1 Chapter 1

page 7, (Eduardo Scarparo, april 2022) replace Example 1.1.1 by: As a simple example, consider $X = [0, 1]$, which is metric and compact as a closed interval of the real line \mathbb{R}. The transformation $T : x \mapsto x^2$ is a continuous map from X onto X.

page 8, replace Example 1.1.2 by: Given $\alpha \in \mathbb{R}$, the transformation $T : x \mapsto x + \alpha \mod 1$ is not continuous at $x = 1 - \alpha \mod 1$ and thus the pair $([0, 1], T)$ is not a topological dynamical system. If we consider, instead of $[0, 1]$, the torus $T = \mathbb{R}/\mathbb{Z}$ in which 0 and 1 are identified, the transformation T is simply the translation $T_{\alpha} : x \mapsto x + \alpha$ and becomes a homeomorphism on T. The system (T, T_{α}) is called the rotation of angle α.

2 Chapter 3

page 138, line 8. We shall see later a different proof using dimension groups and also that the result is true more generally for minimal substitution shifts.

page 155, line -7 (Marie-Pierre Béal, march 2022). A direct proof of the fact that two Sturmian shifts of slopes α, β are conjugate if and only if $\alpha = \beta$ or $\alpha = 1 - \beta$ can be found in [1] (see also [2, Theorem 5.19] where a proof using eigenvalues is given).

3 Chapter 4

page 194, ligne -1 (Felipe Arbulú, march 2022). $w = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.
\[N_2^k(\alpha v + \beta w) = 2^k\alpha v + (-1)^k\beta w = \begin{bmatrix} 2^k\alpha + (-1)^k\beta \\ 2^{k+1}\alpha + (-1)^{k+1}\beta \\ 3 \cdot 2^k\alpha \end{bmatrix} \]

page 198, line 12 (Felipe Arbulú, march 2022). with positive cone \(\mathbb{Z}_+[1/3] \times \mathbb{Z} \) and unit \((1,1)\).

4 Chapter 5

page 219, line -1. Note that the dimension group of a stationary properly ordered BV system \((X_E, V_E)\) is the direct limit of a stationary system defined by a primitive matrix. By Theorem 2.5.1, it has a unique state and thus \((X_E, V_E)\) is uniquely ergodic.

5 Chapter 6

page 252, line -5. Note that this implies that every minimal substitution shift is uniquely ergodic (see Section 5.3.4).

6 Appendix A

page 471, line -6. with positive cone \(\mathbb{Z}_+[1/3] \times \mathbb{Z} \) and unit \((3,-1)\), which can be normalized to \((1,1)\) through the automorphism \((\alpha, \beta) \mapsto (\alpha/3, -\beta)\).

7 Appendix C

page 536, line 3. with positive cone \(\mathbb{Z}_+[1/3] \times \mathbb{Z} \)

References
