| Introduction a I’algorithmique

< et a la programmation

“ - IUT 1lere année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

—Cours1/5-



— Déroulement du cours —

Organisation :
» 5 sé€ances de 2h de cours
» 10 séances de 2h de TD
» 15 séances de 2h de TP

Evaluation :

» une note de TD : il y a une rapide interrogation €crite au début de
chaque TD (sauf le premier)

» une note de TP : vous rendez chaque TP, certains seront notés
> un projet de programmation

> un examen



Lorsque vous voyez le python a gauche, cela signifie

£ qu’il y a une démonstration d’écriture et d’exécution de

=) programme pendant le cours. Ces démonstrations ne
sont pas sur les transparents.



— Définition dans le Trésor —

Programmer : (Empl. intrans.) “Ecrire un pro-
gramme d’ordinateur” (Ging.-Lauret 1982), fractionner
un probleme en instructions codifiées acceptables par la
machine.




— Introduction sur un exemple —

Un exemple de programme en Python 3 :

puissance (x,n):

res = 1
1 =1
1 <= n:
res = res *x X
1 =1 + 1
res

y = puissance(12,6)
print (y)

C’est un programme un peu avance . . .



— Introduction sur un exemple —

Un exemple de programme en Python 3 :

puissance (x,n):

res = 1
1 =1
1 <= n:
res = res *x X
1 =1 + 1
res

y = puissance(12,6)
print (y)

C’est un programme un peu avance . .. mais essayons de comprendre
ce qu’il fait.



— Les différents mots —

puissance (x,n):

res = 1
1 =1
1 <= n:
res = res *x X
1 =1 + 1
res

y = puissance(12,6)
print(y)

Les couleurs sont un ajout pratique pour la lisibilité, elle peuvent
changer d’un éditeur a I’autre. Icion a :

> en des mots-clés du langage Python
» en violet des fonctions du langage Python

» en bleu des noms choisis par le programmeur



— Les différents mots —

puissance (x,n):

res = 1
1 =1
1 <= n:
res = res *x X
1 =1 + 1
res

y = puissance (12,6)
print(y)

Les mots de Python, en et en violet, sont en anglais.

= define = définir = tant que

= retourner print = imprimer




— L’indentation —

puissance (Xx,n):

res = 1
1 =1
1 <= n:
res = res *x X
1 =1 + 1
res

y = puissance (12,6)
print(y)

» Les lignes ne commencent pas
toutes au meéme endroit.

» Ce n’est pas un détail !

» Le positionnement (on dit
I’indentation) des lignes est impor-
tant pour leur signification.

Si on masque temporairement les lignes indentées, on obtient :

print(y)

puissance (Xx,n):

y = puissance(12,6)




puissance (x,n):

y = puissance(12,6)
print(y)

> définit une fonction qui s’appelle ici puissance

» La fonction puissance(x,n) calcule la valeur x" (on verra
comment plus tard)

» puissance(12,6) appelle la fonction puissance avec les
parametres 12 et 6, qui calcule donc 12°

» y = puissance(12,6) stocke la valeur 12° dans y

» print est une fonction de Python qui affiche la valeur de son
parametre a I’écran

jere
74

o Essayons un peu le programme et des variantes ...



— La fonction puissance —

puissance (x,n):

res = 1
1 =1
1 <= n:
res = res *x X
1 =1 + 1
res

>

L’indentation signifie que toutes
les lignes font partie de la fonction
puissance

La fonction prend deux parametres x et n

» Au début on met la valeur 1 dans res et 1

>

(= tant que) possede
» une conditioni < n
» deux lignes indentées

» ces deux lignes sont répét€es “tant que” la condition est vraie

(= retourner) termine la fonction en renvoyant la valeur

de res



— Détail de la boucle while —

1 <= n:

res = res *x X

1

= 1 + 1

Pour 'exemple x =2 etn=4

Au début res et 1 valent 1

X | n|res| 1




— Détail de la boucle while —

1 <= n:
res = res *x X
i =1+ 1 Au début res et 1 valent 1

Pour 'exemple x =2 etn=4

res | 1
Avant de commencer | 2 | 4 1

>
=




— Détail de la boucle while —

1 <= n:
res = res *x X
i =1+ 1 Au début res et 1 valent 1

Pour 'exemple x =2 etn=4

res | 1

>
=

(\&]
N
[S—,

Avant de commencer
Etape 1 214 2




— Détail de la boucle while —

1 <= n:
res = res *x X
i =1+ 1 Au début res et 1 valent 1

Pour 'exemple x =2 etn=4

res | 1

Avant de commencer
Etape 1
Etape 2

DI D D <
INEE =
RN




— Détail de la boucle while —

1 <= n:
res = res *x X
i =1 + 1 Au début res et 1 valent 1

Pour 'exemple x =2 etn=4

X |n|res|1
Avant de commencer | 2 | 4 | 1
Etape 1 214 2
Etape 2 214 4
Etape 3 214 8




— Détail de la boucle while —

1 <= n:
res = res *x X
i =1 + 1 Au début res et 1 valent 1

Pour 'exemple x =2 etn=4

X |n|res|1
Avant de commencer | 2 | 4 | 1
Etape 1 214 2
Etape 2 214 4
Etape 3 214 8
Etape 4 214116 |5

A la fin, “ res” retourne donc la valeur 16 qui est bien 2*



— Détail de la boucle while —

1 <= n:
res = res *x X
i =1+ 1 Au début res et 1 valent 1

Pour 'exemple x =2 etn=4

X | n|res| i
Avant de commencer | 2 | 4 | 1
Etape 1 214 2
Etape 2 214 4
Etape 3 214 8
Etape 4 214116 |5
A la fin, “ res” retourne donc la valeur 16 qui est bien 2*

Jere
g% Essayons diverses variantes ...



— Robustesse du programme —

Qu’est-ce qui se passe sin=0?oux=4.5?oun=-47?

¢b

Essayons ...




— Robustesse du programme —

Qu’est-ce qui se passe sin=0?oux=4.5?oun=-47?

0@ Essayons ...

On va corriger le probleme si n est négatif, en rajoutant un test et en
traitant le cas séparément. On va ajouter au début de puissance :

n < 0O:
print(’erreur : pas de n négatif’)

» if (= s1) est un test, ici on regarde si n est strictement négatif

» les deux lignes indentées ne sont effectuées que si la condition
du if est vraie

» sin < 0, on affiche un message d’erreur et termine la
fonction en ne retournant rien



— La nouvelle fonction puissance —

puissance (x,n): # calcule x puissance n
n < 0: # cas n < 0 non géré
print (’'erreur : pas de n négatif’)

res = 1
1 =1
1 <= n: # on fait n fois
res = res *x X # multiplier res par X
1 =1 + 1 # ajouter 1 a i
res

» On a ajouté des commentaires :
> le caractere # indique que la suite de la ligne est un commentaire

» les commentaires sont ignorés par Python
> ils servent a décrire le programme pour les €tres humains qui le

lisent
» Les commentaires sont tres importants en programmation ... on'y

reviendra



— En résumé -

» On a vu un exemple avancé, qui nous a permis de voir, dans les
grandes lignes, a quoi ressemble un programme

» Onavu

vV v v Y

que les lignes sont des instructions a effectuer, dans I’ordre
qu’on peut stocker des valeurs (dans y, x, ...)

qu’on peut effectuer des calculs (res * x)

que des lignes peuvent etre effectuées plusieurs fois ( ), ou
seulement si une condition est vérifiée (if)

qu’on peut créer des fonctions (puissance) ou utiliser des
fonctions de Python (print)



— En résumé -

» On a vu un exemple avancé, qui nous a permis de voir, dans les
grandes lignes, a quoi ressemble un programme

» Onavu

que les lignes sont des instructions a effectuer, dans I’ordre
qu’on peut stocker des valeurs (dans y, x, ...)

qu’on peut effectuer des calculs (res * x)

que des lignes peuvent etre effectuées plusieurs fois ( ), ou
seulement si une condition est vérifiée (if)

» qu’on peut créer des fonctions (puissance) ou utiliser des
fonctions de Python (print)

vV v v Y

» Dans la suite, on va apprendre pas a pas et dans le détail toutes
ces notions (et bien d’autres), afin que vous maitrisiez les bases
de la programmation



Python pas a pas

Variables, types et opérations



>

>

— Types de valeurs -

Les valeurs de base possedent un type

Le type va notamment déterminer ce qui se passe quand on fait
une opération sur des valeurs

Les principaux types :

>

>

>

>

entier (int) : 12 -4 123545

flottant (float) : 3.14159 -1.5 12. 4.56e12

booléen (bool) : (vrai) ou (faux)

indéfini, rien :

chaine de caracteres (str pour “string”) : >chaine de caracteres’
’IUT info’, ...

