Dimension groups and dynamical systems

(Substitutions, Bratteli diagrams and Cantor systems)

Dominique Perrin

December 10, 2021

 thery or combinatice man wis

Cumbrider Staile in A draesed Matimemaris
miman mami

Bryan kra Nohmunder of arionsen

Dimension Groups and Dynamical

 Systems
FABIEN DURAND DOMINIQUE PERRIN

A quick tour in the land of dimension groups

Some definitions:

- Topological dynamical systems,
- ordered abelian groups and dimension groups
- Ordered cohomology groups,
- Bratteli diagrams and BV-systems,
some big theorems:
- The BV-representation theorem (every minimal Cantor system can be represented as a BV-system),
- the strong orbit equivalence theorem (dimension groups are a complete invariant for strong orbit equivalence),
and some perspectives.

Topological dynamical systems

A topological dynamical system is a pair (X, T) of a compact metric space X and a continuous map $T: X \rightarrow X$. It is invertible if T is a homeomorphism. It is a Cantor system if X is a Cantor space.
A continuous map $\phi: X \rightarrow X^{\prime}$ is a morphism of dynamical systems if $\phi \circ T=T^{\prime} \circ \phi$. An isomorphism of dynamical systems is called a conjugacy.
The orbit of a point $x \in X$ is the set $\left\{T^{n} x \mid n \in \mathbb{Z}\right\}$. Its forward orbit is $\left\{T^{n} x \mid n \in \mathbb{N}\right\}$.
A system (X, T) is irreducible if there is a point x with a dense forward orbit. It is minimal if it is nonempty and every point has a dense orbit.
A shift space (X, S) on a finite alphabet A is a closed and shift invariant subset X of $A^{\mathbb{Z}}$ or $A^{\mathbb{N}}$. The shift transformation $S: A^{\mathbb{Z}} \rightarrow A^{\mathbb{Z}}$ is defined by $y=S x$ if $y_{n}=x_{n+1}$.

Substitution shifts

Given a morphism $\sigma: A^{*} \rightarrow A^{*}$, let $\mathscr{L}(\sigma)$ be the set of factors of the words $\sigma^{n}(a)$ for $n \geq 0$ and $a \in A$. The shift generated by σ is the shift $X(\sigma)$ formed of all x such that all their factors are in $\mathscr{L}(\sigma)$. It is called a substitution shift.
The morphism σ is primitive if there is an $n \geq 1$ such that every letter $b \in A$ appears in every $\sigma^{n}(a)$ for $a \in A$. If σ is primitive and $\operatorname{Card}(A) \geq 2$, the shift $X(\sigma)$ is minimal.

Example

Let $\sigma: a \mapsto a b, b \mapsto a$. The shift $X(\sigma)$ is called the Fibonacci shift. It is minimal.

Odometers

Given a strictly increasing sequence $\left(p_{n}\right)_{n \geq 0}$ of natural integers with $p_{0}=1$ and $p_{n} \mid p_{n+1}$ for all $n \geq 0$, the set $X=\mathbb{Z}_{\left(p_{n}\right)}$ of expansions

$$
x=a_{0}+a_{1} p_{1}+a_{2} p_{2}+\ldots
$$

with $0 \leq a_{n} p_{n}<p_{n+1}$ is a topological ring in the same way as, for $p_{n}=p^{n}$ and p prime, we have the ring of p-adic integers. The map $T: x \mapsto x+1$ defines a topological dynamical system called the odometer in base $\left(p_{n}\right)$. It is a minimal Cantor system.

Example

The system $\left(\mathbb{Z}_{2}, T\right)$ where \mathbb{Z}_{2} is the ring of 2-adic integers and $T(x)=x+1$ is called the 2 -odometer.

Ordered abelian groups

An ordered abelian group G is given by a partial order on G such that $x \leq y$ implies $x+z \leq y+z$. The order is determined by the positive cone $G^{+}=\{g \in G \mid g \geq 0\}$.
An order unit is an element $u \geq 0$ such that for every $g \geq 0$, there is an $n \geq 1$ with $g \leq n u$. A unital ordered group is a triple $\left(G, G^{+}, 1_{G}\right)$ where 1_{G} is an order unit.
An ordered group is simple if every nonzero element of G^{+}is an ordered unit.
Let $\left(G, G^{+}, 1_{G}\right)$ and $\left(H, H^{+}, 1_{H}\right)$ be unital ordered groups. A group morphism $\phi: G \rightarrow H$ is a morphism of unital ordered groups if it is positive (that is $\phi\left(G^{+}\right) \subset H^{+}$) and such that $\phi\left(1_{G}\right)=1_{H}$.

