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Abstract

We show how the use of graded alphabets allows one to provide sim-

pler proofs of some results on free monoids and free Lie algebras. We first

generalize to graded alphabets the characterization of the length distri-

butions of circular codes. We also show that the existence of a circular

code with a given distribution of degrees is equivalent to the existence of

an embedding of Lie algebras. We finally give a generalization to graded

alphabets of the famous result of Eastman on comma free codes of odd

degree.

1 Introduction

The notion of code with bounded synchronization delay was introduced by
Golomb and Gordon [4]. For a finite code, the property of having finite syn-
chronization delay is equivalent to the notion of circular code (see [2] Theorem
10.2.7) .
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The characterization of the length distributions of circular codes was con-
jectured by Gilbert and Moore and proved by Schützenberger [10].

Graded alphabets are alphabets where to every letter is assigned a positive
integer, its degree (also called a weight or a cost). This degree extends to words
by additivity. These more general alphabets are used to take into account the
possibility that letters have different properties, for example a length, a cost, or
a duration (see [1] or [2, Section 3.9] for an exposition of algorithms on alphabets
with costs).

In this note, we give a new presentation of the characterization of length
distributions of circular codes, using graded alphabets (Theorem 4.1). This
gives both a more general statement and a substantial simplification of the
proof (although the construction remains essentially the same). Additionnally,
we prove that the existence of a circular code on a graded alphabet A with
degree distribution (un) is equivalent to the existence of a degree preserving
embedding of the free Lie algebra L on an alphabet B with degree distribution
(un) into the free Lie algebra L(A) (Theorem 5.1).

We also extend to graded alphabets the result of Eastman proving the exis-
tence for every odd integer n of a comma-free code with the maximal possible
number of elements, that is the number of conjugacy classes of primitive words
of length n (Theorem 6.2).

Ackowledgements The authors are very grateful to the referees, who have
carefully read the paper, and have provided substantial hints for an improvement
of its readability.

2 Circular codes

A code is a set X ⊂ A∗ which is the basis of a free submonoid of A∗. In
equivalent terms, X is a code if any equality

x1x2 · · ·xn = y1y2 · · · ym

for n,m ≥ 0 and xi, yj ∈ X implies n = m and xi = yi for 1 ≤ i ≤ n.
As a stronger notion, a circular code X on an alphabet A is a set X ⊂ A+

such that for all n,m ≥ 1 and x1, x2, . . . , xn ∈ X , y1, y2, . . . , ym ∈ X and p ∈ A∗,
s ∈ A+, the equalities

sx2 · · ·xnp = y1y2 · · · ym, (2.1)

x1 = ps (2.2)

imply n = m, p = 1 and xi = yi for 1 ≤ i ≤ n.
A submonoid M of A∗ is generated by a circular code if and only if for every

u, v ∈ A∗, one has
uv, vu ∈M ⇒ u, v ∈M (2.3)

(see [2] Proposition 7.1.1) and in particular for u ∈ A∗ and n ≥ 1,

un ∈M ⇒ u ∈M. (2.4)
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A circular morphism ϕ : B∗ → A∗ is a monoid morphism such that ϕ maps
bijectively B onto a circular code X ⊂ A+. Note that such a morphism is
necessarily injective, since ϕ(B) is a code.

The composition of two circular morphisms is circular [2, Proposition 7.1.11].
Two words x, y are conjugate if x = uv and y = vu for some words u, v.

Conjugacy is an equivalence relation. A word w is called primitive if it is not a
power of another one, that is, w = xn implies n = 1. A primitive word of length
n has n distinct conjugates.

It follows from the definition of circular codes that a circular morphism ϕ
sends primitive words to primitive words and that ϕ(x), ϕ(y) are conjugate if
and only if x, y are conjugate.

We begin with the following elementary and well-known result concerning
generating series (see e.g. [2, Proposition 7.3.1]).

Proposition 2.1 Let (un) be a sequence of integers and u(z) =
∑

n≥1 unz
n.

Define integers ℓn by

1− u(z) =
∏

n≥1

(1− zn)ℓn . (2.5)

Set
pn =

∑

d|n

dℓd (2.6)

and let p(z) =
∑

n≥1 pnz
n. Then

p(z) =
zu′(z)

1− u(z)
(2.7)

1

1− u(z)
= exp(

∑

n≥1

pn
n
zn). (2.8)

pn = nun +

n−1
∑

i=1

piun−i (2.9)

Proof. We have
1

1− u(z)
=

∏

n≥1

1

(1 − zn)ℓn
.

Take the logarithmic derivative of each side, and multiply by z:

zu′(z)

1− u(z)
=

∑

n≥1

nℓnz
n

1− zn
=

∑

n≥1

nℓn
∑

m≥1

znm

=
∑

N≥1

∑

N=nm

nℓnz
N =

∑

N≥1

pNz
N = p(z).

This proves the first equality. The second one follows since both sides have
the same constant term and the same logarithmic derivative. The first equality
implies zu′(z) = p(z)− u(z)p(z), whence the last equality.
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The following result is well known, although usually formulated for a finite
alphabet.

Proposition 2.2 Let X ⊂ A+ be a code such that un = Card(X ∩An) is finite
for every n ≥ 1. Then u∗n = Card(X∗ ∩ An) is finite for every n ≥ 0 and

1

1− u(z)
=

∑

n≥0

u∗nz
n. (2.10)

Proof. For 1 ≤ k ≤ n, let u
(k)
n be defined by u(z)k =

∑

n≥0 u
(k)
n zn. Since every

word of length n has a unique decomposition in k words of X , u
(k)
n is the number

of words of length n in Xk. Since u
(k)
n = 0 if k > n, we obtain u∗n =

∑

k≥0 u
(k)
n ,

and therefore
∑

n≥0 u
∗
nz

n =
∑

n≥0

∑

k≥0 u
(k)
n zn =

∑

k≥0 u(z)
k = 1

1−u(z) .