Les majuscules/minuscules sont importantes :
True # true



>

>

— Transtypage —

La fonction type() permet de connaitre le type d’une valeur
On peut demander a Python de changer le type d’une valeur

On peut par exemple toujours transformer une valeur de base en
chaine de caracteres avec la fonction str()

Par exemple str(51) renvoie la chaine ’51’

Attention : le nombre 51 et la chaine ’51° ce n’est pas la méme
chose pour Python. On y reviendra.

int() convertit en entier, quand cela est possible
float() convertit en flottant, quand cela est possible

bool() convertit en booléen

@% Essayons dans un terminal Python ...



— Quelques exemples —

int (4.5) — 4 int (-4.5) — 4 int ’0345°) — 345
int CIUT’) — erreur float (4) — 4. float ’4.5°) — 4.5
str (4) =4 str ( ) — ’True’ str (-4.5) — ’-4.5°
bool (4) — bool (0) — bool CIUT’) —

En pratique, on se sert surtout de :
> str qui fonctionne tout le temps

» int et float appliqués a une chaine de caracteres qui correspond a
un nombre

» int appliqué a un float pour tronquer les décimales



— Opérations sur les nombres —

» Sur les int et sur les float on a 1’addition +, la soustraction -, la
multiplication * et la division /

» Si on compose deux int on obtient un int , sauf la division qui
renvoie un float

» Sion compose deux float , ou un int et un float , on obtient un
float

» On dipose également de la division Euclidienne, avec quotient et
reste comme en primaire. Le quotient de x et y est x // 'y et leur
reste est x % y

» Il y a enfin ’opération puissance qui se note x ** y

» Les opérations suivent les regles de priorité€s usuelles et on peut
utiliser des parentheses : (4+2)*1.2

Quelques exemples ...



— Opérations avec booléens —

» On a les opérations sur les booléens :

> c’est le ET logique, x y vaut seulement quand x et
y valent

> c’est le OU logique, x or y vaut seulement quand x ety
valent

> c’est la négation logique, ( ) = et ( )

» Les comparaisons produisent des booléens :

» Le test d’égalité se fait avec ==

» Le test de différence se fait avec !=

» Onaaussi < <= > >= pour comparer selon I’ordre usuel
(ordre du dictionnaire pour les chaines)

jere
G% Encore des exemples . ..



— Opérations sur les chaines de caracteres —

S1 on utilise + sur deux chaines de caracteres, on effectue la
concaténation des deux chaines :

’IUT” + ’info’ — ’IUTinfo’
S1 on “multiplie” une chaine par un entier n, on la répere n fois :
IUT” * 3 — IUTIUTIUT’?

— Autres opérations —

Il existe beaucoup d’autres opérations sur les chaines
On a acces a plein d’opérations mathématiques (cosinus, ... )

On verra ca plus tard dans le semestre



— Nommage -

Dans le programme d’introduction, on a utilisé nos propres noms, en
bleu :

puissance (Xx,n):

y = puissance (12,6)
print(y)

Les regles de nommage pour ce cours sont les suivantes :

>

le caractere “underscore” _ (le tiret bas de la touche 8) est
considéré comme une lettre

on n’utilise jamais d’accent, de cédille, ...

Les noms commencent par une lettre majuscule ou minuscule,
puis sont composés de lettres et de nombres :
exemple _ex2 Ex2mpll 201 31ut

les mots réservés de Python sont interdits

il y a aussi des conventions, plus tard ...



— Mots réserveés —

Les mots suivants sont réservés pour le langage :

and as assert break class continue
def  del elif else except finally
for from global if import in

is lambda nonlocal not or pass
raise return try while with yield

» On n’utilisera pas non plus comme nom : , ,

» Pour voir la liste des mots réservés, dans un terminal Python
taper :
import keyword
print(keyword.kwlist)



— Variables —

une variable est un nom qui référence une valeur dans la
mémoire
on peut s’en servir dans les calculs

elle a le méme type que la valeur qu’elle référence

— Affectation —

I affectation d’une variable consiste a lier un nom a une valeur

La syntaxe : nom = expression, ou expression est une valeur ou
un calcul qui produit une valeur :
x=3 y ="1IUT’ Z=X+2

On peut affecter a nouveau une méme variable, on perd le lien
avec I’ancienne valeur

Ce n’est pas du tout le = des mathématiques. Il
faut le lire comme “prend la valeur” : x=x+1



— Etapes de P’affectation —

x=40+2

On commence par calculer le membre droit, ici on trouve 42

42

Ensuite on crée le nom pour x (sauf s’il a déja été créé)

(%) )

Enfin on relie la variable a sa valeur

(x —{a2

En cas de réaffectation, le lien d’avant est perdu : x= -6.5

@\42

-6.5




Python pas a pas

Instructions et blocs



— Instructions et séquence d’instructions —

print('a x"2 + b x + ¢ = 0")
a = float(input(’a = 7))

b = float(input(’'b = "))

c = float(input(’c = "))
delta = bxb—4xaxc

delta > O:
print (’deux solutions’)
delta == O0:

print (’une solution’)

print (' pas de solution’)

» Comme on a vu dans I’introduction, les instructions sont
effectuées dans I’ordre, de haut en bas

» En Python, il n’y a qu’une instruction par ligne

» Le flot d’instructions peut-étre modifié / redirigé par des
conditions (if), des boucles ( ), ...



— Au passage ... input —

a = float(input(’a = "))

» On a utilisé une nouvelle fonction, la fonction input(str )

» Cette fonction permet a 1’utilisateur de saisir une valeur au
clavier

» Quand on écrit a= input(’valeur =), la chaine ’valeur =’ est
affichée a I’écran (comme avec print) et le programme attend
que soit rentré une valeur, qu’il met dans la variable x, c’est une
affectation normale

» La fonction input renvoie toujours une chaine de caracteres

» On a donc utilisé le transtypage avec la fonction float

( %;’ é Quelques exemples avec input



— Blocs d’instructions —

Certaines instructions sont regroupées en blocs de la facon suivante :

entéte du bloc:
instruction 1 du bloc
instruction 2 du bloc
instruction 3 du bloc
instruction hors bloc

» L[’indentation (le décalage) se fait avec la tabulation (la touche
au-dessus du capslock sur le clavier, cf TP)

» On peut insérer un bloc dans un bloc, un bloc dans un bloc dans
un bloc, ...

» L[’indentation fait partie du langage Python, changer
I’indentation change la signification du programme



Python pas a pas

Instruction conditionnelle (if)



— La conditionnelle : le if —

delta > O:
print (' deux solutions’)
delta == O0:;

print (’une solution’)

print (' pas de solution’)

» Sur I’exemple on commence par tester si delta> 0

» Si c’est le cas, on effectue le bloc qui suit, et on affiche deux
solutions

» Sinon, on teste si delta==

» Sioui, on indique qu’il y a une seule solution

» Sinon on indique qu’il n’y a pas de solution



— La conditionnelle : le if —

La forme la plus simple est

expression:
instruction 1 du if
instruction 2 du if

instruction apres if

> expression est une expression qui retourne un booléen, qui est
donc évaluée a ou

» les instructions du bloc du if sont effectuées uniquement si
I’expression est évaluée a

» dans tous les cas, le programme reprend a I’instruction apres if



— La conditionnelle : le if avec

La forme avec (= sinon) :

expression:
instruction 1 du if

instruction 1 du else

instruction apres if/else

» les instructions du bloc du if sont effectuées uniquement si

I’expression est évaluée a

» les instructions du bloc du sont effectuées uniquement si

I’expression est évaluée a

» dans tous les cas, le programme continue a I’instruction apres

if/else



— La conditionnelle : le -

La forme avec (= contraction de else et if) :
expressionl:
bloc du if
expression2:
bloc du elif

bloc du else
instruction apres if/elif/else

» les instructions du bloc du if sont effectuées uniquement si
expressionl vaut

» les instructions du bloc du sont effectuées uniquement si
expressionl vaut et expression2 vaut

» les instructions du bloc du sont effectuées uniquement si
expressionl vaut et expression2 vaut



— La conditionnelle : le -

La forme avec (= contraction de else et if) :
expressionl:
bloc du if
expression2:
bloc du elif

bloc du else
instruction apres if/elif/else

» les instructions du bloc du if sont effectuées uniquement si
expressionl vaut

» les instructions du bloc du sont effectuées uniquement si
expressionl vaut et expression2 vaut

» les instructions du bloc du sont effectuées uniquement si
expressionl vaut et expression2 vaut

» On peut mettre plusieurs elif, les conditions sont évaluées dans
I’ordre, et seule la premiere qui vaut est considérée



Attention Python 2 +# Python 3

Les deux versions ne sont pas compatibles !
Installez la version 3.1 ou 3.2




| Introduction a I’algorithmique

< et a la programmation

“ - IUT 1lere année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

—Cours2/5-



Graphiques

La librairie iutk



>

— Présentation générale —

iutk est une librairie développée pour vous
elle permet de faire des graphiques et des animations visuelles

c’est juste une surcouche simplifiée d’une librairie Python
nommée tkinter

Que peut-on faire ?



