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Outline

• Survey on the notion of (un)ambiguity in symbolic dynamics
relating notions such as
• unambigous automata and finite-to-one maps.
• recognizability of morphisms
• synchronizing automata

• Emphasis on coded systems (generalizing irreducible sofic shifts)
• Proof of an unpublished result due to Doris Fiebig.



Unambiguous automata

An automaton on the alphabet A is a graph with edges labeled by A.
It is unambiguous if for every pair p,q of vertices and every word w
on A, there is at most one path from p to q labeled w . It is
deterministic if for every vertex p and letter a, there is at most one
edge going out of p labeled a. Every deterministic automaton is
unambiguous.
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The automaton on the left is determinisic. The one on the right is
unambiguous but not deterministic.



Strongly unambiguous automata

An automaton is strongly unambiguous if for every sequence x ∈ AZ,
there is at most one path with label x .
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The first automaton is strongly unambiguous, the second is not (there
are two paths labeled aZ).



Automata and morphisms

The automaton A (ϕ) associated to a morphism ϕ : A∗→ B∗ is a
bouquet of circles labeled ϕ(a) for a ∈ A. It has vertices

{(a, i) | a ∈ A, 0 < i < |ϕ(a)|}∪{ω}

and edges
(a, i)

b→ (a, i +1) if ϕ(a)i+1 = b

plus

• the edges ω
b→ (a,1) if b is the first letter of ϕ(a),

• the edges (a, |ϕ(a)|−1)
b→ ω if b is the last letter of ϕ(b)

• and the loops ω
b→ ω if ϕ(a) = b ∈ A.



Strong unambiguity and circular morphisms

A morphism ϕ : A∗→ B∗ is circular if it is injective and if for every
u,v ∈ B∗

uv ,vu ∈ ϕ(A∗)⇒ u,v ∈ ϕ(A∗).

The set ϕ(A) is called a circular code. There is a close connexion
between strong unambiguity and circular morphisms.

Theorem (Restivo, 1975)

Let ϕ : A∗→ B∗ be a morphism. The following conditions are
equivalent.

(i) ϕ is circular.

(ii) The automaton A (ϕ) is strongly unambiguous.

(iii) The closure under the shift of ϕ(AZ) is of finite type.



Relative unambiguity

Let X be a shift space on A. An automaton on A is unambiguous on X
if, for every sequence x ∈ X , there is at most one path labeled x .
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The above automaton is unambiguous on the Thue-Morse shift, which
is the shift generated by the Thue-Morse sequence x = ϕω(a) with
ϕ : a 7→ ab,b 7→ ba.
Indeed, the words in L (X) of length 5 all contain aa or bb and there
is only one path labeled aa or bb.



Mosse’s Theorem

Let X be a shift space on A. A morphism ϕ : A∗→ B∗ is said to be
recognizable on X if the automaton A (ϕ) is unambiguous on X .
If ϕ : A∗→ A∗ is a morphism, we denote by X(ϕ) the set of sequences
having all their blocks factors of some ϕn(a) for some n ≥ 0 and
a ∈ A.

Theorem (Mosse, 1992)

A primitive aperiodic morphism ϕ is recognizable on the shift X(ϕ).



Examples

• The automaton associated with the Fibonacci morphism is the
golden mean automaton. It is strongly unambiguous. Thus the
Fibonacci morphism (and actually every circular morphism) is
recognizable on the full shift.
• The Thue-Morse morphism is recognizable on the Thue-Morse

shift. It is actually recognizable on every minimal shift X such
that aa or bb is in L (X).



Generalizations of Mosse’s Theorem

A first generalization was proved by Bezuglyi, Kwiatowski, Medinets
(2009): every aperiodic morphism ϕ is recognizable on X(ϕ).
An automaton is unambiguous on X for aperiodic points if for every
aperiodic x ∈ X there is at most one path labeled x . A morphism
ϕ : B∗→ A∗ is recognizable on X for aperiodic points if the
automaton A (ϕ) is unambiguous on X for aperiodic points.
The following statement generalizes Mosse’s Theorem.

Theorem (Berthé, Steiner, Thuswaldner, Yasawi, 2019)

A morphism ϕ : A∗→ A∗ is recognizable on X(ϕ) for aperiodic
points.