3 Graded alphabets

Let A be a graded alphabet, given by a map d : A → N \ {0} assigning to every
letter a nonzero integer called its degree. We assume that A is locally finite, that
is, for each integer n ≥ 1, there is only a finite number of letters of degree n.
Set un(A) = Card({a ∈ A | d(a) = n}).

The degree of a word w = a1a2 . . . an on A (n ≥ 0, ai ∈ A) is then defined
by d(w) = d(a1) + . . . + d(an). In this way the free monoid A∗ on A becomes
a graded monoid, that is a monoid such that d(x) = 0 if and only if x = ε and
such that d(xy) = d(x) + d(y) for every x, y ∈ A∗.

Given graded alphabets A,B, a morphism ϕ : A∗ → B∗ is degree preserving
if d(ϕ(b)) = d(b) for every b ∈ B.

When A is a graded alphabet, we denote by ℓn(A) and pn(A) the integers
associated with the numbers un(A) as in Proposition 2.1.

Thus the integers pn(A) are defined by

pn(A) =
∑

d|n

dℓd(A) (3.1)

and conversely, by Möbius inversion, the integers ℓn(A) are defined by

ℓn(A) =
1

n

∑

d|n

µ(n/d)pd(A) (3.2)

where µ is the Möbius function.
Let A be an ordinary alphabet with k letters. We can consider A as a graded

alphabet where each letter has degree 1. We then denote ℓn(k) instead of ℓn(A)
since it only depends on k.

On the other hand, for every sequence u = (un)n≥1 of natural integers, we
can consider a graded alphabet B such that un(B) = un. We denote ℓn(u)
instead of ℓn(B).
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The following result is well known (see [2, Exercise 7.3.3]). We shall give a
direct simple proof below using an argument of [11, Proposition 4.7.13].

Proposition 3.1 Let A be a graded alphabet. The number of conjugacy classes
of primitive words of degree n is ℓn(A).

Proof.
Let A′ = {(i, a) | a ∈ A, 1 ≤ i ≤ d(a)} and let ϕ : A∗ → A′∗ be the morphism

defined by ϕ(a) = (1, a)(2, a) · · · (d(a), a). Set X = ϕ(A). Clearly, ϕ is a circular
morphism.

Set u(z) =
∑

n≥1 un(A)z
n. Let u∗n(A) be defined by

1

1− u(z)
=

∑

n≥0

u∗n(A)z
n.

Then, by Proposition 2.2, u∗n(A) is the number of words of length n in X∗.
Let πn be the number of words of length n in A′∗ having a conjugate in X∗.

For every a ∈ A, let gn,a be the number of words w of length n in A′∗ of the
form w = syp with y ∈ X∗, ϕ(a) = ps and p nonempty. The triple (s, y, p) is
uniquely determined by w and thus

gn,a = d(a)u∗n−d(a)(A) (3.3)

Conversely, every word of A′∗ of length n having a conjugate in X∗ is of this
form for some a ∈ A and thus πn =

∑

a∈A gn,a.
We obtain as consequence

πn =
∑

a∈A

gn,a =
∑

a∈A,d(a)≤n

d(a)u∗n−d(a)(A)

=

n
∑

i=0

iui(A)u
∗
n−i(A).

By Formula (2.7), we have p(z) = zu′(z)
1−u(z) = (

∑

i≥0 iui(A)z
i)(

∑

n≥0 u
∗
n(A)z

n).

Thus pn(A) = πn.
Let now λn be the number of conjugacy classes of primitive words of degree n

in A∗. The morphism ϕ sends primitive words to primitive words and ϕ(u), ϕ(v)
are conjugate if and only if u, v are conjugate. Thus, λn is equal to the number of
conjugacy classes of primitive words of length n in A′∗ which meetX∗. Therefore
πn =

∑

d|n dλd. But we have by Equation (2.6), pn(A) =
∑

d|n dℓd(A). Since we

have shown that pn(A) = πn, it follows by Möbius inversion that λn = ℓn(A).

An alternative proof is as follows: it uses Lyndon words, which are by defini-
tion the primitive words minimal for the lexicographic oreder in their conjugacy
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class (see [2]). As is well known, each word in A∗ is uniquely a decreasing prod-
uct of Lyndon words. It follows that in the algebra of formal power series on A
over Z, one has

(1 −A)−1 = A∗ =
∏

w

w∗ =
∏

w

(1− w)−1,

where the products are decreasing and over the set of Lyndon words w, and
where subsets of A∗ are indentified with their sum in the previous algebra. By
sending each word u onto zdeg(u) in Z[[z]], it follows that

(1− u(z))−1 =
∏

n≥1

(1− zn)−λn ,

where λn is the number of primitive conjugacy classes in A∗. Comparing with
Formula (2.5), we obtain that λn = ln(A), since the exponents are unique.

Example 3.2 Consider the graded alphabet A = {a, b} with d(a) = 1 and
d(b) = 2. The values of pn(A) and ℓn(A) for 1 ≤ n ≤ 11 are given in Table 3.2.
The sequence (pn) is the Lucas sequence: it is defined by the same recursion

n 1 2 3 4 5 6 7 8 9 10 11
pn(A) 1 3 4 7 11 18 29 47 76 123 199
ℓn(A) 1 1 1 1 2 2 4 5 8 11 18

as the Fibonacci numbers, with initial values 1, 3 for n = 1, 2; we leave this
verification to the reader, using Equation (2.6).