— Présentation générale —

» iutk est une librairie développée pour vous

elle permet de faire des graphiques et des animations visuelles

c’est juste une surcouche simplifiée d’une librairie Python
nommée tkinter

Que peut-on faire ?

» ouvrir une fenétre

» dessiner des cercle, des rectangles, du texte, ...
gérer des couleurs
gérer des événements de la souris ou du clavier

\4

v

Pourquoi ne pas utiliser tkinter directement ?



— Présentation générale —

» iutk est une librairie développée pour vous

elle permet de faire des graphiques et des animations visuelles

c’est juste une surcouche simplifiée d’une librairie Python
nommée tkinter

Que peut-on faire ?

» ouvrir une fenétre

» dessiner des cercle, des rectangles, du texte, ...
gérer des couleurs
» gérer des événements de la souris ou du clavier

\4

Pourquoi ne pas utiliser tkinter directement ?

» tKinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours
» iutk sert justement a cacher les aspects “objet”

Est-ce que iutk permet de faire la méme chose que tkinter ?



— Présentation générale —

» iutk est une librairie développée pour vous

elle permet de faire des graphiques et des animations visuelles

c’est juste une surcouche simplifiée d’une librairie Python
nommée tkinter

Que peut-on faire ?

» ouvrir une fenétre

» dessiner des cercle, des rectangles, du texte, ...
gérer des couleurs
» gérer des événements de la souris ou du clavier

\4

Pourquoi ne pas utiliser tkinter directement ?

» tKinter utilise des notions de programmation objet qui ne sont
pas au programme de ce cours
» iutk sert justement a cacher les aspects “objet”

Est-ce que iutk permet de faire la méme chose que tkinter ?

» Non, il y a plus de possibilités dans tkinter, mais iutk nous
suffira pour ce semestre



— Exemple 1 : créer une fenétre —

1utk *

creeFenetre (400,600)
attenteClic ()
fermeFenetre ()

la premiere ligne sert a appeler la bibliotheque iutk

on crée la fenétre avec la fonction creeFenetre(... , ...), en
indiquant la hauteur et la largeur en nombre de pixels

attenteClic() attend que I'utilisateur clique dans la fenétre avant
de continuer

fermeFenetre() détruit la fenétre a la fin du programme (ne pas
oublier de le faire).



— Fenétre et pixels -

Un écran ou une fenétre est un objet a deux dimensions

Ce sont des “damiers” dont les cases sont des points (carrés) de
couleur appelés des pixels

1600 x 1200 est un standard pour un écran, 640 x 960 pour un
iphone 4s

les pixels ont un systeéme de coordonnées cartésiennes
Attention : le coin en haut a gauche est de coordonnées (0, 0)

les coordonnées augmentent vers le bas et vers la droite

m—(14,9)
15 x 10 pixels



— Lignes, rectangles et cercles —

On a des commandes pour dessiner dans la fenétre :

» des segments avec ligne et ligneCouleur, en donant les
coordonnées des deux extrémités et éventuellement la couleur

» des rectangles avec rectangle, rectangleCouleur et
rectanglePlein, en donnant les coordonnées de deux coins
opposé€s, et éventuellement la couleur

» des rectangles avec cercle, cercleCouleur et cerclePlein, en
donnant les coordonnées de deux coins opposé€s, et
éventuellement la couleur



— Lignes, rectangles et cercles —

On a des commandes pour dessiner dans la fenétre :

>

des segments avec ligne et ligneCouleur, en donant les
coordonnées des deux extrémités et éventuellement la couleur
des rectangles avec rectangle, rectangleCouleur et
rectanglePlein, en donnant les coordonnées de deux coins
opposé€s, et éventuellement la couleur

des rectangles avec cercle, cercleCouleur et cerclePlein, en
donnant les coordonnées de deux coins opposé€s, et
éventuellement la couleur

— Affichages —

miseA Jour() a appeler apres avoir dessiné, sans quoi le résultat
est incertain
effaceTout() enleve tous les dessins



— Lignes, rectangles et cercles —

On a des commandes pour dessiner dans la fenétre :

>

des segments avec ligne et ligneCouleur, en donant les
coordonnées des deux extrémités et éventuellement la couleur
des rectangles avec rectangle, rectangleCouleur et
rectanglePlein, en donnant les coordonnées de deux coins
opposé€s, et éventuellement la couleur

des rectangles avec cercle, cercleCouleur et cerclePlein, en
donnant les coordonnées de deux coins opposé€s, et
éventuellement la couleur

— Affichages —

miseA Jour() a appeler apres avoir dessiné, sans quoi le résultat
est incertain
effaceTout() enleve tous les dessins

— Autres —

Voir la documentation pour les autres fonctionalités, notamment la
récupération d’événements clavier et souris.



— Un exemple —

tutk *
creeFenetre (400,200)

ligne (10,10,300,100)
cercleCouleur (50,50,10,’blue’)
rectanglePlein (250,40,350,100," red’)

miseAlJour ()
attenteClic ()
fermeFenetre ()

jere
A tester ...



Python pas a pas

Utilisation des modules



— Modules -

» un module est un ensemble de fonctions déja programmées,
prétes a étre utilisées
» il existe des blue modules de base en python (math par

exemple), mais vous pouvez en récupérer sur internet ou en créer
vous-meéme

» utilis€ pour organiser les programmes (on en reparlera)

Il y a deux facons d’utiliser une fonction toto() d’un module
monModule:

> monModule toto : on utilise alors normalement la
fonction

> monModule : 1a fonction s’appelle monModule.toto()



— Modules -

» un module est un ensemble de fonctions déja programmées,
prétes a étre utilisées
» il existe des blue modules de base en python (math par

exemple), mais vous pouvez en récupérer sur internet ou en créer
vous-meéme

» utilis€ pour organiser les programmes (on en reparlera)

Il y a deux facons d’utiliser une fonction toto() d’un module
monModule:

> monModule toto : on utilise alors normalement la
fonction

> monModule : 1a fonction s’appelle monModule.toto()

> on peut aussi utiliser monModule * pour charger

toutes les fonctions du module monModule, sauf celles qui
commencent par _



— Un exemple —

math

print (' pi

", pl)

print(cos(pi/2))

— Quelques modules utiles —

random : des fonctions pour faire des tirages au sort

math : les fonctions et les constantes mathématiques usuelles

comme exp, cos, T, ...

time : pour mesurer le temps, connaitre I’heure, ou attendre un

certain temps
iutk !




Python pas a pas

La boucle while



— Exemple —

res = 1
1 =1
1 < n:
res = res *x X
1 =1 + 1
print(res)

» on avait vu le while lors du cours 1
» c’est une instruction de boucle : son bloc associé est répété tant
que la condition est vraie

condition:
instruction 1 du while
instruction 2 du while

instruction apres while

» chaque exécution de la s€quence d’instructions du while est
appelé une itération



— Utilisation : faire un nombre fixé de fois —

i=1
i<=n:
instruction 1 du while
instruction 2 du while

i=i+1
instruction apres while




— Utilisation : faire un nombre fixé de fois —

i=1
i<=n:
instruction 1 du while
instruction 2 du while

i=i+1
instruction apres while

Avant de commencer




— Utilisation : faire un nombre fixé de fois —

i=1
i<=n:
instruction 1 du while
instruction 2 du while

i=i+1
instruction apres while

Avant de commencer
Fin itération 1




— Utilisation : faire un nombre fixé de fois —

i=1
i<=n:
instruction 1 du while
instruction 2 du while

i=i+1
instruction apres while

Avant de commencer
Fin itération 1
Fin itération 2




— Utilisation : faire un nombre fixé de fois —

i=1
i<=n:
instruction 1 du while
instruction 2 du while

i=i+1
instruction apres while

Avant de commencer
Fin itération 1
Fin itération 2




— Utilisation : faire un nombre fixé de fois —

i=1
i<=n:
instruction 1 du while
instruction 2 du while

i=i+1
instruction apres while

Avant de commencer
Fin itération 1
Fin itération 2

Fin itération n-1




— Utilisation : faire un nombre fixé de fois —

i=1
i<=n:
instruction 1 du while
instruction 2 du while

i=i+1
instruction apres while

Avant de commencer
Fin itération 1
Fin itération 2

Fin itération n-1
Fin itération n n+1




— Deux exemples —

nbr = int(input(’Combien ? 7))
1 =1
1 <= nbr:
print (’bonjour’)
1 =1 + 1

print(’'Fini !’7)




— Deux exemples —

nbr = int(input(’Combien ? 7))
1 =1
1 <= nbr:
print (’bonjour’)
1 =1 + 1

print(’'Fini !’)

time sleep
nbr = int(input(’Combien de secondes ? ’))
1 = nbr
1> 0:
print(str(i) + '...7)
sleep (1)
1 =1 — 1

print (' BOOOM !’)




