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This book is the first self-contained exposition of the fascinating link be-
tween dynamical systems and dimension groups. The authors explore the 
rich interplay between topological properties of dynamical systems and 
the algebraic structures associated with them, with an emphasis on sym-
bolic systems, particularly substitution systems. It is recommended for 
anybody with an interest in topological and symbolic dynamics, automata 
theory or combinatorics on words.  
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intuition, while the many open problems collected at the end provide 
jumping-off points for future research.
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Stochastic processes

Let µ : A∗ → [0, 1] be such that µ(ε) = 1 and

µ(w) =
∑
a∈A

µ(wa)

for every w ∈ A∗. Thus, we can interpret π(wa)/π(w) as the
probability of seeing the letter a after the word w .
Such a map µ is called a stochastic process on A∗.
For L ⊂ A∗, we denote µ(L) =

∑
w∈L µ(w).

A simple example is a Bernoulli process, defined by a morphism
µ : A∗ → [0, 1] such that

∑
a∈A µ(a) = 1. Equivalently, µ(wa)/µ(w)

does not depend on w .
If µ is a uniform Bernoulli process, that is if µ(a) = 1/ card(A), then

µ(w) =
1

card(A)|w |



Probability measures

A Borel probability measure on a topological space X is a map µ
defined on the family of Borel sets of X such that µ(X ) = 1 and

µ(∪n≥0Ui ) =
∑
n≥0

µ(Un)

for every family of paiwise disjoint Borel sets Un.
Let [w ] = {x ∈ AZ | x[0,|w |) = w} be the cylinder defined by the word
w . Given a stochastic process µ, there is a unique Borel probability
measure µ on AZ such that µ([w ]) = µ(w) for every w ∈ A∗.
The support of µ is the set

X = {x ∈ AZ | µ(w) > 0 for every w ∈ L(x)}.

It is a closed subset and µ(X ) = 1. Thus µ is a Borel probability
measure on X .



Prefix codes

A prefix code on A is a set C ⊂ A∗ such that no word in C is a proper
prefix of another word in C . A suffix code is the reversal of a prefix
code.
For X ⊂ AZ, a prefix code C ⊂ L(X ) is X -maximal if it is not properly
included in a prefix code C ′ ⊂ L(X ).
If µ is a stochastic process, one has µ(C ) ≤ 1 for every prefix code C
because the cylinders [w ] for w ∈ C are disjoint.
Let X be the support of µ. If C is a finite X -maximal prefix code, then
µ(X ) = 1 because X = ∪c∈C [c]. Moreover, the average length of C

λ(C ) =
∑
c∈C

|c |µ(c)

is equal to µ(P), where P is the set of proper prefixes of the words of
C .



Invariant measures

A measure µ on AZ is invariant if µ(S−1U) = µ(U) for every Borel set
U, where S denotes the shift transformation.
The measure µ is invariant if the associated stochatic process satisfies

µ(w) =
∑
a∈A

µ(aw)

for every w ∈ A∗.
The support of an invariant measure is closed and invariant. Thus, it is
a shift space. Conversely, for every shift space X , there exists an
invariant measure supported by X .
A Bernoulli measure is invariant.



Ergodic measures

An invariant measure µ is ergodic if every invariant Borel set has
measure 0 or 1. As an equivalent condition, µ is ergodic if and only if

lim
n→∞

1

n

n−1∑
i=0

µ(U ∩ S−iV ) = µ(U)µ(V )

for every pair U,V of Borel sets.
Every shift space has ergodic measures. If there is a unique invariant
measure, it is ergodic. The shift is said to be uniquely ergodic.
A Bernoulli measure is ergodic.



Substitution shifts

Let σ : A∗ → A∗ be a substitution. The shift space X(σ) is the set of
sequences x ∈ AZ such that all the blocks of x appear in some σn(a)
for a ∈ A and n ≥ 0.
The substitution σ is primitive if for every a ∈ A, there is n ≥ 1 such
that every letter b ∈ A appears in σn(a).