4 Length distributions of circular codes

The following statement is closely related to the main result of [10] (see also [2,
Theorem 7.3.7]). Indeed, the result of Schützenberger states that there exists a
circular code on A with length distribution u = (un) if and only if ℓn(u) ≤ ℓn(k).
The statement on graded alphabets is, as we shall see, more general. Moreover,
it allows us to give a substantially simpler proof, using induction by change of
alphabets.

Theorem 4.1 Let A,B be two graded alphabets. The following conditions are
equivalent.

1. There exists a degree preserving circular morphism ϕ : B∗ → A∗.

2. ℓi(B) ≤ ℓi(A) for all i ≥ 1.

Let us show how this statement implies the result of Schützenberger. Let A be
an ordinary alphabet with k letters and let u = (un) be a sequence of integers
such that ℓn(u) ≤ ℓn(k) for all n ≥ 1. Consider a graded alphabet B such that
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un(B) = un for all n ≥ 1. Then ℓn(u) = ℓn(B) and thus Condition 2 above
is satisfied. Hence, by Theorem 4.1, there exists a degree preserving circular
morphism ϕ : B∗ → A∗. Set X = ϕ(B). Since ϕ is circular, X is a circular code
and since it is degree preserving, we have Card(X ∩ An) = un(B) = un for all
n ≥ 1.

For the reverse implication, one notes that ln(k) is the number of conjugacy
classes of primitive words A∗, |A| = k. A circular code on A cannot contain
more than ln(k) words of length n, otherwise two of them are conjugate, a
contradiction.

We first prove the following elementary lemmas.

Lemma 4.2 Let A,B be graded alphabets and let α : B∗ → A∗ be a degree
preserving circular morphism. Then α induces for every n ≥ 1 an injective map
from the set of conjugacy classes of primitive words of degree n on B into the
set of conjugacy classes of primitive words of degree n on A.

Proof. Since α is circular, the image by α of a primitive word is primitive by
(2.4), and α(u), α(v) are conjugate if and only if u, v are conjugate by (2.3).

Lemma 4.3 Let A be a graded alphabet and let a ∈ A be a letter of degree n.
Let A′ be a graded alphabet in bijection with X = a∗(A \ {a}) by some degree
preserving map α. Then

ℓi(A
′) =

{

ℓi(A) − 1 if i = n

ℓi(A) otherwise

Proof. Since X is a circular code, the map α extends to a degree preserving
circular morphism α : A′∗ → A∗. Since α is circular, it induces by Lemma 4.2,
an injective map from the set of conjugacy classes of primitive words of degree i
on A′ into the set of conjugacy classes of primitive words of degree i on A. For
i < n, it is a bijection and thus ℓi(A

′) = ℓi(A). If x ∈ A∗ contains a letter x
distinct of a, it has a conjugate ending by x, which is therefore in X∗ = α(A′∗).
Thus, for i = n there is one less conjugacy class of primitive words of degree i
on A′ than on A and for i > n the same number.

Note that Lemma 4.3 can also be proved using generating series. Denote in
fact u(z) =

∑

n≥1 un(A)z
n and v(z) =

∑

n≥1 un(A
′)zn. Since X = a∗(A \ {a}),

we have v(z) = 1
1−zn (u(z)− zn) and consequently 1−u(z) = (1− zn)(1− v(z)).

Thus Lemma 4.3 follows directly from Equation (2.5).

Lemma 4.4 Let A,B be graded alphabets with B finite, such that ℓi(A) = ℓi(B)
for 1 ≤ i < k. Then ui(A) = ui(B) for 1 ≤ i < k. If, additionnally, ℓk(A) >
ℓk(B), then uk(A) > uk(B).
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Proof. Equation (2.5) taken modulo zk shows that u1, . . . , uk−1 depend only on
ℓ1, . . . , ℓk−1. This implies the first assertion.

By Equation (2.9), pk(A)−pk(B) = k(uk(A)−uk(B)), and by Equation (2.6),
pk(A)−pk(B) = k(ℓk(A)−ℓk(B)). Thus uk(A)−uk(B) = ℓk(A)−ℓk(B), which
implies the last assertion.

We now establish, the following statement (which is Theorem 4.1 in the case of
a finite alphabet B, with a weaker second condition).

Proposition 4.5 Let A,B be graded alphabets with B finite. The following
conditions are equivalent.

1. There exists a degree preserving circular morphism ϕ : B∗ → A∗.

2. ℓi(B) ≤ ℓi(A) for 1 ≤ i ≤ max{d(b) | b ∈ B}.

Proof. 1 implies 2 is clear by Lemma 4.2.
2 implies 1. Set N = max{d(b) | b ∈ B}. We use induction on δ(A,B)

defined by

δ(A,B) =

N
∑

i=1

(ℓi(A)− ℓi(B)). (4.1)

If δ(A,B) = 0, then ui(A) = ui(B) for i = 1, . . . , N by Lemma 4.4. Let
ϕ : B → A be a degree preserving injection from B onto A. This bijection
defines a degree preserving circular morphism from B∗ into A∗.