Indecomposable morphisms

A morphism ϕ : B∗→ A∗ is indecomposable if for every α : C∗→ A∗

and β : B∗→ C∗ such that ϕ = α ◦β , one has Card(C)≥ Card(B).
The following is also proved by Berthé et al. (2019). It also follows
from a result of Karhumaki, Manuch (2002)

Theorem
An indecomposable morphism ϕ : B∗→ A∗ is unambiguous on AZ for
aperiodic points.



A new proof of Mosse’s Theorem

A new (and simpler) proof of Mosse’s Theorem (and also of its
generalization by Berthé et al.) can be derived from the statement
concerning indecomposable morphisms. It relies on two simple
lemmas.

Lemma
Let σ : A∗→ A∗ be a morphism. Every point y in X(σ) has a
σ -representation y = Sk(σ(x)) with x ∈ X(σ).

Lemma
Let σ : A∗→ A∗ be an aperiodic morphism. For every aperiodic point
x in X(σ), the point σ(x) is aperiodic.

Every morphism has a power which can be decomposed as σ = α ◦β

with τ = β ◦α indecomposable. If x ∈ X(σ) is aperiodic, then β (x)
is in X(τ) and is aperiodic. Thus it has only one τ-representation.



Coded shifts
As defined by Blanchard and Hansel (1986), a coded shift is a shift
space X such that L (X) is the set of factors of C∗ for some language
C. We say that X is coded by C.
The golden mean shift and the even shift are coded shifts.
The Fibonacci shift is not a coded shift (because in a coded shift, the
set of periodic points is dense).
Coded shifts are defined equivalently by countable strongly connected
automata (when C is finite, we can take the automaton associated with
a morphism ϕ : B∗→ A∗ such that C = ϕ(B)).

Proposition

A shift space X is a coded shift if and only if it is the closure of the set
of labels of infinite paths in a countable strongly connected
automaton.

Coded shifts are a natural generalization of irreducible sofic shifts,
which are those recognized by finite graphs.



Reversible automata

An automaton is called reversible if it is both deterministic and
co-deterministic. The following result is from (Fiebig and Fiebig,
1992).

Theorem
Every coded shift is recognized by a countable strongly connected
automaton which is reversible.



Example

Let X be the golden mean shift and let (wn)n∈Z be an enumeration of
the words in aL (X)a. A reversible automaton is represented below.

· · · q−1 q0 q1 q2 · · ·
w−1 w0
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No finite reversible automaton recognizes the golden mean shift.
Indeed, by a result of Pin (1992), a language L can be recognized by a
finite reversible automaton if and only if for every u,v ,w ∈ A∗, one
has

uv+w ⊂ L⇒ uw ∈ L.

Thus the golden mean shift cannot be recognized by a finite reversible
automaton.



Sketch of the proof

Assume that X is infinite and fix some state q of a countable strongly
connected automaton recognizing X . Let (wn)n∈Z be an enumeration
of the paths around q. Set w ′n = twny .
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The new automaton

We build a new automaton starting from the skeleton

· · ·(w ′−nau1c) · · ·(w ′−1au1c)w ′0 · (au1cw ′1)(au1cw ′2) · · ·

and adding back edges to obtain strong connectedness.

· · · q−n q−n−1 · · · q0 p0 · · · pn−1 pn · · ·
w ′−nau1c w ′0 au1cw ′n

bu2d



Unambiguously coded shifts

A coded shift X defined by a language C is said to be unambiguously
coded by C if for every x ∈ X there exists at most one pair of a
sequence (cn)n∈Z and an integer k with 0≤ k < |c0| such that

x = Sk(· · ·c−1 · c0c1 · · ·).

As an equivalent formulation, X is unambiguously coded by C if for
every x ∈ X there is at most one pair of a sequence (cn)n∈Z and a
factorization c0 = ps with s nonempty such that

x = · · ·c−2c−1p · sc1c2 · · ·

This implies that C is a circular code. The converse is true when C is
finite.



Example

The even shift is unambiguously coded. This is not true for
C = {a,bb} since the sequence x = b∞ has two factorizations. But it
becomes true if we choose the prefix code C′ = (bb)∗a.