Theorem (Michel)

Every primitive substitution shift is uniquely ergodic.



Computation of the unique invariant measure

The composition matrix of σ : A∗ → A∗ is the A× A-matrix

M(σ)a,b = |σ(b)|a.

Proposition

If σ is primitive, and µ is the unique invariant measure, then

µ([a])a∈A

is a right Perron eigenvector of M(σ).



Relation to average length

Let σ : A∗ → A∗ be a primitive substitution. Let µ be the unique
invariant probability distribution on X(σ). The average length of σ

λ(σ) =
∑
a∈A

|σ(a)|µ(a)

is equal to the Perron eigenvalue ρ of M(σ). Indeed,

λ(σ) =
∑
a∈A

|σ(a)|µ(a) =
∑
a,b∈A

|σ(a)|bµ(a) = ρ
∑
b∈A

µ(b) = ρ.



Recognizability of substitutions

Let σ : A∗ → B∗ be a substitution. Let X be a shift space on the
alphabet A and let Y be the closure under the shift of σ(X ).
The substitution σ is recognizable in X if for every y ∈ Y there is
exactly one pair (x , k) with x ∈ X and 0 ≤ k < |σ(x0)| such that

y = Sk(σ(x)).

The following result is well known.

Theorem (Mossé)

Every primitive aperiodic substitution σ : A∗ → A∗ is recognizable in
X(σ).



Consequences of recognizability

If σ : A∗ → B∗ is recognizable in X , then it is a homeomorphism from
X onto Y .
Therefore, by Kac’s formula, if σ : A∗ → A∗ is primitive and aperiodic,
one has

µ(σ(U)) = µ(U)/λ

for every Borel set U, where λ is the Perron eigenvalue of M(σ).
Thus, we have an enlightening interpretation of the fact that (µ(a))a∈A
is a left eigenvector of M(σ): there is a partition of X(σ) is clopen sets
Skσ([a]) for a ∈ A and 0 ≤ k < |σ(a)|). Therefore

1 =
∑
a∈A

|σ(a)|µ(σ(a)) =
∑
a∈A

|σ(a)|µ(a)/λ



The k-th higher block shift

Let X be a shift space on A. Let u 7→ ⟨u⟩ be a bijection from the set
Lk(X ) of blocks of length k of X onto an alphabet Ak . The k-th
higher block shift X (k) is the image of X under the map γk defined by
y = γk(x) if

yn = ⟨xnxn+1 · · · xn+k−1⟩ (n ∈ Z)

For X = X(σ), one has X (k) = X(σk) where σk is the k-th higher block
presentation of a non-erasing substitution σ.
Let u ∈ Lk(σ) and let a be the first letter of u. Set s = |σ(a)|. If
σ(u) = b1b2 · · · bℓ with bi ∈ A, then

σk(⟨u⟩) = ⟨b1b2 · · · bk⟩⟨b2b3 · · · bk+1⟩ · · · ⟨bs · · · bs+k−1⟩.

The vector µ(u)u∈Lk (X ) is a right Perron eigenvector of M(σk).



Example

Let σ : a 7→ ab, b 7→ a be the Fibonacci substitution. Set u = ⟨aa⟩,
v = ⟨ab⟩, w = ⟨ba⟩. Then σ2 : u 7→ vw , v 7→ vw ,w 7→ u generates
X(σ)(2).

a b a a b a b · · ·
v

w

u

v

w



The invariant measure on the Fibonacci shift

Let σ : a 7→ ab, b 7→ a be the Fibonacci substitution and let X = X (σ)
be the Fibonacci shift. Then

M(σ) =

[
1 1
1 0

]
Its eigenvalues are the roots λ = (1 +

√
5)/2 and λ̂ = (1−

√
5)/2 of

z2 = z + 1. Then
[
λ−1 λ−2

]t
is a right eigenvector for the eigenvalue

λ. Thus µ(a) = λ−1 and µ(b) = λ−2.