If δ(A,B) > 0, let n ≥ 1 be the largest integer such that ℓi(A) = ℓi(B) for
1 ≤ i < n. By Lemma 4.4 we have un(A) > un(B). Thus there exists a letter
a ∈ A of degree n. Set X = a∗(A \ a) and let α be a degree preserving bijection
from a graded alphabet A′ onto X . By Lemma 4.3, we have ℓi(A

′) = ℓi(A) for
i 6= n and ℓn(A

′) = ℓn(A) − 1. Thus ℓi(B) ≤ ℓi(A
′) for 1 ≤ i ≤ N and, by

Lemma 4.3,

δ(A,B)− δ(A′, B) =

N
∑

i=1

(ℓi(A)− ℓi(B)) −

N
∑

i=1

(ℓi(A
′)− ℓi(B))

=

N
∑

i=1

(ℓi(A)− ℓi(A
′)) = ℓn(A)− ℓn(A

′) = 1

The induction hypothesis applied to the pair A′, B gives a degree preserving
circular morphism ϕ′ from B∗ into A′∗. Now since the code X is circular, the
morphism α is circular. Therefore ϕ = α ◦ ϕ′ is a degree preserving circular
morphism from B∗ into A∗.

We will additionally use the following compacity lemma.

Lemma 4.6 Let A,B be graded alphabets. For n ≥ 1, set Bn = {b ∈ B | d(b) ≤
n}. Suppose that for each n there exists a degree preserving circular morphism
B∗

n → A∗. Then there exists a degree preserving circular morphism B∗ → A∗.
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The proof is left to the reader.
Proof of Theorem 4.1.

1 implies 2 is clear by Lemma 4.2.
2 implies 1. If B is finite, the statement results from Proposition 4.5. If B

is infinite, the result follows from Lemma 4.6.

Example 4.7 As an example, consider B = {u, v, w} with d(u) = 1 and d(v) =
d(w) = 3 and A = {a, b} with d(a) = d(b) = 1. Since 1 = ℓ1(B) < ℓ1(A) = 2,
we change A to A′ in bijection with X = a∗b = {b, ab, aab, aaab, . . .}. Again,
since 0 = ℓ2(B) < ℓ2(A

′) = 1, we change A′ to A′′ in bijection with Y =
(ab)∗(X \ {ab}) = {b, aab, abb, aaab, . . .}. The required circular morphism is
ϕ : u 7→ b, v 7→ aab, w 7→ abb.

Note an interesting consequence of the proof of Theorem 4.1 using Proposi-
tion 4.5. It shows that condition 2 in Theorem 4.1 is decidable for a finite
alphabet B.

Proposition 4.8 Let A,B be graded alphabets with B finite and ℓi(B) ≤ ℓi(A)
for i = 1, . . . ,max{d(b) | b ∈ B}. Then this inequlity holds for any i ≥ 1.

Proof. Proposition 4.5 shows that there exists a degree preserving circular mor-
phism from B∗ into A∗. Thus one concludes with Theorem 4.1.

5 Free Lie algebras

A Lie algebra L over Z is an algebra over Z whose product (x, y) 7→ [x, y] satisfies
[x, x] = 0 for all x ∈ L and the Jacobi identity

[[x, y]z] + [[y, z]x] + [[z, x]y] = 0 (5.1)

for all x, y, z ∈ L.
We consider the free Lie algebra L(A) on A with coefficients in Z as embed-

ded in the free associative algebra Z〈A〉 (see [7]). It is formed of the Z-linear
combinations of Lie monomials, which are recursively defined as follows: a Lie
monomial is either a letter, or a Lie product [x, y] of two Lie monomials x, y.

The degree d(x) of a noncommutative polynomial x ∈ Z〈A〉 is the maximum
of the degrees of the words w such that the coefficient of w in x is nonzero. This
defines in particular the degree of a Lie element x ∈ L(A).

Given two graded alphabets A,B, a Lie algebra morphism ϕ : L(B) → L(A)
is monomial if the image of a Lie monomial in L(B) is a Lie monomial in L(A).
It is degree preserving if d(ϕ(b)) = d(b) for every b ∈ B. An embedding of L(B)
into L(A) is an injective Lie morphism from L(B) into L(A).

It is well known that, if A is finite, then ℓn(A) is the dimension of the
homogeneous component of degree n of the free Lie algebra L(A).

We prove the following result which gives a natural complement to Theo-
rem 4.1. We state it for a finite alphabet B although it can extend to the case
where B is infinite as we shall see below (Corollary 5.4).
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Theorem 5.1 Let A,B be two graded alphabets with B finite. The following
conditions are equivalent.

1. There is a degree preserving monomial embedding of L(B) into L(A).

2. ℓi(B) ≤ ℓi(A) for all 1 ≤ i ≤ max{d(B) | b ∈ B}.

A derivation of a Lie algebra L over Z is a Z-linear map D : L→ L satisfying
the Leibniz rule

D([x, y]) = [D(x), y] + [x,D(y)].

It follows from the Jacobi identity that for any Lie algebra L, the map Adx :
y 7→ [x, y] is a derivation for every x ∈ L.

The set of derivations of L forms a Lie algebra with respect to the usual
commutator; indeed, a linear combination of derivations is a derivation, and the
commutator [D1, D2] = D1 ◦D2 −D2 ◦D1 is a derivation, as is easily verified.
Let L1, L2 be two Lie algebras. Given a Lie algebra morphism π from L1 to
the Lie algebra of derivations of L2, the semidirect product of L1 and L2 is the
unique Lie algebra denoted L1 ×π L2 which is, as Z-module, the direct sum
L1 ⊕ L2 with the product extending those of L1, L2 and such that, for x ∈ L1

and y ∈ L2, one has [x, y] = π(x)(y).
It is known by a theorem of Sirshov (see [7], Theorem 2.5) that any Lie

subalgebra of a free Lie algebra is free. Let X be a subset of L(A) and let J be
the subalgebra of L(A) generated by X . Let ϕ : B → X be a bijection from a
set B onto X . There is a unique extension of ϕ to a Lie algebra morphism from
L(B) into L(A). If this extension is an isomorphism, the set X is called a Lie
algebra basis of the subalgebra J .