— Un exemple graphique -

1utk *
creeFenetre (400,400)
i =0
1 < 10:
1 % 2 == 1:
couleur = "blue’
couleur = ’'yellow’
rectanglePlein (1%x40,100,(1+1)%x40,140,couleur)
1 =1 + 1

miseAJour ()
attenteClic ()
fermeFenetre ()

» On notera I’utilisation du reste de la division pour alterner les
couleurs

» Les pavés font 40 pixels de cOtés, on calcule les coordonnées de
chaque carré en fonction de i




— Nombre d’itérations non fixé —

Redemander un nombre tant que nécessaire :



— Nombre d’itérations non fixé —

Redemander un nombre tant que nécessaire :

a

int (input(’/Nombre entre 1 et 10 : "))

a

a <1 or a> 10:
int (input(’'Erreur,

entre 1 et 10

7))

print (’'Bravo, votre nombre est ’ + str(a))

Combien de tirages de deux dés pour faire 12 :




— Nombre d’itérations non fixé —

Redemander un nombre tant que nécessaire :

a <1 or a> 10:

a = int(input(’Nombre entre 1 et 10 : ’))

a = int(input(’Erreur, entre 1 et 10
print (’'Bravo, votre nombre est ’ + str(a))

7))

Combien de tirages de deux dés pour faire 12 :

random randint
des = 0
nbr = 0

des != 12:

des = randint(1,6) + randint(1,6)
nbr = nbr + 1

print(str (nbr)+’ tirages pour faire 127)




— Un peu de physique —

» On veut simuler la chute d’une goutte d’eau

» La goutte commence a vitesse nulle et tombe sous 1’effet de la
gravité

» Elle a une accélération constante g, qui est un vecteur dirigé vers
le bas



— Un peu de physique —

» On veut simuler la chute d’une goutte d’eau
» La goutte commence a vitesse nulle et tombe sous 1’effet de la

gravité

Elle a une accélération constante g, qui est un vecteur dirigé vers
le bas

[accélération est la dérivée de la vitesse : a “chaque instant de
temps”, la vitesse verticale diminue de g

A “chaque instant de temps”, la position verticale de la goutte
diminue de sa vitesse



— Un peu de physique —

» On veut simuler la chute d’une goutte d’eau

» La goutte commence a vitesse nulle et tombe sous 1’effet de la

gravité

Elle a une accélération constante g, qui est un vecteur dirigé vers
le bas

[accélération est la dérivée de la vitesse : a “chaque instant de
temps”, la vitesse verticale diminue de g

A “chaque instant de temps”, la position verticale de la goutte
diminue de sa vitesse

» On va identifier “itération de boucle” et “instant de temps”
» Il faut garder la vitesse verticale et la position verticale en

mémoire (la position horizontale ne change pas)

» A chaque itération on met a jour les deux variables

» Attention : dans la fenétre les ordonnées augmentent vers le

bas !

» On recalcule le graphique en fonction des nouvelles valeurs

» On s’arréte quand on touche le sol



— La goutte d’eau -

y =
vy

attenteClic ()
fermeFenetre ()

tutk *
creeFenetre (400,400)
attenteClic ()

0
0

ef

cerclePlein (200,y,10,"blue’)
miseAlJour () # ne pas oublier

vy
y

y < 400: # on n’a pas encore touche le sol
faceTout ()

= vy + 0.1 # ici g = 0.1
=y + Vy # mise a jour de la position

» Il faut ajuster la valeur de g pour avoir un bon rendu



» Il existe deux moyens de modifier le flot normal des itérations
d’une boucle

» Ces moyens sont a éviter, sauf quand ils rendent le programme
plus clair (ce qui arrive)

» [’instruction arréte la boucle, et continue donc 1’exécution
du programme apres la boucle

» |’instruction arr€te I’itération en cours, et reprend a
I’1tération suivante de la boucle

while: while: >
break —

- continue
suite du prog > suite du prog




— Un exemple avec —

random randint
de = randint(1,100)

a = int(input(’Devinez un nombre (1-100) : 7))

== de:
break

a < de:
print (' trop petit’)

a > de:
print (' trop grand’)

print(’Bravo !’)

> boucle indéfiniment, la condition est toujours vérifiée

» On utilise pour arréter les it€rations quand le nombre est
deviné




— Boucles infinies —

Si la condition de boucle est toujours vraie, et
qu’il n’y a pas de break pour en sortir, le pro-
gramme reste bloqué en tournant indéfiniment
dans la boucle ! C’est une erreur classique.

» Pour forcer I’arrét d’un programme, dans i d1le ou un terminal
python faire control+C

» Pour forcer la fermeture faire control+D



— Les boucles imbriquées —

» On peut utiliser des boucles dans des boucles, des boucles dans
des boucles ...

» Cela arrive fréquemment quand on veut gérer des objets a deux
dimensions, mais aussi dans d’autres situations (voir les
algorithmes de tri dans 1’autre cours)

1 =1
1 < 5:
j =1
] < 4:
print(’ ("+str(i)+’,’+str(j)+")")
] =] + 1
1 =1 + 1




— Exemple du damier —

On souhaite paver la fenétre de carrés colorés :



— Exemple du damier —

On souhaite paver la fenétre de carrés colorés :

1utk *
creeFenetre (400,400)
1 =0

1 < 10:
] =0
] < 10:

(1+]) % 2 == 1:
couleur = "blue’
couleur = ’'yellow’

rectanglePlein (i%40,j%40,(1+1)%40,
] =3 + 1
1 =1 + 1

miseAlJour ()
attenteClic ()
fermeFenetre ()




Python pas a pas

Les listes



— Présentation —

La liste est un type avancé de données, elle sert a stocker une
s€quence de valeurs

On peut créer une liste par une affectation normale, ou on met
entre crochets et séparés par des virgules les différentes valeurs
de la liste

Ist =[ 3, ’toto’, 4.5, False |
Il y a une liste particuliere, la liste vide [] qui ne contient aucun
¢lément
On peut accéder au i-eme €lément d’une liste en utilisant les
crochets, le i-eme élément de Ist est Ist[i]
Attention : les indices commencenta O etnona 1 !
Ist = 3, ’toto’, 4.5, False ]

print( Ist[1] )
>>> toto’



— Affectations et listes —

A Il y a des subtilités ici, 2 bien travailler.

Une liste est un objet modifiable, on peut modifier ses valeurs,
ses éléments, efc sans créer de nouvelle liste

Ce n’est pas vrai pour les autres types qu’on a vu, notamment les
chaines de caracteres

On peut changer la i-eme valeur de Ist avec une affectation
classique : Ist[2] = ’titi’
S1 Ist est une liste, Ist2 = Ist associe au nom Ist2 la méme liste
(qui est modifiable).
En conséquence, si on modifie ensuite Ist, on modifie aussi 1st2!
Ist =[ 3, ’toto’, 4.5, False |
Ist2[1] = titi’
print(lst)
>>> [ 3, ’titi’, 4.5, False |



— Affectations et listes —

Ist = Ist2
Ist

3 ['toto’| 4.5 |False

Ist2

Ist[1] = titi’
Ist

3 tit1’ | 4.5 |False

NN/

Ist2



>

>

>

— Quelques opérations —

len( Ist ) retourne la longueur de Ist
x in Ist renvoie un booléen qui est quand x est dans Ist

Le + crée une nouvelle liste qui est la concaténation de deux
listes

[3,4,7]+ [toto’, 5]

>>>[3,4,7, toto’, 5]

Si on multiplie une liste par un entier n, cela crée une nouvelle
liste ou I’ancienne est répétée n fois :

Ist=1[3,4,7]

Ist2 =1st * 3

print(Ist2)

>>>13,4,7,3,4,7,3,4,7]



— Autres opérations —

» Les liste sont des objets, une notion hors-programme. On peut
néanmoins utiliser certaines fonctions rattachées aux listes (on
appelle cela des méthodes)

» Pour utiliser une telle fonction sur une liste Ist, on utilise
Ist.nom()

» Attention : en générale cela modifie la liste

Quelques exemples :
» Ist.append(x) ajoute la valeur de x a la fin de Ist
> Ist.extend(Ist2) ajoute tous les éléments de Ist2 a la fin de Ist
> Ist.pop() supprime le dernier €lément de Ist et retourne sa valeur

» Ist.pop(i) supprime le i-eme élément de Ist et retourne sa valeur



— Parcourir une liste —

» Une facon naturelle de parcourir une liste est d’utiliser une
boucle while, en faisant varier 1’indice dans la liste

Ist = [1, "toto’, 4.5, ]
1 =0

1 < len(lIst):
print(Ist[i])

1 =1 + 1

» Il existe d’autre moyens de parcourir une liste, que 1’on verra au
prochain cours



— Exemple : statistiques sur deux dés —

> On jette deux dés et on fait la somme. Comment se répartissent
les différents tirages ?