Direct limits of ordered groups

Let

$$
G_{0} \xrightarrow{\phi_{0}} G_{1} \xrightarrow{\phi_{1}} G_{2} \ldots
$$

be a sequence of ordered abelian groups G_{n} connected by morphisms ϕ_{n}. The direct limit of this sequence is the quotient Δ / Δ^{0} where

$$
\begin{aligned}
\Delta & =\left\{\left(g_{n}\right) \mid g_{n} \in G_{n}, \phi_{n}\left(g_{n}\right)=g_{n+1} \text { for every } n \text { large enough }\right\} \\
\Delta^{0} & =\left\{\left(g_{n}\right) \mid g_{n} \in G_{n}, g_{n}=0 \text { for every } n \text { large enough }\right\}
\end{aligned}
$$

It is an ordered group with positive cone Δ^{+} / Δ^{0} where $\Delta^{+}=\left\{\left(g_{n}\right) \in \Delta \mid g_{n} \in G_{n}^{+}\right.$, for n large enough $\}$. If the G_{n} are unital, it is unital with unit the class of $\left(1_{G_{n}}\right)$.

Examples

- Multiplication by 2.

The direct limit of the sequence

$$
\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \ldots
$$

is isomorphic to the group $\mathbb{Z}[1 / 2]$ of dyadic rationals formed of the $p / 2^{k}$ with positive cone $\mathbb{Z}_{+}[1 / 2]$ and unit 1 .

- Action of a nonnegative matrix.

The direct limit of the sequence

$$
\mathbb{Z}^{2} \xrightarrow{M} \mathbb{Z}^{2} \xrightarrow{M} \mathbb{Z}^{2} \ldots
$$

with $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ is isomorphic to the group $\mathbb{Z}+\alpha \mathbb{Z}$ with
$\alpha=(1+\sqrt{5}) / 2$.

Ordered cohomology group

Let (X, T) be a topological dynamical system. Let ∂ be the operator on the group $C(X, \mathbb{Z})$ defined by

$$
\partial f=f \circ T-f
$$

The map ∂f is called the coboundary of f.

Theorem

Let (X, T) be irreducible. The quotient
$H(X, T, \mathbb{Z})=C(X, \mathbb{Z}) / \partial C(X, \mathbb{Z})$ is a unital ordered group with positive cone $C(X, \mathbb{N}) / \partial C(X, \mathbb{Z})$ and order unit 1_{X}.

It is called the ordered cohomology group of (X, T), traditionally denoted by $K^{0}(X, T)$. It is invariant under conjugacy.

Dimension groups

A dimension group is a direct limit of a sequence

$$
\mathbb{Z}^{k_{1}} \xrightarrow{\phi_{1}} \mathbb{Z}^{k_{2}} \xrightarrow{\phi_{2}} \cdots
$$

of groups $\mathbb{Z}^{k_{n}}$ ordered in the usual way and with order unit $(1,1, \cdots, 1)$.

Theorem (Herman, Putnam, Skau, 1992)

For every minimal Cantor system (X, T), the ordered group $K^{0}(X, T)$ is a simple dimension group.

Examples

Example

Let (X, T) be the periodic system $\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ with $T x_{i}=x_{i+1}$. Then $K^{0}(X, T)=\mathbb{Z}$ with order unit n.

Example

The dimension group of the Fibonacci shift is $\mathbb{Z}+\alpha \mathbb{Z}$ with $\alpha=(1+\sqrt{5}) / 2\left(\right.$ considered as an ordered subgroup of $\left(\mathbb{R}, \mathbb{R}_{+}, 1\right)$).

Example

The dimension group of the 2-odometer is the group $\mathbb{Z}[1 / 2]$ of dyadic rationals.

Invariant probability measures

A probability mesure μ on a system (X, T) is invariant if $\mu\left(T^{-1} U\right)=\mu(U)$ for every Borel set $U \subset X$. In this case, one has $\int f d \mu=0$ for every $f \in \partial C(X, \mathbb{Z})$. Moreover, the map $f \mapsto \int f d \mu$ defines a group morphism $\alpha_{\mu}: H(X, T, \mathbb{Z}) \rightarrow \mathbb{R}$.