The next lemma is [12, Proposition 1.1]. We reproduce the proof for conve-
nience.

Lemma 5.2 Let A be a nonempty alphabet, let a1 ∈ A and let A2 = A \ {a1}.
The Z-module L(A) is a direct sum of the module Za1 and the Lie ideal J of
L(A) generated by A2. Moreover, the set of elements (Ad a1)

n(a) for a ∈ A2 is
a Lie algebra basis of the Lie subalgebra J .

Proof. Let A′ = {(n, a) | n ∈ N, a ∈ A2}. Let L1 = L(a1) and L2 = L(A′).
There is a unique derivation D on L2 defined by D(n, a) = (n+ 1, a) for every
a ∈ A2. We consider the semidirect product L of L1 and L2 relative to the map
π defined by π(a1) = D. Thus in L (which contains naturally L1 and L2), one
has [a1, (n, a)] = D(n, a) = (n+ 1, a) for every a ∈ A2.

The map ψ : A → L defined by ψ(a1) = a1 and ψ(a) = (0, a) for a ∈ A2

extends in a unique way to a Lie algebra morphism form L(A) into L.
We also have Lie morphisms ϕ1 : L1 → L(A) and ϕ2 : L2 → L(A) defined

by ϕ1(a1) = a1 and ϕ2(n, a) = (Ad a1)
n(a). They extend in a unique way to a

morphism ϕ : L → L(A): indeed, this follows from the fact that in L one has
[a1, (n, a)] = (n+ 1, a), and in L(A), one has [a1,Ad(a1)

n(a)] = Ad(a1)
n+1(a).
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We have ψ ◦ ϕ(a) = a for every a ∈ A. Next ϕ ◦ ψ(a1) = a1 and an easy
induction on n shows that ϕ ◦ ψ(n, a) = (n, a). Thus, ϕ, ψ are mutually inverse
isomorphisms between L(A) and L, exchanging J and L2.

Proof of Theorem 5.1.
1 implies 2. Indeed, if there is a degree preserving monomial embedding of

L(B) into L(A), it maps the homogeneous component of degree n of L(B) into
the homogeneous component of degree n of L(A) and thus ℓn(B) ≤ ℓn(A).

2 implies 1. We use an induction on the integer δ(A,B) defined by Equa-
tion (4.1). If δ(A,B) = 0, then un(A) = un(B) for all n = 1, . . . ,max(d(B)),
by Lemma 4.4 (with k replaced by n + 1). Let ϕ : B → A be a degree pre-
serving injection from B onto A. This injection extends to a monomial degree
preserving injection from L(B) onto L(A).

If δ(A,B) > 0, let n ≥ 1 be the largest integer such that ℓi(A) = ℓi(B) for
1 ≤ i < n. By Lemma 4.4 we have un(A) > un(B). Thus there exists a letter
a1 ∈ A of degree n. Let α be a degree preserving bijection from an alphabet
A′ onto X = a∗1(A \ a1). By Lemma 4.3, we have ℓi(A

′) = ℓi(A) for i 6= n and
ℓn(A

′) = ℓn(A)− 1. Thus ℓi(B) ≤ ℓi(A
′) for all i ≥ 1 and moreover,

δ(A,B)− δ(A′, B) = ℓn(A)− ℓn(A
′) = 1

The induction hypothesis applied to the pair A′, B gives a monomial degree
preserving embedding ϕ′ of L(B) into L(A′). Consider the map β : X →
L(A), ai1a 7→ (Ad a1)

i(a) for a ∈ A \ {a1}. By Lemma 5.2, the map β ◦α : A′ →
L(A) extends to a monomial degree preserving embedding of L(A′) into L(A).
Therefore ϕ = β ◦ α ◦ ϕ′ is a monomial degree preserving embedding of L(B)
into L(A).

Example 5.3 As an example, consider again B = {u, v, w} with d(u) = 1 and
d(v) = d(w) = 3 and A = {a, b} with d(a) = d(b) = 1. The result is the
monomial degree preserving morphism ϕ : u 7→ b, v 7→ [a[a, b]], w 7→ [[a, b]b].

Corollary 5.4 Let A,B be two graded alphabets. The following conditions are
equivalent.

1. There is a degree preserving monomial embedding of L(B) into L(A).

2. ℓi(B) ≤ ℓi(A) for all i.

This follows from the theorem by considering the finite subalphabets of B:
the sequence of embeddings constructed in such a way allows to construct an
embedding of L(B) into L(A), since Lie monomials of degree ≤ m are finitely
many.
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6 Comma-free codes

A code X ⊂ A+ is called comma-free if no word of X can overlap nontrivially
a product of two words of X . Formally, a code X is comma-free if for every
x ∈ X and u, v ∈ A∗, one has

uxv ∈ X∗ ⇒ u, v ∈ X∗. (6.1)

The following is [2, Proposition 7.2.14]. We give a proof for the convenience of
the reader.

Proposition 6.1 Comma free codes are circular.