— Exemple : statistiques sur deux dés —

> On jette deux dés et on fait la somme. Comment se répartissent
les différents tirages ?

Ist = [1, "toto’, 4.5, ]
1 =0

1 < len(lIst):
print(lst[i])

1 =1 + 1




— Exemple : paradoxe des anniversaires —

» A partir de combien de personnes dans une piece des chances
importantes qu’au moins deux aient la méme date
d’anniversaire ?

» On va simuler, en regardant plusieurs fois au bout de combien de
personnes on a un doublon



— Exemple : paradoxe des anniversaires —

» A partir de combien de personnes dans une piece des chances
importantes qu’au moins deux aient la méme date
d’anniversaire ?

» On va simuler, en regardant plusieurs fois au bout de combien de
personnes on a un doublon

random randint

Ist = [] # pas de dates au debut
compteur = 0

compteur = compteur + 1
annee = randint(1,365)
annee Ist: #doublon
break
Ist.append(annee)
print (compteur ,’ personnes’ )




| Introduction a I’algorithmique

< et a la programmation

“ - IUT 1lere année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

—Cours 3/5 -



— Ecriture condensée —

» On a souvent besoin d’ajouter une valeur dans une variable, ce
que I’on a faitavec x =x+Yy

» Il existe en Python (et dans beaucoup d’autre langages) une
écriture plus compacte pour faire la méme chose : X +=y

» On peut I'utiliser avec d’autres opérations, et sur différents type.
Pour x entier et s chaine de caracteres, on a :

Xx+=3 — ajoute 3 a x

X *=2 — multiplie x par 2

x /=4 — x est changé en son quotient par 4
s +="toto’ — concatene ’toto’ a la fin de s

s *=3 — remplace s par 3 copies de s

s/l=4 — erreur

» il n’y a pas de notation i++ en Python



Python pas a pas

Les chaines de caracteres



>

— Déclaration de chaines de caracteres —

On peut déclarer une chaine entre apostrophes comme on a fait
jusqu’ici: x = "toto’ ...
ou entre guillemets : x = "toto"

les deux sont valides, on peut par exemple utiliser la premiere
quand il y a des guillemets dans la chaine et la seconde quand il
y a des apostrophes.

Comment faire s’il y a a la fois des * et des ” ? on utilise les
caracteres spéciaux \’ et \”:

s = "1l a dit : "a 1\’abordage !"’
Attention : \’ est un seul caractere, de méme pour \” (ce sont
des caracteres spéciaux) :

len (" d\’"abord’) — 7



— Déclaration sur plusieurs lignes —

» On peut déclarer une chaine sur plusieurs lignes en utilisant des
triples apostrophes ou triples guillemets comme délimiteurs :
s ="Ceci est une
chaine sur
plusieurs lignes.””’

» Les saut de lignes seront encodés par le caractére \n

» On peut également utiliser juste un backslash \avant la fin de
ligne et continuer sur la ligne suivante s = *Ceci est une'\
chaine sur\
plusieurs lignes.’



— Caracteres spéciaux —

» Voila quelques caracteres spéciaux utiles :

\” | apostrophe | \” | guillemet
\n | saut de ligne | \t | tabulation
\\ antislash | \a | reculer d’un

» Par exemple la chaine x = ’toto\ba’ estune chaine de
longueur 6, si on fait print (x) il s’affiche ...

>>> print(x)
tota



— Les chaines sont non-modifiables —

» Important : une chaine n’est pas modifiable.

» Six contient une valeur de type str et que vous voulez la
changer, il faut faire une nouvelle affectation de x :

x = ’toto’
x[0] =’p’ —— erreur on ne peut pas modifier une chaine
x =’poto’ —— on crée une nouvelle chaine ’poto’

» Rappel : c’est le contraire avec les listes :
Ist = [1,4,6,7]
Ist[0] =3 — Ist vaut [3,4,6,7]



— Opérations sur les chaines —

» On a déja vu la concaténation + de deux chaines et la
“multiplication” par un entier

» On a acces au i-eme caractere de la chaine s avec s[i] (les indices
commencent a 0)

» len(s) retourne la longueur de s
Il y a beaucoup d’autres opérations sur les chaines, avec la notation
s.fonction() notamment :

» s.ower() renvoie une nouvelle chaine ou les majuscules ont été
changées en minuscules

» s.upper() renvoie une nouvelle chaine ou les minuscules ont été
changées en majuscules

» s.split(t), ou t est une chaine, renvoie un tableau de chaines
obtenues en coupant s aux occurences de t



Python pas a pas

Structures itérables et boucles for



— Structure itérable —

» Une structure itérable est une structure qui contient plusieurs
valeurs avec

» une valeur initiale
» une notion de valeur suivante

» On connait déja deux exemples de structures itérables : les

chaines de caracteres et les listes :
s = ’abcdef”
Ist =[1, 4, 56, 2]

» On peut changer un it€rable en la liste, dans 1’ordre, de ses
élément avec 1’instruction list( )



— les range —

Une autre structure itérable tres utilisée est retournée par la
fonction range( )

range(a,b), ou a et b sont des entiers, est un it€rable qui
commence a a et qui s’arréte a b-1 :
list(range(1,5)) — [1,2,3.4]

range(b) est une version condensée de range(0,b)

range(a,b,c) est I’itérable qui commence a a et avance de c en ¢
jusqu’a arriver en b (exclu)
list(range(1,7,2)) — [1,3,5]

attention on s’ arréte avant b dans tous les cas



— les boucles for —

» Comme while, 1’instruction for est une instruction de boucle

» Elle permet de parcourir un itérable, dans 1’ordre, en
commengant au premier élément et en allant de suivant en
suivant

» La syntaxe est la suivante

for x in irerable:
instruction 1 du for
instruction 2 du for
instruction n du for
suite du programme



— Faire une action »n fois —

» 1’association de for et de range rend tres facile de faire une
opé€ration 7 fois :

int (input(’rentrez un nombre : ’))
1 range (n):
print (' bonjour’)

n

» iprend les valeurs du range, a savoir 0,1,...n-1

> Autre exemple : les statistiques sur la somme de deux dés

random randint
stats = [0] x 13

1 range (1000):

stats [randint(1,6)+randint(1,6)] += 1
print(stats)




— Utiliser la suite des valeurs d’un range —

» Afficher les nombresde 1 an:

n = int(input(’ rentrez un nombre : ’))
1 range (n):
print (1)

» Compte a rebours :

time sleep
1 range (5,0, —1):
print(str(i)+’...")
sleep (1)
print (’BOOOM’ )




— Itérer sur une liste —

» Afficher un a un les éléments d’une liste :

Ist = [3,5,6,14,—6,121]
X Ist:
print(x)

» Changement de couleur :

Ist = ["red’ ,”blue’ ,’green’ ,’gray’ ,’black’]
couleur Ist:
effaceTout ()
cerclePlein (200,200,100, couleur)
cercle (200,200,100)
miseAJour ()
sleep (1)
attenteClic ()




— Itérer sur les indices d’une liste —

» Sion a besoin des indices lors du parcours d’un itérable iterable,
on peut utiliser range(len(iterable)), vu que les indices vont de
0 a len(iterable)-1

Ist = ['bon’ ,’” jour’ ,’bonjour’ ]
1 range (len(lst)):
print(i,lst[i])