Theorem

If (X, T) is irreducible, the map $\mu \mapsto \alpha_{\mu}$ is a bijection from the set of invariant probability measures on (X, T) onto the set of unital ordered group morphisms from $K^{0}(X, T)$ into $\left(\mathbb{R}, \mathbb{R}_{+}, 1\right)$.

The unital ordered group morphisms from $\left(G, G^{+}, 1\right)$ to $\left(\mathbb{R}, \mathbb{R}_{+}, 1\right)$ are called the states of the unital ordered group.

Example

The Fibonacci shift, as any primitive substitution shift, has a unique invariant probability measure. This corresponds to the fact that its dimension group, being $\mathbb{Z}+\alpha \mathbb{Z}$, is a subgroup of $\left(\mathbb{R}, \mathbb{R}_{+}, 1\right)$ and thus has a unique state.

Bratteli diagrams

A Bratteli diagram is a directed graph (V, E) with $V=V(0) \cup V(1) \cup \ldots$ and $E=E(1) \cup E(2) \cup \ldots$. We have $V(0)=\{v(0)\}$, every $V(n)$ is finite and the edges in $E(n)$ go from $V(n-1)$ to $V(n)$.

$$
\begin{gathered}
v(0) \\
E(1) \\
V(1) \\
E(2) \\
E(3)
\end{gathered}
$$

Adjacency matrices

$$
M(1)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], M(2)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Simple diagrams

A Bratteli diagram is simple if for every $m \geq 0$ there is an $n>m$ such that there is a path from every vertex in $V(m)$ to every vertex in $V(n)$, that is, if the matrix $M(n) M(n-1) \cdots M(m)$ is >0.

The diagram above is not simple because the vertices of the lower level can never reach any of those at top level. We have

$$
M(n)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Dimension groups of Bratteli diagrams

The dimension group of (V, E) is the direct limit of the sequence

$$
G(0) \xrightarrow{M(1)} G(1) \xrightarrow{M(2)} G(2) \ldots
$$

with $G(n)=\mathbb{Z}^{V(n)}$.

Proposition

A Bratteli diagram is simple if and only if its dimension group is simple.

Telescoping equivalence

The telescoping of a Bratteli diagram (V, E) uses a sequence $m_{0}=0<m_{1}<m_{2}<\ldots$. It is the diagram $\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime}(n)=V\left(m_{n}\right)$ and $E(n)=E_{m_{n-1}+1, m_{n}}$.

Theorem (Eliott, 1976)

Two Bratteli diagrams are telescoping equivalent if and only if their dimension groups are isomorphic.

The dimension group is $\mathbb{Z}[1 / 2]$.

Ordered Bratteli diagrams

Assume that the set of edges with common range v is given for every $v \in V$ a total order. We extend this order to a lexicographic order on the set X_{E} of infinite paths starting at the root $v(0)$.

Th diagram is properly ordered if it is simple and if there is a unique minimal path $x^{\min }$ and a unique maximal path $x^{\max }$. The two first diagrams are properly ordered, the third one is not (there are two paths labeled $0,0,0, \ldots$ and two paths labeled $1,1, \ldots)$. The morphism read on the second diagram is $0 \mapsto 01,1 \mapsto 01$. The morphism read on the third is $0 \rightarrow 01,1 \rightarrow 10$ (the Thue-Morse morphism).

The Vershik map

Let (V, E, \leq) be a properly ordered Bratteli diagram. The Vershik map on X_{E} is defined by

$$
V_{E}(x)= \begin{cases}\text { successor of } x \text { in lexicographic order } & \text { if } x \neq x^{\max } \\ x^{\min } & \text { otherwise }\end{cases}
$$

The pair $\left(X_{E}, V_{E}\right)$ is a minimal topological dynamical system called a BV-system.

The Model Theorem

A BV-representation of a system (X, T) is an isomorphism with a BV-system $\left(X_{E}, V_{E}\right)$ for some properly ordered Bratteli diagram (V, E, \leq).

Theorem (Herman, Putnam, Skau, 1992)

Every minimal Cantor system has a BV-representation.
There is no simple method to compute such a BV-representation. We will see how this can be done in the particular cases of odometers and substitution shifts.