Proof. Let X ⊂ A+ be a comma-free code. Assume that for n ≥ 1, m ≥ 1,
xi, yj ∈ X and p ∈ A∗, s ∈ A+, we have

sx2 · · ·xnp = y1y2 · · · ym, (6.2)

x1 = ps. (6.3)

Since X is a code, it is enough to prove that p = 1.
If n ≥ 2, then an iterated use of (6.1) implies p, s ∈ X∗ which in turn implies

p = 1 since X is a code.
If n = 1, we replace (6.2) by sx1p = (y1 · · · ym)2. The conclusion follows by

the previous case.

The converse is not true. For example, {aab, abb, bbc} is circular but not comma-
free because (aab)(bbc) = a(abb)bc.

A morphism ϕ : B∗ → A∗ is comma-free if it maps bijectively B to a comma-
free code. The composition of two comma-free morphisms is comma-free [2,
Proposition 7.2.15].

A set X ⊂ A+ formed of words all of the same degree n ≥ 1 is a comma-free
code if and only if for every x, y, z ∈ X , the word z cannot be a factor of xy
unless x = z or y = z.

The following result is the generalization to graded alphabets of a result due
to Eastman [3]. Another proof was given by Scholtz [8] and is reproduced as
[2, Theorem 7.3.11]. As for Theorem 4.1, the statement for graded alphabets is
more general, but this time the proof will be very similar to the proof in [2].

Theorem 6.2 Let A be a graded alphabet. For every odd integer n, there exists
a comma-free code formed of ℓn(A) words of degree n.

We will follow the proof of Scholtz, who constructs, by iterated bisections,
a subset of what is called a Lazard set. Another proof, following [9] and given
in [7] (Theorem 5.17), is based on the construction of what is called a Hall set,
where each word of even length is smaller than each word of odd length. Note
that Hall sets and Lazard sets coincide, as shown by Viennot (see [12] or [7,
Theorem 4.18]).
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We may assume that A contains letters of odd degree, since otherwise there
are no words of odd degree and, by Proposition 3.1, ℓn(A) = 0 for n odd. Thus
there is nothing to prove in this case. We may also assume that Card(A) ≥ 2.

To prove Theorem 6.2, we build a sequence (xk)k≥0 of words of odd degree
and a sequence (Xk)k≥0 of maximal prefix codes such that

X∗
0 ⊃ X∗

1 ⊃ X∗
2 ⊃ · · · (6.4)

and that, for k ≥ 1, Xk contains an infinity of words of odd degree.
We start with X0 = A, which contains by hypothesis a letter x0 of odd degree

and is, by hypothesis, not reduced to x0; we choose x0 of minimum degree. Thus
X1 = x∗0(X0 \ x0) is a maximal prefix code. It contains an infinity of words of
odd degree because, for x ∈ X0 \ x0 and i ≥ 0, d(xi0x) = i d(x0) + d(x) ≡
i+ d(x) mod 2.

In general, for each k ≥ 1, let xk be a word of minimal odd degree in Xk

(such a word exists since Xk contains words of odd degree). The set

Xk+1 = x∗k(Xk \ xk)

is clearly a maximal prefix code such that Xk+1 ⊂ X∗
k (and thus X∗

k+1 ⊂ X∗
k ).

It contains again an infinity of words of odd degree because Xk \ xk has this
property. Such a sequence (xk, Xk)k≥0 is called a Scholtz sequence on A.

Note that the xk are all distinct. Indeed, if k < l, then xk ∈ Xk, xl ∈ Xl,
xk /∈ X∗

k+1, hence xk /∈ Xl by (6.4).
Note also that Xk \Xk+1 = {xk}.
Set U =

⋃

Xk. Let U0 (resp. U1) be the set of elements of even (resp. odd)
degree in U .

Lemma 6.3 We have
U1 = {xℓ | ℓ ≥ 0}. (6.5)

Proof. Indeed, every xℓ is of odd degree and in U , and thus in U1. Conversely,
consider z ∈ U1 and set d = d(z). Let k be such that z ∈ Xk. For ℓ > k
such that z ∈ Xℓ, we have d(xk), . . . , d(xℓ) ≤ d. But the set Sd of words of
odd degree ≤ d is finite since A is locally finite. Thus ℓ − k ≤ Card(Sd). This
implies that there is an ℓ > k such that z /∈ Xℓ. We conclude that z = xℓ where
ℓ is the largest integer ≥ k such that z ∈ Xℓ. This proves Equation (6.5).

We now make a series of remarks which will be used in the sequel.
For u ∈ U , set

ν(u) = min{i ≥ 0 | u ∈ Xi} − 1.

Note first that for u ∈ U0 and h ≥ 0,

u ∈ Xh ⇔ ν(u) < h. (6.6)

Indeed, if u ∈ Xh, then ν(u) < h by definition of ν. The converse follows from
the fact that u ∈ Xh for h = ν(u)+ 1 by definition of ν and that a word of even
length which is in Xh is also in Xh+1.
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Next, consider u ∈ U1. Then u = xℓ for some ℓ ≥ 0 by (6.5). We have for
every h ≥ 0,

u ∈ Xh ⇔ ν(u) < h ≤ ℓ. (6.7)

Indeed, if u ∈ Xh then ν(u) < h by definition of ν. Next, because xℓ /∈ X∗
ℓ+1

and Xh ⊂ X∗
ℓ+1 for ℓ < h by (6.4), we have xℓ /∈ Xh for ℓ < h. This proves the

left to right implication. Conversely, we use induction on h. The implication is
true for h = ν(u) + 1. Assuming that the implication is true for h < ℓ, we have
u 6= xh (since u = xl) and thus, since u ∈ Xh, we have u ∈ Xh+1. This proves
(6.7).