— Itérer sur une chaine —

» Compter le nombre de voyelles :

s = input(’texte : )
nbrVoyelles = 0
a s.lower ():
a [Ta’ ,’e’ /i’ 7o’ ,"u’ ,'y' ]:
nbrVoyelles += 1
print(’il1 y a’ ,nbrVoyelles ,’voyelles’)

» Jeu du pendu (extrait) :

motPendu = '’
a mot:
a proposes: # c’est une lettre proposee?
motPendu += a

motPendu += -’




— continue et break —

» On peut utiliser les instructions continue et break avec les
boucles for :
» continue reprend au for en passant a I’élément suivant de
I’itérable
» break interrompt la boucle

n = int(input(’nombre : ’))
i range (2,n):
n % i == 0:

print(n,’n\’est pas premier’)
print(’il est divisible par’ ,i)




— Conclusion sur la boucle for —

» On peut toujours faire une boucle while a la place ... c’est ce
qu’on a fait jusqu’ici

» L[instruction for est pluscompacte, plus lisible, et donc souvent
meilleure quand elle est utilisable

» Elle n’est typiquement pas adapt€e quand on ne sait pas au début
de la boucle combien de fois on va I’effectuer (ex: deviner un
nombre)



Python pas a pas

Les fonctions



— Présentation générale —

estPremier (n):
n < 2:

1 range (2,n):
n % i1 == 0:

» Une fonction est un bloc d’instruction réutilisable

» Cela permet d’écrire le code une seule fois pour réaliser une
méme tache répétée :
» Une fois bien testée, on s’en ressert autant qu’on veut
» Maintenance a effectuer a un seul endroit
» On peut mettre les fonctions dans un module pour les réutiliser

» Idée fondamentale en programmation : découper un programme
en sous-taches pour gagner en lisibilité et en robustesse.



— Définir une fonction —

nomFonction():
instruction 1 de la fonction

fin du bloc de la fonction

» Important : lors de la définition d’une fonction, le code n’est
pas exécuté

— Appeler une fonction —

» A tout moment dans le programme ou dans une fonction on
peut appeler la fonction avec la commande
nomFonction()

1 range (2,100):
estPremier (1):
print (i)




— Premier exemple —

appel ():
print(’ -’ x5, appel’ ,” =" %x35)

print (' bonjour’)

appel ()

n = int(input(’/nombre = ’))
1 range (n):
appel ()

» A chaque fois qu’on utilise I’instruction appel() le programme
interrompt le flot normal d’instructions pour aller effectuer les
instructions d’appel()

» Une fois les instructions d’appel() effectuées, le programme
reprend 12 ou 1l en était



— Fonction avec parametre —

affiche (s):

print(’«’ x (len(s)+4))
print(’~ "+s+’ ')
print(’«’ x (len(s)+4))

affiche ("bonjour’)
texte = input ()
affiche (texte)

» Une fonction peut avoir un ou plusieurs parametres

» Ils sont nommés entre parentheses dans la définition de la
fonction

» Lorsque 1’on appelle la fonction, il faut passer les parametres (le
bon nombre) entre parentheses



— Linstruction —

I’instruction x interrompt I’exécution de la fonction et
retourne la valeur x

X peut €tre de n’importe quel type

On récupere la valeur retournée normalement, par exemple par
une affectation :

y = maFonction(x)

On peut aussi I’utiliser dans une expression ou elle est évaluée :
y = maFonction(x) + 3
print(maFonction(x))

Par défault, s’1l n’y a pas de return ou si on met return
simplement sans argument apres, la fonction retourne



— Exemple de return -

minimum ( 1st ):
len(Ist) == O0:

mini = 1st[0] #on initialise a 1lst[0]
X Ist:
X < mint:
mini = X
mini

» Le premier return n’a pas d’argument, il retourne
la fonction. Le programme reprend 1a ou il en était.

» Le second return renvoie le résultat (flottant) du calcul

et arréte



— Portée des variables —

A Attention il y a des subtilités ici, a bien travailler.

f(n):
n =n + 1
x =3
f(x)
print (’'x vaut’ ,X)

» Le résultat est x vaut 3
» Ce qui se passe :
» al’appel de la fonction, la valeur du parametre de f est affecté au
n de la définition de f
donc n vaut 3
dans la fonction, n est augmenté de 1
X n’a pas changé
... d’ailleurs n n’existe pas dans le corps du programme

vV v. v .Yy



— Portée des variables —

A Attention il y a des subtilités ici, a bien travailler.

f(n):
n =n + 1
n =3
f(n)
print(’'n vaut’ ,n)

» Le résultat est encore n vaut 3 !
» Ce qui se passe :
» al’appel de la fonction, la valeur du parametre de f est affecté au
n de la définition de f
» Ce n’est pas le méme n
> Ily ale n principal, et le n de f qu’on va noter n¢
» ny prend la valeur de n a I’appel de f et est incrémenté de 1 dans
la fonction. n ne change pas.



— Portée des variables —

A Attention il y a des subtilités ici, a bien travailler.

f(x):
n = 1
n =3
f(n)
print(’n vaut’ ,n)

» Le résultat est toujours n vaut 3 !

» Ce qui se passe :
» al’appel de la fonction, la valeur du parametre de f est affecté au
x de la définition de f
» [affectation dans la fonction crée une variable locale a f,
notons-la ny
> ny prend la valeur de 1 et le n principal ne change pas.



— Porté des variables —

les parametres de la définition de la fonction sont des variables
locales, propres a la fonction

les variable affectées dans la fonction sont des variables locales,
propres a la fonction

ces variables locales existent pendant I’exécution de la fonction
et n’existent plus apres

les variables affectées dans le corps du programme (hors
fonctions) sont des variables globales

les variables globales sont lisibles dans tout le programme
les variables globales ne sont pas modifiables dans une fonction

(st on affecte une variable globale dans une fonction, on crée une
variable locale avec le méme nom)

pour modifier une variable globale x dans une fonction, il faut la
déclarer avec le mot clé



— Exemple de portée —

f(n):

1 = n

Wﬂ
[l
-

print(i,j, k)

\)

1 =
j =
k =6
f(44)
print(i,j,k)

o

» Dans le corps de la fonction n et i sont des variables locales
» Kk est une variable globale modifiable

> j est visible en tant que variable globale



— Exemple : balles rebondissantes —

Une balle est donnée par 4 valeurs [Xx,y,vX,vy], ses coordonnées
et son vecteur vitesse.

On va faire une fonction qui crée une nouvelle balle avec des
stats aléatoires

Une fonction pour dessiner une balle
Une fonction pour déplacer une balle

Dans le programme on crée la fenétre, initialise une liste de
balles, puis on répete déplacements et mises a jour



— Exemple : Poker fermé —

» On joue avec un jeu de 32 cartes

» On veut des fonctions pour créer un jeu, le mélanger, piocher une
carte, piocher 5 cartes

» On veut tester s’il y a quelquechose de valeur dans le jeu (carré,
full, couleur, ...)



— Cartes du poker sur un jeu de 32 —

0 =7 pique 8 =7 coeur 16 =7 carreau | 24 =77 trefle
1 =8pique | 9 =28 coeur 17 =8 carreau | 25 =8 trefle
2 =9 pique 10 =9 coeur 18 =9 carreau | 26 =9 trefle
3=10pique | 11 =10coeur | 19 =10 carreau | 27 = 10 trefle
4=Vpique | 12=Vcoeur | 20=V carreau | 28 =V trefle
5=Dpique | 13=Dcoeur | 21 =D carreau | 29 =D trefle
6 =Rpique | 14=Rcoeur | 22 =R carreau | 30 =R trefle
7=Aspique | 15=Ascoeur | 23 = As carreau | 31 = As trefle




| Introduction a I’algorithmique

< et a la programmation

“ - IUT 1lere année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

—Cours4/5 -



Python pas a pas

Structures de données avancées



— tuple -

Les sont I’équivalent de la notion mathématique de
n-uplets

Déclaration x = (4,3,1) crée un tuple avec 3 entiers
On peut aussi directement écrire x = 4,3,1

Pour faire un avec un seul élément, il faut utiliser une
virgule : x = (4,), sinon x est un int qui vaut 4

On accede au i-eme élément d’un comme pour les listes ou
les chaines : x[i], ou les indices commencent a 0

La longueur d’un tuple est retournée par la fonction len()

On peut changer un itérable en tuple a 1’aide de la fonction
tuple() : tuple(range(s)) = (0,1,2,3,4)

On peut concaténer deux avec +



>

— tuple vs list -

Méme s’ils se ressemblent, et sont des
A structures completement différentes

La principale différence c’est que :

