire la chaı̂ne s dans le fichier f, on utilise l’instruction
f.write(s)

I Attention, contrairement à print( ), cela ne rajoute pas un saut de
ligne à la fin

f = open (’tmp’ ,’w’ )
f o r i in r a n g e ( 1 0 ) :

f . w r i t e (’ligne ’+ s t r ( i )+’\n’ )
f . c l o s e ( )



– Exemples –

I Lister les palindromes en français
I Créer un nouveau fichier sans les accents et sans les ç
I Lister les palindromes du nouveau fichier
I Le jeu du pendu
I Recherche d’anagrammes :

I Un ensemble de lettres (avec répétitions) est vu comme un tuple
ordonné (on utilise la fonction lst.sort() qui tri la liste lst

I On stocke les anagrammes sous forme d’un dictionnaire où les
clés sont les tuples ordonnés ci-dessus, et les valeurs l’ensemble
des mots qui utilisent ces lettres
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Les slices



– Notion de slice –

I On a vu qu’on peut acceder au i-ème élément d’une liste ou
d’une chaı̂ne avec t[i]

I Le slice consiste à accéder à une portion d’une liste ou d’une
chaı̂ne

I
Notation : t[debut:fin] prend la sous-liste où la sous-chaı̂ne
comprise entre les indices debut et fin-1

I
Attention : c’est fin -1 comme pour les range

s = ’bonjour’

print(s[2:5]) ! ’njo’



– Indices n

´

egatifs –

I On peut utiliser des indices n

´

egatifs

I L’indice -i est le même que len - i

0 1 2 3 4 5 6
b o n j o u r

-7 -6 -5 -4 -3 -2 -1

s = ’bonjour’

print(s[-2]) ! u

print(s[1:-2]) ! onjo



– Param

`

etres par d

´

efaut –

I Dans un slice, le début est par défaut 0 : t[:4] est la même chose
que t[0:4]

I Dans un slice, la fin est par défaut len(t) : t[4:] est la même
chose que t[4:len(t)]

I
t[:7] ce sont donc les 7 premiers éléments

I
t[2:] ce sont les éléments à partir du troisième (le premier est à 0

I
t[:-2] ce sont tous les éléments sauf les 2 derniers

I
t[-5:] ce sont les 5 derniers éléments

Lors d’un slice, Python recopie la portion de
chaı̂ne (ou de liste, ...) qui est extraite.
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Notion d’exception



– Qu’est-ce qu’une exception ? –

I Quand un programme plante, c’est qu’il y a eu un problème qui a
lev

´

e une exception

I Le m

´

ecanisme d’exception sert à signaler une anomalie de
fonctionnement

I Quand une telle anomalie se produit, on peut dans le
programme :

I ne rien faire et laisser le programme planter
I

intercepter l’exception et traiter le problème dans le programme

Message d’erreur type :
Traceback (most recent call last):

File ”code4/erreur.py”, line 1, in <module>
x = 3 // 0

ZeroDivisionError: integer division or modulo by zero



– M

´

ecanisme d’interception –

I Pour intercepter une exception, il faut mettre le code qui risque
d’en générer une dans un bloc try:

I L’interception se fait ensuite dans un bloc except:

try:

instructions à risque
except:

instructions en cas d’exception



– Exemple : saisir un entier –

I la fonction demande un nombre et tente de le convertir en entier
avec la fonction int( )

I si elle n’y arrive pas, une exception est levée, qui est interceptée
avec le except

I en cas de problème on retourne None : le programme ne plante
pas, on peut redemander le nombre

def s a i s i e N o m b r e ( s=’nombre = ’ ) :
t r y :

re turn i n t ( input ( s ) )
e xc e p t :

re turn None



– Interception (suite) –

I Un même code peut générer plusieurs types d’erreurs

I Il peut être utile de savoir les distinguer lors de l’interception.

t r y :
n = i n t ( input (’nombre = ’ ) )
p r i n t (1 / n )

e xc ep t :
p r i n t (’il y a eu une erreur’ )



– Noms d’exceptions –

I On peut paramétrer les except avec un nom d’exception
I Si un except est paramétré, il n’est exécuté que si une exception

du bon nom est levée
I Le nom de l’exception est celui indiqué sur la dernière ligne du

message d’erreur

Traceback (most recent call last):

File ”code4/erreur.py”, line 1, in <module>
x = 3 // 0

ZeroDivisionError: integer division or modulo by zero



– Exemple avec plusieurs except –

t r y :
n = i n t ( input (’nombre = ’ ) )
p r i n t (1 / n )

e xc ep t Z e r o D i v i s i o n E r r o r :
p r i n t (’Division par zero!’ )

e xc ep t :
p r i n t (’il y a eu une erreur’ )



– Lever sa propre exception –

I Il est possible de lever volontairement une exception pour
signaler un problème

I L’instruction est raise NameError(str), où str est un message
d’information

I
Attention : le nom d’une telle exception est NameError

def p u i s s a n c e ( x , n ) :
i f n < 0 :

r a i s e NameError (’pas de puissance negative’ )
r = 1
f o r i in r a n g e ( n ) :

r ⇤= x
re turn r
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– Listes en compr

´

ehension –

I L’idée est d’avoir un moyen de décrire une liste comme on décrit
un ensemble en math

´

ematiques :

E =
�

2i | i 2 {0 · · · 10}
 

F = {x 2 {10 · · · 30} | x impair}

I Pour le premier, la syntaxe est [f(x) for x in iterable], où f est
une fonction :

E = [2**i for i in range(11)]

I pour ajouter une condition, on utilise if :

F = [i for i in range(11) if i%2 == 1]



– Liste en compr

´

ehension (suite) –

I On peut utiliser plusieurs for :

C = [(i,j) for i in range(5) for j in range(4)]

I On peut bien entendu s’en servir sur d’autres types que les int

s = ” Cec i e s t l e d e r n i e r c o u r s de Python ”
l s t = [ ( u , l e n ( u ) ) f o r u in s . s p l i t ( ) ]
f o r x in l s t :

p r i n t ( x )
l s t 2 = [ u f o r u in s . s p l i t ( ) i f ’e’ n o t in u ]
p r i n t ( l s t 2 )



– Quelques exemples –

I Les premières lettres de chaque mot d’une phrase
I Les nombres premiers via les nombres non-premiers
I Une application aléatoire de {1, ..., n} dans {1, ..., n}
I Les racines de x

5 � 5x

3 + 4x

I Les entêtes de fonctions dans un fichier Python



– Fonctions anonymes : fonctions lambda –

I Il peut être utile de créer une fonction à la volée pour la passer en
param

`

etre

I On peut le faire grâce au mot clé lambda, la syntaxe est

lambda x : expression(x)

qui est une fonction anonyme qui est l’équivalent de
def f(x):

return expression(x)

s = ” c e c i e s t l e d e r n i e r c o u r s de py thon ”
l s t = s . s p l i t ( )
p r i n t ( s o r t e d ( l s t , key=lambda x : x [ 0 ] ) )