Let us compute µ(u) for u ∈ L2(X ). Set u = ⟨aa⟩, v = ⟨ab⟩,
w = ⟨ba⟩. Then

σ2 : u 7→ vw , v 7→ vw ,w 7→ u

and thus

M(σ2) =

0 0 1
1 1 0
1 1 0


has the eigenvector [

λ−3 λ−2 λ−2
]t

Thus µ(aa) = λ−3, µ(ab) = λ−2 and µ(ba) = λ−2.



The invariant probability measure on the Fibonacci shift
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The Thue-Morse shift

Let σ : a 7→ ab, b 7→ ba be the Thue-Morse substitution. The matrix

M(σ) =

[
1 1
1 1

]
has

[
1/2 1/2

]
as eigenvector for the eigenvalue 2. Set u = ⟨aa⟩,

v = ⟨ab⟩, w = ⟨ba⟩, t = ⟨bb⟩. We find

σ2 : u 7→ vw , v 7→ vt,w 7→ wu, t 7→ wv

and thus

M(σ2) =


0 0 1 0
1 1 0 1
1 0 1 1
0 1 0 0


with right eigenvector [

1
6

1
3

1
3

1
6

]t



The invariant probability measure on the TM shift
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Computing in finite monoids

Recall the Green relations in a monoid M.

mRn ⇔ mM = nM ⇔ m, n generate the same right ideal

mLn ⇔ Mm = Mn ⇔ m, n generate the same left ideal.

mJ n ⇔ MmM = MnM ⇔ m, n generate the same ideal.

mHn ⇔ mRn and mLn.
When M is a monoid of partial mappings from a set Q to itself, the
Green relations have natural interpretations. The kernel of m is the
equivalence relation on Q defined by p ≡ q if pm = qm. Likewise the
image Im(m) of m is the set of q ∈ Q of the form pm for some p ∈ Q.
If mRn, then m and n have the same kernel. Symmetrically, if mLn,
then m and n have the same image. Finally, if mJ n, then m, n have
the same rank (where rank means the cardinality of the image).



A J -class J is regular if it contains an idempotent. We have

All H-classes contained in J have the same number of elements.

Each H-class containing an idempotent is a group and there is one
in each R-class and each L-class.
All groups in J are isomorphic to the Schützenberger group of J.

When M is a group, it is a single H-class.



The J -class JX (M)

Let X be a shift space on A and let φ : A∗ → M be a morphism onto a
finite monoid M. Let KX (M) be the intersection of all two-sided ideals
I of M such that I ∩ φ(L(X )) ̸= ∅. Let JX (M) be the J -class

JX (M) = {m ∈ M | MmM = KX (M)}.

Proposition

Let X be an irreducible shift space on A and let φ : A∗ → M be a
morphism onto a finite monoid M. Then

1 KX (M) is an ideal of M which meets φ(L(X )).

2 JX (M) = {m ∈ KX (M) | MmM ∩ φ(L(X )) ̸= ∅}.
3 JX (M) is either the minimal ideal K (M) of M, or the unique

0-minimal ideal in the quotient of M by the largest ideal of M
which does not meet φ(L(X )).



X -degree of an automaton

When the monoid M is the monoid of transitions of a deterministic
automaton A, the J -class JX (M) has a simple definition in terms of
ranks of the mappings. The minimal rank of the elements of φ(L(X ))
as partial mappings is called the X -degree of the automaton, denoted
dX (A).
The X -degree of an automaton is computable provided JX (M) is
computable, using the following statement.

Proposition

Let A be a deterministic automaton and let M = φ(A∗) be the
transition monoid of A. Let X be an irreducible shift space. The
J -class JX (M) contains all elements of φ(L(X )) of rank dX (A).