Combining (6.6) and (6.7), we note that for every u ∈ Xk,

ν(u) < h ≤ k ⇒ u ∈ Xh. (6.8)

Indeed, if u ∈ U0, this results from (6.6). Otherwise, set u = xℓ. By (6.7), since
u ∈ Xk, we have ν(u) < k ≤ ℓ. Now ν(u) < h ≤ k ≤ ℓ implies u ∈ Xh by (6.7)
again.

Furthermore, for every u ∈ Xℓ,

ν(u) ≤ k < ℓ⇒ xku ∈ U. (6.9)

Indeed, if k = ν(u), we have u ∈ Xk+1 and xku ∈ xkXk+1 ⊂ Xk+1. Otherwise,
u is in all Xh for ν(u) + 1 ≤ h ≤ ℓ by (6.8) and thus u is in Xk. But u 6= xk.
Indeed, if u = xk then, since u ∈ Xℓ, we have, by (6.7), ν(u) < ℓ ≤ k in
contradiction with the hypothesis k < ℓ. Therefore xku ∈ xk(Xk \ xk) ⊂ Xk+1.

The two next remarks are stated as the following lemmas.

Lemma 6.4 For every element u of U which is not a letter, we have u = xkv
with k = ν(u) and v ∈ Xk+1. If u ∈ U0 (or equivalently v ∈ U1) then v = xℓ
with k < ℓ.

Proof. Since u is not a letter, it is not in X0. Then, u is in Xk+1 but not in Xk.
Then, by definition of Xk+1, we have u = xkv for some v ∈ Xk+1. If moreover
v ∈ U1, then v = xℓ for some ℓ ≥ 0 by Equation (6.5). We have k < ℓ since
xℓ ∈ Xk+1 implies k + 1 ≤ ℓ by Equation (6.7).

Lemma 6.5 For every odd integer n and every Scholtz sequence (xk, Xk)k≥0,
the number of words of U = ∪Xk of degree n is ℓn(A).

Proof. Let (xk, Xk) be a Scholtz sequence on A. We use an induction on the
integer βn(A) =

∑

k odd, k<n
ℓk(A).

If βn(A) = 0, then, by Proposition 3.1, there are no letters of odd degree
< n, hence the words of degree n are all letters, which are all primitive words.
Thus the set of words in U of degree n is the set of letters of degree n. Thus
the property holds trivially.

Next, if βn(A) > 0, there is a letter of odd degree < n. Thus we have
d(x0) < n. Let α : A′ → X1 be a degree preserving bijection from a graded
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alphabet A′ onto X1 and extend it to a monoid morphism α : A′∗ → A∗. Then
Xk ⊂ X∗

1 for all k ≥ 1 by (6.4). We can thus define a sequence (x′k)k≥0 of
words in A′∗ by x′k = α−1(xk+1) and a sequence (X ′

k)k≥0 of prefix codes by
X ′

k = α−1(Xk+1). Then X ′
0 = A′ and for each k ≥ 0, x′k is of minimal odd

degree in X ′
k. Moreover X ′

k+1 = x′k
∗
(X ′

k \ x′k). Thus (x′k, X
′
k)k≥0 is a Scholtz

sequence on A′. Set U ′ = ∪X ′
k. Then U ′ = α−1(U \ x0). Since d(x0) < n, the

number of words of degree n in U and U ′ is the same.
By Lemma 4.3, we have βn(A

′) = βn(A)− 1. Thus by induction hypothesis,
the number of words in U ′ of degree n is ℓn(A

′). Since ℓn(A) = ℓn(A
′) by

Lemma 4.3 again, we obtain the conclusion.

We define a total order on U1 by u < v if u = xk and v = xℓ with k < ℓ.

Lemma 6.6 Every word w ∈ A∗ admits a unique factorization

w = yzℓ−1 · · · z1z0 (6.10)

with y ∈ U∗
0 , zi ∈ U1, ℓ ≥ 0 and zℓ−1 ≥ . . . ≥ z1 ≥ z0.

Proof. We have for every k ≥ 1 an unambiguous factorization

A∗ = X∗
kx

∗
k−1 · · ·x

∗
0. (6.11)

The word unambiguous factorization used here means that for every word w
in A∗, there is a unique decomposition w = xx

nk−1

k−1 · · ·xn0

0 with x ∈ X∗
k and

ni ≥ 0.
Choosing k large enough so that Xk does not contain words of odd degree

≤ d(w), we obtain a factorization (6.10). This proves the existence. To prove
the uniqueness, observe that given a factorization (6.10), we have y ∈ X∗

k for
all large enough k. If w has two distinct factorizations (6.10), then it has
multiplicity more than one in the factorization (6.11), a contradiction. Thus
the factorization is unique.

Lemma 6.7 Every proper prefix of a word of U has a factorization (6.10) with
y = ε.

Proof. Let Pk be the set of proper prefixes of Xk. Since Xk is a maximal prefix
code, we have an unambiguous factorization

A∗ = X∗
kPk.

Comparing with the unambiguous factorization given by Equation (6.11), we
obtain Pk = x∗k−1 · · ·x

∗
0. This proves the statement.

Lemma 6.8 For 0 ≤ k < ℓ, we have xkxℓ ∈ U∗
0 . Further U1U0 ⊂ U∗

0U1.
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Proof. We prove the first statement by induction on ℓ − k. Set p = ν(xℓ).
Observe that ℓ = k + 1 implies p ≤ k. Indeed, xℓ ∈ Xp+1 implies p+ 1 ≤ ℓ by
(6.7) so that ℓ = k + 1 ⇒ p+ 1 ≤ k + 1.