Recall that an automaton is strongly unambiguous if the labelling of
bi-infinite paths is injective, that is, it has at most one bi-infinite path
with a given bi-infinite label.

Proposition

A shift space is unambiguously coded if and only if it can be
recognized by a strongly connected and strongly unambiguous
countable automaton.

The following result is due to Doris Fiebig (unpublished).

Theorem
Every coded shift is unambiguously coded.

The construction is effective and it implies that the topological
entropy as well as the topological pressure of a coded shift (given by
some computable code C) are computable (Burr et al. 2021).



Idea of the proof
Start as in the previous proof. Let (w ′i )i≥1 be an enumeration of the
labels of paths around q. Set u = au1c, v = bu2d , w = ty and
w−i = tw ′i y .
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The new automaton

For large enough integers mi ≥ 0 and k1 = m1 < k2 < .. ., it can be
proved the automaton below is strongly unambiguous (the proof is not
easy).

Ni Ni−1 · · · 0 Mi
w(uw)mi−1vw−iu (wu)ki w

v



Synchronizing words

Given a prefix code C, a word w ∈ C∗ is synchronizing if for every
u,v ∈ A∗, one has

uwv ∈ C∗⇒ uw ,v ∈ C∗. (1)

A prefix code C on the alphabet A is synchronized if there is a
synchronizing word.
A shift space is said to be a synchronized coded shift it it can be
defined by a synchronizing prefix code.



Synchronized automata
A word w is synchronizing for an automaton if there is a unique
vertex reached by the paths labeled w . An automaton is synchronized
if there is a synchronizing word. The following result is essentially
due to Fischer (1975).

Proposition

An irreducible shift space X is a synchronized coded shift if and only
if the minimal automaton of L (X) has a unique maximal strongly
connected component which is synchronized.
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It is well known that every irreducible sofic shift is a synchronized
coded shift.



The following result is a consequence of the general result seen
above. However, its proof builds a synchronizing automaton which
remains finite for a sofic shift.

Theorem
Every synchronized coded shift is unambiguously coded.

The proof goes as follows. Let X be a shift coded by a synchronized
prefix code C. Let w ∈ C∗ be a synchronizing word of length n.



We consider the following automaton. The states are the pairs (u,p)
formed of a word of length n in L (X) and an element p of the set P
of states of the minimal automaton of C∗. Next, set
(u,p) ·a = (v ,p ·a) where v is such that ua = bv for some letter b.
Since w is synchronizing, there is a state (w ,qw) in Q such that a path
ends in (w ,qw) if and only if its label ends with w .
Let C′ be the set of labels of simple paths from (w ,qw) to itself (such
a path is simple if it does not pass by (w ,qw) in between). Then X is
unambiguously coded by C′.



Example 1

The even shift is coded by C = {b,aa}. The letter b is synchronizing
for C and the prefix code C′ = b∪a(aa)∗ab = (aa)∗b is the result of
the construction in the proof.
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Example 2
Set C = {ab,ba}. The minimal automaton of C∗ is represented below.

2 0 1
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The automaton build in the proof is represented below.
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State splitting

Another construction uses state-splitting (input split). On the example
below, state 1 is first split into 1 and 1′ (which have the same output
and share the input of 1). Then 3 is split into 3 and 3′ and finally 2
into 2 and 2′.
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The result is the same as by the other method.



Open problems

• Let ϕ : A∗→ B∗ be an indecomposable morphism. Is the number
of periodic points which are the label of more than one path in
the automaton A (ϕ) bounded by Card(A) (Karhumaki, Manuch,
Plandowski, 2003)?
• Find a simpler proof of Fiebig’s Theorem (every coded shift is

unambiguously coded).
• Let ϕ : A∗→ B∗ be a morphism. If there is a sequence x ∈ BZ

with k disjoint factorizations, then ϕ = α ◦β with

A∗
β→ C∗

α→ B∗ and Card(C)≤ Card(A)− k +1 (Karhumaki,
Manuch, 2002)?

For more open problems, see Dimension Groups and dynamical
systems (Fabien Durand and D.P.), Cambridge (2021), to appear.