The parity of aa in the Fibonacci shift

Let A be the automaton represented below on the left. Let X be the
Fibonacci shift. Inside L(X ), the automaton A recognizes (with i = 1
and t = 2) the blocks of X with an even number of aa.

1 2

3

b

a

a

ba

1, 2, 3

1, 2

1, 3

a

b

a

ba

1, 2 1, 3

a, a2 ab, a2b

ba, ba2 b, bab

The action on subsets shown in the middle shows that dX (A) = 2. The
J -class JX (M) is represented on the right.



The Schützenberger representation

Let M be a finite monoid and let J be a regular J -class. Let Λ be the
set of H-classes of J in the same R-class R. We have an action of M
on Λ defined by H ·m = Hm if Hm ⊂ J and ∅ otherwise.
Let e ∈ J be an idempotent of R and let G be its H-class. A system of
coordinates of G is a family (rH , r

′
H)H∈Λ of pairs of elements of M such

that for every H ∈ Λ,

erH ∈ H, erH r
′
H = e

with rG = r ′G = e. Set H ∗m = erHmr ′H . The map

λ(m)H,K =

{
H ∗m if H ·m = K

0 otherwise

is a morphism from M to the monoid of Λ× Λ-matrices with elements
in G ∪ {0}, called the Schützenberger representation of M on J.



Computation in the transition monoid of an automaton

When M is the transition monoid of a deterministic automaton A, the
following simplifications occur:

1 The set Λ can be identified with the set I of images of minimal
cardinality (equal to dX (A)) of words in L(X ).

2 One can choose a system of coordinates of R such that
H ∗ φ(a) = e for every edge in a spanning tree of the graph with
edges H

a→ H · φ(a).
3 For every m ∈ M such that G ·m = G , the permutation G ∗m is

the restriction of m to the image of e.



Example

Let A be the automaton represented below on the left. Let µ be the
invariant probability measure on the Fibonacci shift.

1 2

3

b

a

a

ba

1, 2 1, 3a | (12)

b | (1)

a | (12)

1, 2 1, 3

a ab

ba b

The action on minimal images is shown in the middle. Then

λ(a) =

[
(12) 0
(12) 0

]
λ(b) =

[
0 (1)
0 0

]
is the Schützenberger representation relative to e = φ(a2) with
r13 = φ(b).



An automaton of X -degree 3

Let X be the Fibonacci shift. Consider the X -maximal prefix code C
represented below with the states of the minimal automaton of C ∗

indicated.

1

2

3

4

5

1

6

7
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9

1

1

6

3

8

1

1

1

a

b

a

b

a

b

a

a

a

b

a

b

b

a

a

a

a

b

Figure: A prefix code of X -degree 3

It is not bifix because aabaa, abaabaa ∈ C .



The X -minimal rank is 3 because the image of aa is {1, 2, 4} and the
action on the minimal images is indicated below.

1, 2, 4 3, 5, 6 1, 7, 8 1, 3, 9 1, 2, 3

b|(1) a | (1) b | (1) a|(1)

a|(124)

a|(12)

Figure: A prefix code of X -degree 3

The group is transitive because baa defines the permutation (124).



Computation of the density of C ∗

1, 2, 4

3, 5, 6

1, 7, 8

1, 3, 9

1, 2, 3

a

b

a
b

a

a

a

b

a
b

a

a

a

a

Let G be the above X -maximal suffix code. One has
JX (M) = φ(A∗G ) ∩ L(X ) and⋃

m∈JX (M)∩φ(C∗)

φ−1(Mm) = A∗(G \ {aab}) ∩ L(X ).

Therefore

δµ(C
∗) =

1− λ−3

3
≡ .



Computation of λ(C )

1
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8a

b

a

b

b

a

a

a

b

b

a

a

Figure: The set P of prefixes of C .

The yellow, green, red and blue sets are X -maximal suffix codes.
Therefore,

λ(C ) = 4 + µ(abaab) + µ(abaaba) = 4 + 2λ−3.