BV-representation of Odometers

Odometers are characterized by their BV-representations.

Theorem

A Cantor dynamical system is an odometer if and only if it has a $B V$-representation with one vertex at each level.

A BV-representation of the 2-odometer.

Strong orbit equivalence

Two topological dynamical systems (X, T) and (Y, S) are orbit equivalent if there is a homeomorphism $\phi: X \rightarrow Y$ which sends orbits to orbits. In this case, there are maps $\alpha, \beta: X \rightarrow \mathbb{Z}$ such that

$$
\phi \circ T x=S^{\alpha(x)} \circ \phi(x) \text { and } \phi \circ T^{\beta(x)} x=S \circ \phi(x)
$$

When α, β have at most one discontinuity point, the systems are strong orbit equivalent.

The strong orbit equivalence theorem

An intertwinning of two Bratteli diagrams (V, E) and $\left(V^{\prime}, E^{\prime}\right)$ is a diagram such that telescoping at odd levels gives (V, E) and telescoping at even levels gives (V^{\prime}, E^{\prime}).

Theorem (Giordano, Putnam, Skau, 1995)

Let (X, T) and $\left(X^{\prime}, T^{\prime}\right)$ be two invertible minimal Cantor dynamical systems. The following are equivalent.
(i) There exist two $B V$-representations, (V, E, \leq) of (X, T) and $\left(V^{\prime}, E^{\prime}, \leq^{\prime}\right)$ of $\left(X^{\prime}, T^{\prime}\right)$, such that (V, E) and $\left(V^{\prime}, E^{\prime}\right)$ have a common intertwining.
(ii) (X, T) and $\left(X^{\prime}, T^{\prime}\right)$ are strong orbit equivalent.
(iii) The dimension groups $K^{0}(X, T)$ and $K^{0}\left(X^{\prime}, T^{\prime}\right)$ are isomorphic as unital ordered groups.

Note that (iii) \Rightarrow (i) is Elliott Theorem.

Example

The diagram on the left is a BV-representation of an odometer. The diagram on the right is a BV-representation of the shift generated by the morphism $a \mapsto a b, b \mapsto a^{2} b^{2}$. They are strong orbit equivalent.

Stationary diagrams

A Bratteli diagram is stationary if all matrices $M(n)$ are equal for $n \geq 2$. An odomoter $\mathbb{Z}_{\left(p_{n}\right)}$ is stationary if the set of prime divisors of the p_{n} is finite.

Theorem (Durand, Host, Skau, 1999)

The class of infinite BV-systems associated with stationary Bratteli diagrams is the disjoint union of infinite substitution minimal shifts and stationary odometers.

The BV-representation of substitution shifts

A morphism $\sigma: A^{*} \rightarrow A^{*}$ is proper if all words $\sigma(a)$ for $\mathrm{a} \in A$ begin with the same letter and end with the same letter. It is eventually proper if σ^{n} is proper for some $n \geq 1$.
If σ is eventually proper, the diagram (V, E, \leq) with σ read on it is properly ordered and, provided $X(\sigma)$ is not periodic, it gives a BV-representation of $X(\sigma)$.
In the general case, use the following steps. Let $\sigma: A^{*} \rightarrow A^{*}$ be a morphism generating an infinite minimal shift space $X(\sigma)$.

- Compute an eventually proper morphism $\tau: B^{*} \rightarrow B^{*}$ and a morphism $\phi: B^{*} \rightarrow A^{*}$ such that $\phi \circ \tau=\sigma^{k} \circ \phi$.
- Build a BV-representation of $X(\tau)$ such that τ is read on (V, E).
- Split each edge $(v(0), b)$ of $E(1)$ in $\phi(b)$ edges.

Let $\sigma: a \mapsto a b, b \mapsto a$ be the Fibonacci morphism. Then $\sigma^{2}(a)$ begins and ends with a. We compute the set $\mathscr{R}(a \cdot a)=\{a b a b a, a b a\}$ of words w without factor aa such that awa $\in \mathscr{L}(\sigma)$ ends and begins with $a a$. Let ϕ be the morphism defined by $\phi(x)=a b a b a$ and $\phi(y)=a b a$. The morphism $\tau: x \mapsto y x x, y \mapsto y x$ is such that $\phi \circ \tau=\sigma^{2} \circ \phi$. Since τ is proper, we are done.