» Une
» Un

est modifiable
n’est pas modifiable

Si t est un tuple, t[0] = 3 produit une erreur car t n’est pas

modifiable

Il n’y a pas de append() pour les

En fait, un

ressemble plsu a une chaine qu’a une liste



— Set -

Set en anglais signifie ensemble

La structure set permet de gérer efficacement un ensemble de
donnée

Comme c’est un ensemble, chaque €lément ne peut y étre violet
qu’une seule fois

Comme c’est un ensemble, I’ordre ne compte pas

Le mécanisme utilis€ pour que cette structure soit efficace fait
que les éléments d’un set doivent €tre non modifiables

Un set est un objet modifiable

On ne peut mettre dans un set que des objets non
modifiables, donc pas de liste, pas de set et pas
de dictionnaire



— Opération sur les Set —

Dans le tableau, s et t sont des

et 1 est un itérable :

set() crée un set vide len(s) longueur du set s
x in s teste six € s X not in s teste six ¢ s
s<=t teste si s C ¢ s|t retourne s U ¢
s&t retourne s N ¢ s™t retourne sAf?
s.add(x) ajoute x dans s s.remove(Xx) retire x de s
s.pop() | retourne et enleve || s.discard(x) | comme remove, mais
un élément de s pas d’erreur si x ¢ s
set(l) crée un set avec | S== teste I’égalité

» les opérations en bleu dans la table modifient le set s




>

>

>

— Test d’efficacité —

On crée une avec 10000 entiers

On teste si les 10000 entiers sont dedans

On fait la méme chose avec un

On compare le temps d’exécution avec le module time



— Dictionnaires —

Les dictionnaires permettent d’implanter de fagon tres efficace
des fonctions (partielles)

Dans certains langages, ils sont appelés des tableaux associatifs
Cela permet d’associer a une clé une valeur

Exemple d’utilisation :

D = {} # dictionnaire vide

D[’"toto’] = 4 # associe 4 a la cle ’'toto’
D[’titi’] = 6

print (D[’ toto’ ]) # affiche 4

D["toto’] = 'bonjour’ # remplace 4
print (D[’ toto’ ]) # affiche ’"bonjour’
print (D)

A La clé doit étre un élément non modifiable



— Opération sur les dictionnaires —

Dans le tableau suivant D est un dictionnaire, X est une clé et y est une

valeur :

couples (clé,valeur)

{} dictionnaire vide len(D) nombre de clés
D[x]=y D[x] vaut y D[x] retourne la valeur de x
del D[x] | x n’a plus de valeur xinD teste s1 X est une clé
D.keys() la liste de clés D.values() la liste des valeurs
D.items() la liste des




— Modifiables et non-modifiables —

On a vu des structures non-modifiables :
» booléens, entiers, caracteres, flottants
» chaines de caractere
> tuple

Et des structures modifiables :
> listes
» ensembles

» dictionnaires

Il peut €tre utile de passer d’un type a I’autre. On peut par exemple
utiliser la fonction tuple() pour transformer une liste (modifiable) en
un tuple (non-modifiable)



— Affectation multiple —

On peut affecter simultanément plusieurs variables avec la
syntaxe X,y,z = iterable

Cela ne fonctionne que s’il y a le méme nombre d’éléments a
gauche que dans I'itérable x,y,z = [5,6,8]

Comme on peut omettre les parentheses lors de 1’écriture d’un
tuple, on peut utiliser x,y,z = 3,6,8

On peut méme écrire X,y = y,X ce qui échange les deux
variables!

Il est possible d’utiliser _ pour signifer des positions qui ne nous
intéressent pas
X, 5 -,y = range(4)

On peut s’en servir dans toutes les situations, par exemple

key , value D.items ():
print(’cle=’" ,key,’valeur=’,value)




Python pas a pas

Compléments sur les fonctions



— Commentaire de fonction —

» Apres I’entéte de la fonction, on peut mettre un descriptif de la
fonction directement dans une chaine de caracteres

pgcd(a,b):
"calcule le pgcd de a et de Db’
b != 0:
a, b =D>b, a%b
a

» On accede a la description avec la fonction help dans un terminal
Python

» Certains éditeurs Python comme IDLE3 font apparaitre la
description des fonctions

» Il faut prendre I’habitude de mettre une description pour toute
les fonctions importantes.



— Parametres par défaut —

» On peut spécifier des valeurs par défauts dans une fonctions

f(x,y=4,z2=35):
X +y + Z

» Siles champs considérés ne sont pas donnés lors de 1’appel a la
fonction, ils prennent la valeur par défaut :
f(2,2,2) — 6
f(2,3) — £(2,3,5) — 10
f2) — f(2,4,5) — 11
f() — erreur

Il ne faut pas mettre des valeurs modifiables
comme valeurs par défaut, mais vous pouvez
mettre des y oos



— Exemple —

creeCercle (x= , Y= ,couleur= ):
"var defaut le cercle est place au hasard’
X ==

x = randint (1 ,LARGEUR)

y = randint (1 ,HAUTEUR)

couleur == :

couleur = randomCouleur ()
cerclePlein(x,y,10,couleur)




— Parametres modifiables —

Rappel :

f(x):

X = X + 1
n =3
f(n)
print(n)

» le “x” de la fonction f est une variable locale de f, le “n” global
n’est donc pas changé lors de 1’appel a la fonction : cela affiche 3

Avec une liste :

ajoute (L,x):

L.append(x)
Ist = [4,5]
ajoute (Ist ,7)
print(1lst)




— Parametres modifiables (suite) —

f(x):
X = X + 1 # x est incremente
n =3

f(n) # x de f prend la valeur de n
print(n)

ajoute (L,x):

L.append(x) # on modifie L en ajoutant x
Ist = [4,5]

ajoute (Ist ,7) # L prend la valeur lst
print(lst) # affiche [4,5,7]




— Parametres modifiables (suite) —

ajoute (L,x):

L.append(x) # on modifie L en ajoutant x

Ist = [4,5]
ajoute (Ist ,7) # L prend la valeur lst
print(lst) # affiche [4,5,7]
ajoute(lst,7) — L,x = Ist,7 L.append(x)
Ist \ Ist \
4 4 | 5 | 7
L e L e




Ist

L

— Parametres modifiables (fin) —

f(L,x):

L.append(x)
L = list(range(3))
L.append(x)

Ist = [4,5]

f(lst ,7)

Premier append()

I
e

Second append()
Ist

/N




— Autre exemple : ’alphabet —

ajoutelLettres (u,D):

X u:
D.add(x)
A = set()
s = input(’'mot = ')
s == ’"stop’:

ajoutelLettres (s,A)
print (/' alphabet='" ,A)




— Fonctions en argument —

» On peut passer une fonction en argument d’une autre fonction

filtre (L,f):
R =[]
X 109
f(x):
R.append (x)
R

estPair(n):
n %2 == 0

toto(n):
n % 3 == 0

Ist = filtre(range(10),estPair)
print(1lst)
print(filtre (range (20),toto))




— Tri avec plusieurs fonctions de comparaison —

triBulle (T, plusGrand ):
1 range (len(T)—1,0,—1):
] range (1):
plusGrand (T[;],T[j+1]):
T[j1, T[j+1] = T[j+1], T[j]

superieurDebut(u,v):
ulf0] > v][O0]

superieurFin(u,v):
u[len(u)—1] > v[len(v)—1]

usuel (x,y):
X >y




— Exemple de A a Z: dessin d’une fonction —

On va réaliser une fonction trace(f,couleur,xmax,ymax) pour
afficher une fonction

f est le nom de la fonction a tracer
couleur est la couleur utilisée pour la tracer

xmax et ymax définissent la zone de dessin : entre -xmax et
+xmax en abscisse et -ymax et ymax en ordonnées



— (illusion de) retourner plusieurs valeurs —

» Comme une fonction peut retourner un , on peut s’en servir
pour retourner plusieurs valeurs

divEuclidienne (a,b):
"retourne quotient et reste’

a // b, a%b

q,r = divEuclidienne (14 .,4)
print (' quotient=’,q,’, reste=’,r)




Python pas a pas

Lecture / écriture dans un fichier



— L’instruction join( ) —

I’instruction join( ) est une instruction (méthode) de chaine de
caracteres

On I'utilise de la fagon suivante :
s.join(it)
ou s est une chaine de caracteres et it est un itérable contenant
des chaines de caracteres.
le résultat est une chaine qui contient les mots de it reliés par s

> join([’ab’,cd’efg’] — ’ab:cd:efg’