If ℓ− k = 1 or, more generally, if p ≤ k, then xkxℓ ∈ U0 by (6.9).
Assume now k < p (and thus ℓ−k ≥ 2). Note that since xℓ ∈ Xp+1, we have

p < ℓ by (6.7). Since p > 0, we have xℓ ∈ U \ A and xℓ = xpv with v ∈ Xp+1

by Lemma 6.4. Since xℓ, xp have odd degree, v has even degree, and thus it it
is in U0. Since p < ℓ, we have by induction hypothesis, xkxp ∈ U∗

0 and thus
xkxℓ = (xkxp)v ∈ U∗

0 .
We now prove the second statement. Let us consider z ∈ U1 and y ∈ U0.

Set z = xk for some k ≥ 0. If y ∈ A, then y is in all Xi and in particular in Xk.
Thus zy is in Xk+1 (since y ∈ Xk \ xk) and actually zy ∈ U1 because it has odd
degree. If y /∈ A, then y = xqxt with q = ν(y) and q < t by Lemma 6.4.

If k < q, then xkxq is in U∗
0 by what we have just seen before and thus

(xkxq)xt ∈ U∗
0U1 since xt ∈ U1.

Otherwise q ≤ k. Since q = ν(y), we have y ∈ Xℓ for all ℓ ≥ k + 1 ≥ q + 1
by (6.6). By (6.9), we have zy ∈ U and thus zy ∈ U1 since zy has odd degree.

Lemma 6.9 Any suffix of a word u in U admits a factorization (6.10) with
ℓ = 0 or ℓ = 1.

Proof.
We use an induction on the degree of u. We have to prove that each suffix

w of u is in U∗
0 ∪ U∗

0U1. Note that U = U0 ∪ U1 ⊂ U∗
0 ∪ U∗

0U1, so that the
conclusion is clear if w = u or w = 1. In particular, we may conclude if u is a
letter. If u is not a letter, then by Lemma 6.4, we have u = xpv with p ≥ 0 and
v ∈ Xp+1. Moreover, if v ∈ U1, then v = xq with p < q. If w is a suffix of v, the
conclusion holds by induction hypothesis since v ∈ U and d(v) < d(u).

Assume now that w = w′v with w′ a proper suffix of xp. By induction
hypothesis, we have w′ ∈ U∗

0 ∪U∗
0U1. If w

′ ∈ U∗
0 , then w = w′v is in U∗

0 ∪U∗
0U1

since v ∈ U = U0 ∪ U1, and the property is satisfied. Assume next that w′ ∈
U∗
0U1. Set w′ = yxk with y ∈ U∗

0 and k ≥ 0. Since d(xk) ≤ d(w′) < d(xp)
(because w′ is a proper suffix of xp), we have k < p. We distinguish two cases.

First, suppose that v ∈ U0. Then xkv is in U1U0 and thus in U∗
0U1 by

Lemma 6.8. We conclude in this case that w = yxkv is in U∗
0U1 as required.

In the second case, we suppose that v ∈ U1. Then v = xq with p < q as
noted previously. Then k < p < q implies that xkxq ∈ U∗

0 by Lemma 6.8 again.
We obtain w = w′v = y(xkxq) ∈ U∗

0 concluding the proof.

Proof of Theorem 6.2. By Lemma 6.5, it is enough to prove that the set X
of words of degree n of U is comma-free. Assume that X is not comma-free.
Then there are x, y, z ∈ X such that xy = pzs with p, s nonempty. Set x = pu,
y = vs and z = uv. Since z has odd degree, either u or v has even degree.
Assume that u has even degree. Note that u is a suffix of x and a prefix of z.
By Lemmas 6.7 and 6.9, it is empty or in U1. Since it is of even degree, it is
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empty. This implies y = zs and thus, since y and z have the same degree, that
s is empty, a contradiction.

For example, let A = {a, b} with d(a) = 1 and d(b) = 2. Then X =
{a3b, ab2} is a comma-free code formed of words of degree 5 with ℓ5(A) =
2 elements. It is obtained by the algorithm underlying the proof above by
successively considering

X0 = {a, b}, x0 = a

X1 = {b, ab, aab, aaab, . . .}, x1 = ab

X2 = {b, aab, aaab, abb, . . .}

7 Eastman algorithm

We have presented in [6] an analysis of Eastman original proof, following the
recent exposition in [5]. It seems that it cannot be adapted to graded alphabets,
as we will see now.

Let A be a graded ordered alphabet with at least two elements. Consider
the set

D(A) = {a1a2 · · · an | ai ∈ A, n ≥ 2, a1 ≥ a2 ≥ . . . ≥ an−1 < an}.

The elements of D(A) are called dips.
In the case of ordinary alphabets, the set of dips of odd length m ≥ 3 is a

comma-free code [6, Proposition 17]. It is part of a comma-free code formed for
every odd integer m of ℓm(A) words of length m.

This property does not hold for the set of dips of odd degree m = 7, as
shown by the following example.

Example 7.1 Let A = {a1, a2, a3, a4} with a1 < a2 < a3 < a4 and d(ai) = i
for 1 ≤ i ≤ 4. Then a3a1a3, a3a4, a4a1a2 ∈ D(A) are dips of degree 7. They do
not form a comma-free code since (a3a1a3)(a4a1a2) = a3a1(a3a4)a1a2.
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