We obtain in this way a computation of the dimension group of the Fibonacci shift as the direct limit of the sequence

$$
\mathbb{Z}^{2} \xrightarrow{M} \mathbb{Z}^{2} \xrightarrow{M} \mathbb{Z}^{2} \ldots
$$

with

$$
M=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{2}
$$

and unit $\left[\begin{array}{ll}5 & 3\end{array}\right]^{t}=M^{3}\left[\begin{array}{ll}1 & 0\end{array}\right]^{t}$. Thus we recover $K^{0}(X, S)=\mathbb{Z}+\alpha \mathbb{Z}$ with $\alpha=(1+\sqrt{5}) / 2$.

An alternative method

There is an alternative method to compute directly the dimension group of a substitution shift $X(\sigma)$. The steps are:

- compute the 2-block presentation σ_{2} of σ such that $\pi_{2} \circ \sigma_{2}=\sigma \circ \pi_{2}$ where $\pi_{2}([a b])=a$.
- Compute the Rauzy graph $\Gamma_{2}(X)$ with vertices $a b$ from a to b whenever $a b \in \mathscr{L}_{2}(X)$.
- Compute the matrix N such that $P M\left(\sigma_{2}\right)=N P$ where P is a matrix with rows a basis of the cycles of the Rauzy graph $\Gamma_{2}(X)$.
The dimension group is the limit of $\mathbb{Z}^{2} \xrightarrow{N} \mathbb{Z}^{2} \xrightarrow{N} \mathbb{Z}^{2} \ldots$ with order unit $P 1$.

We describe it on the example of the Fibonacci shift $\sigma: a \mapsto a b, b \mapsto a$. The 2-blocks are $x=a a, y=a b, z=b a$. The Rauzy graph $\Gamma_{2}(X)$ is

The 2-block presentation of σ is $\sigma_{2}: x \mapsto y z, y \mapsto y z, z \mapsto x$. Then $M\left(\sigma_{2}\right)$, the matrix P and the matrix N are

$$
M_{2}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right], P=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right], N=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Thus we find again $\mathbb{Z}+\alpha \mathbb{Z}$ with $\alpha=(1+\sqrt{5}) / 2$.

Dendric shifts

Let X be a shift space on the alphabet A and let $w \in \mathscr{L}(X)$. Set $L(w)=\{a \in A \mid a w \in \mathscr{L}(X)\}$ and $R(w)=\{a \in A \mid w a \in \mathscr{L}(X)\}$. The extension graph of w is the graph on the disjoint union of $L(w)$ and $R(w)$ with edges (a, b) if $a w b \in \mathscr{L}(X)$. A shift space X is dendric if for every $w \in \mathscr{L}(X)$ the extension graph of w is a tree.

Example

The Fibonacci shift is dendric. The extension graph of a is shown below.

Dimension groups of dendric shifts

Theorem (Berthé, Cecchi, Durand, Leroy, P., Petite, 2021)

Every minimal dendric shift on A has a $B V$-representation (V, E, \leq) such that the morphism read on $E(n)$ is for every $n \geq 2$ an automorphism of the free group on A.

Denote by $\mathscr{M}(X, S)$ the set of invariant probability measures on a shift space X.

Theorem (Berthé, Cecchi, Durand, Leroy, P., Petite, 2021)

The dimension group of a minimal dendric shift X on the alphabet A is $\left(G, G^{+}, 1_{G}\right)$ with $G=\mathbb{Z}^{A}$, $G^{+}=\left\{x \in \mathbb{Z}^{A} \mid\langle x, \mu\rangle>0, \mu \in \mathscr{M}(X, S)\right\} \cup \mathbf{0}$ and $1_{G}=\mathbf{1}$ where $\mathbf{1}$ is the vector with all components equal to 1 and μ is the vector $\left(\mu([a])_{a \in A}\right.$.

An intriguing question

To every minimal shift space X on A, one can associate its Schützenberger group $G(X)$, which is a group contained in the free profinite semigroup on A. It was shown by Almeida and Costa (2016) that $G(X)$ is the free profinite group on A for every minimal dendric shift X. This raises the following questions.

- Is it true for every minimal shift that $G(X)$ is free profinite if and only if $K^{0}(X, T)$ is free abelian?
- What is the relation between $G(X)$ and $K^{0}(X, T)$?