— Ouverture et fermeture d’un fichier -

On peut instancier une variable de type fichier, qui va permettre
de faire des opérations sur les fichiers présents sur I’ordinateur

Pour ouvrir un fichier en python, on utilise la commande :

f = open(chemin,mode),
ou f est la variable qu’on utilisera pour accéder au fichier,
chemin est le nom du fichier (éventuellement avec le chemin
pour le trouver ’../toto.txt’) et mode est le mode d’utilisation du
fichier dans le programme
Il existe de nombreux modes d’acces aux fichiers, voila les trois
plus communs :

» ’r’ : mode lecture seulement, ¢’est le mode par défaut

» ’w’ : mode €Ecriture, le fichier est créé s’il n’existe pas, sinon il est
effacé pour pouvoir y écrire

» ’a’ : mode ajout, c’est un mode €criture a partir de la fin du fichier

Pour fermer un fichier : f.close()



— Les objets file -

» C’est un objet modifiable : si on le fait évoluer dans une
fonction, il évolue globalement

» Il connait le fichier

» Il a une position courante dans le fichier, qui est modifiée au fur
et a mesure qu’on lit ou €crit dans le fichier



>

>

>

>

— Lecture dans un fichier -

Il faut que le fichier soit ouvert en lecture

On peut lire une ligne de f avec I’instruction f.readline()
Cela déplace la position courante a la ligne suivante

Donc on peut répéter 1’appel a f.readline() pour lire toutes les

lignes une a une

Quand il n’y a plus rien a lire, f.readline() retourne la chaine

vide ”’

f = open(’filtre.py’)

ligne =
ligne
ligne =
print(1l)
f.close ()

rr .

| =

f.readline ()




— Solution alternative —

» Une file f peut aussi étre vue comme une structure itérable de
ses lignes

» Cela permet de tres facilement lire les lignes de £

f = open(’iterable.py’)

ligne f:
print(ligne)
f.close ()

Que [D'on utilise readline() ou le format
d’itérable, les lignes retournées conservent le car-
A actere ’\ n’ a la fin. On peut I’enlever avec
I’instruction ligne = ligne[:-1] (cf dernier cours)



— Ecriture -

» Pour écrire dans un fichier, il faut 1’ouvrir en écriture w’ ou en
ajout’a’

» Pour écrire la chaine s dans le fichier £, on utilise 1’instruction
f.write(s)

» Attention, contrairement a print( ), cela ne rajoute pas un saut de
ligne a la fin

f = open(’'tmp’ ,"w’")
1 range (10):
f.write(’ligne "+str(i)+’\n’)
f.close ()




>

>

>

— Exemples —

Lister les palindromes en frangais
Créer un nouveau fichier sans les accents et sans les ¢
Lister les palindromes du nouveau fichier

Le jeu du pendu
Recherche d’anagrammes :

» Un ensemble de lettres (avec répétitions) est vu comme un tuple
ordonné (on utilise la fonction Ist.sort() qui tri la liste Ist

» On stocke les anagrammes sous forme d’un dictionnaire ou les
clés sont les tuples ordonnés ci-dessus, et les valeurs 1I’ensemble
des mots qui utilisent ces lettres



| Introduction a I’algorithmique

< et a la programmation

“ - IUT 1lere année
2013-2014

Cyril Nicaud

Cyril.Nicaud@univ-mlv.fr

—Cours5/5-



Python pas a pas

Les slices



— Notion de slice —

On a vu qu’on peut acceder au i-eme élément d’une liste ou
d’une chaine avec t[i]

Le slice consiste a accéder a une portion d’une liste ou d’une
chaine

Notation : t[debut:fin] prend la sous-liste ou la sous-chaine
comprise entre les indices debut et fin-1

Attention : c’est fin -1 comme pour les range

s = ’bonjour’
print(s[2:5]) — ’njo’



» On peut utiliser des indices négatifs

» L’indice -i est le méme que len - i

— Indices négatifs —

s = ’bonjour’

print(s[-2]) — u
print(s[1:-2]) — onjo

O|1 2|3 |4|5]|6
blo|n|j|o|u]|Tr
T71-6|-5]-4]-3|-2]|-1




— Parametres par défaut —

Dans un slice, le début est par défaut O : t[:4] est la méme chose
que t[0:4]

Dans un slice, la fin est par défaut len(t) : t[4:] est la méme
chose que t[4:len(t)]

t[:7] ce sont donc les 7 premiers éléments
t[2:] ce sont les éléments a partir du troisieme (le premier est a 0
t[:-2] ce sont tous les éléments sauf les 2 derniers

t[-5:] ce sont les 5 derniers éléments

Lors d’un slice, Python recopie la portion de
A chaine (ou de liste, ...) qui est extraite.



Python pas a pas

Notion d’exception



— Qu’est-ce qu’une exception ? —

» Quand un programme plante, c’est qu’il y a eu un probleme qui a
levé une exception

» Le mécanisme d’exception sert a signaler une anomalie de
fonctionnement

» Quand une telle anomalie se produit, on peut dans le
programme :

» ne rien faire et laisser le programme planter
> intercepter 1’exception et traiter le probleme dans le programme

Message d’erreur type :
Traceback (most recent call last):
File ’coded4/erreur.py”’, line 1, in <module>
x=3//0
ZeroDivisionError: integer division or modulo by zero



— Mécanisme d’interception —

» Pour intercepter une exception, il faut mettre le code qui risque
d’en générer une dans un bloc try:

» [’interception se fait ensuite dans un bloc except:

try:
instructions a risque
except:
instructions en cas d’exception



— Exemple : saisir un entier —

» la fonction demande un nombre et tente de le convertir en entier
avec la fonction int( )

> sielle n’y arrive pas, une exception est levée, qui est interceptée
avec le except

> en cas de probleme on retourne : le programme ne plante
pas, on peut redemander le nombre

saisieNombre (s=' nombre = 7 ):

int (input(s))




— Interception (suite) —

» Un méme code peut générer plusieurs types d’erreurs

» Il peut €tre utile de savoir les distinguer lors de I’interception.

n = int(input(’nombre = ’))
print(l / n)

print(’il yv a eu une erreur’)




— Noms d’exceptions —

» On peut paramétrer les except avec un nom d’exception

> Siun except est paramétré, il n’est exécuté que si une exception
du bon nom est levée

» Le nom de I’exception est celui indiqué sur la derniere ligne du
message d’erreur

Traceback (most recent call last):
File ’coded/erreur.py’’, line 1, in <module>
x=3//0
ZeroDivisionError: integer division or modulo by zero



— Exemple avec plusieurs except —

n = int(input(’/nombre = "))

print(l / n)
ZeroDivisionError:

print(’Division par zero!’)

print(’il y a eu une erreur’)




— Lever sa propre exception —

» Il est possible de lever volontairement une exception pour
signaler un probleme

» [instruction est NameError(str), ou str est un message
d’information

» Attention : le nom d’une telle exception est NameError

puissance (x,n):
n < O:
NameError(’pas de puissance negative’)

range (n):
X

[on S
*
=l




Python pas a pas

Les listes en compréhension



— Listes en compréhension -

» [’idée est d’avoir un moyen de décrire une liste comme on décrit
un ensemble en mathématiques :

E={2"|ie{0---10}}
F={xe{10---30} | x impair}

» Pour le premier, la syntaxe est [f(x) for x in iterable], ou f est
une fonction :

E = [2**j for i in range(11)]
» pour ajouter une condition, on utilise
F =[iforiinrange(11) ifi%2 == 1]



— Liste en compréhension (suite) —

» On peut utiliser plusieurs for :
C =[(i,j) for i in range(5) for j in range(4)]

» On peut bien entendu s’en servir sur d’autres types que les int

s = 7Ceci est le dernier cours de Python”
Ist = [(u,len(u)) u s.split ()]
X Ist:
print(x)
Ist2 = [u u s.split () e’ not u ]

print(1st2)




>

>

>

>

>

— Quelques exemples —

Les premieres lettres de chaque mot d’une phrase
Les nombres premiers via les nombres non-premiers
Une application aléatoire de {1, ...,n} dans {1,...,n}
Les racines de x° — 5x° + 4x

Les entétes de fonctions dans un fichier Python



— Fonctions anonymes : fonctions lambda -

» Il peut €tre utile de créer une fonction a la volée pour la passer en
parametre

» On peut le faire grace au mot clé , la syntaxe est
X : expression(x)

qui est une fonction anonyme qui est I’équivalent de
def f(x):
return expression(x)

s = 7ceci est le dernier cours de python”
Ist = s.split()
print (sorted (1Ist ,key= x:x[0]))




