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Abstract
This paper focuses on a new radiosity approach. Using a new geometrical model that describes any surface with
an atlas of “disk-like patches”, i.e. a set of pieces covering the surface that can overlap each other, we express the
radiosity function in a new function base. This leads to a new radiosity system where overlapping areas are taken
into account. The classical radiosity approach appears now as a particular limit case of this new “overlapping
radiosity”.
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1. INTRODUCTION
The main goal of rendering techniques is to simulate effi-
ciently and precisely illumination phenomena. Researchers
direct developments towards global models that simulate ge-
ometric optic[17], energetic behavior[7] or both, with for
example two-pass algorithms[15] combining radiosity and
ray-tracing. More recently, other complex phenomena like
participating media[14], caustics[13] or diffraction or other
wave optic phenomena[12] have also been studied.

In computer graphics, rendering techniques are directly
linked to geometrical object representations. For instance,
polygonal or parametric representations[5] are well-adapted
to calculate the radiosity solution while implicit functions[2]
or C.S.G. model[10] are more often used by ray-tracing al-
gorithms[6]. The goal of any radiosity approach is to solve
the rendering equation[11]. In general, finite element analy-
sis is used: the radiosity solution is expressed in set (a base)
of functions which are linked to a geometrical support. We
can classify radiosity approaches in two categories:

– first classical solutions[7] consist in meshing surfaces in
a set of patches on which the energy (radiosity) is supposed
to be constant. The energetic balance of each patch leads to
the classical form factor expression and to the resolution of
a linear system[4]. After resolution, the radiosity function is
reconstructed for example by a Gouraud’s shading. Consid-
ering the finite element point of view, we just approximate
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the radiosity function in a set of constant functions ("box"
function) defined locally for each patch. The main advantage
of these methods is the simplicity of the functions (a unique
constant function for each patch) and of the support (local
to the patch). A lot of terms maintain geometrical mean-
ing: for example the form factor still has a physical meaning
and classical developments (Stokes’s theorem. . . ) can be ef-
ficiently used. Moreover, complex variations of the radiosity
function can be treated only by subdividing the geometri-
cal support. In the other hand, these methods imply complex
data structures to maintain the surface topology, especially if
hierarchical representations[9] or automatic adaptive mesh-
ing algorithms[3] are used.

– in recent works, other function bases, easily integrable are
used. H.R. Zatz in[18] proposes to express the radiosity
function in a set of polynomial functions (Legendre poly-
nomials), while Gorthler et al. apply wavelet analysis[8]. A
parametric definition of the surfaces is used to support each
function of the base. Under these assumptions we loose ad-
vantages of the local support, because we work in a para-
metric space. Moreover, complex variations of the radio-
sity function impose unfortunately to increase the number
of functions in the base.

Here, we propose a new complete model which avoids effi-
ciently some of these previous drawbacks. The first part of
this paper (section 2) presents this new radiosity approach
while section 3 presents implementation aspects. Results are
discussed in section 4.
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(a) (b)

Figure 1: Disk-like patches on a planar surface (a) and a
non plane surface (b).

M

Figure 2: Only gray disk-like patches cover the point M.

2. A NEW RADIOSITY APPROACH
2.1. A New Base of Functions with Local Support

In a previous paper[1], we propose a new approach for
the modeling and the rendering of complex surfaces. In
this model, any surfaceS is defined bya covering at-
las of disk-like patches, i.e. a set ofNS disk-like patches
fDi ; i = 1: : :NSg verifying the following properties. Disk-
like patches:

– are open surfaces (not necessary planar);
– approximate locally as close as possible the surface;
– can overlap each other contrary to classical polygonal

patches;
– cover entirely the surface.

Figure 1 shows two examples of surfaces represented by
an atlas of disk-like patches.

As discussed in section 4.1 this model is an interesting
alternative to polygonal meshes because it simplifies the
geometry complexity by decreasing topological constraints.
Problems of complex geometrical construction and storage
disappear.

In this section we propose to use the atlas of disks as the
local geometrical support of a new set of function bases.
Then, for each pointM of the surface the luminanceL(M)
is decomposed in a base of functions associated to the set of
N disks coveringM (see figure 2) according to:

L(M) =
N

∑
i=1

Li(M)αi(M) (1)

where the two following functionsαi andLi are associated
to a diskDi :

– αi(M) can be seen as the probability of the presence atM
of the disk-like patchDi among theNS disks of the atlas.

– Li(M) are the coefficients associated to each function.

The definition of theα functions implies that:�
αi(M)> 0 i f M 2 Di
αi(M) = 0 i f M =2 Di

Figure 3: A simple example of reconstruction of L(M).

and that

N

∑
i=1

αi(M) = 1

In order to simplify the choice of the presence functions
αi(M), we associate to each patchDi a functionβi(M) that
verifies: �

βi(M)> 0 i f M 2 Di
βi(M) = 0 i f M =2 Di

and we define:

αi(M) =
βi(M)

∑N
j=1 β j (M)

Considering thatαi(M) is null outside the diskDi , equa-
tion (1) can also be written in:

L(M) = ∑
i=M2Di

Li(M)αi(M) (2)

This approach allows us to take into account advantages
of the two previous solution categories:

– As a unique functionβi(M) is associated to each disk-like
patch (its local support), no parametric surface representa-
tion is needed. Moreover the geometrical atlas model allows
us to express in the same way a very large variety of surfaces.

– In a superposition area, i.e. in a point M covered by a set
of disk-like patches, a variable number of functions is used
to expressed the value inF(M). This number depends here
on the geometrical disposition of the disk-like patches on the
surface, while it is fixed in a Galerkin approach.

Figure 3 represents two disks in the same plane and ad-
mitting an overlapping area. We suppose that the luminance
(or color) of each disk is known: constant, red for the first
one and green for the second one. We apply equation (2)
to reconstruct the luminance function over the two disks. In
figure 3a we choose a very basic functionβi constant and
equal to 1 for each point of the disk and equal to 0 outside
the disk. Then, the application of equation (2) imply that the
common area of the two disks is filled by a uniform average
luminance (or color). Ifβi is a function which varies contin-
uously from 1 in the center of the disk to 0 in the border, it
is easy to verify thatL(M) varies continuously too from one
color to the other in the overlapping area (figure 3b).
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Figure 4: Geometry of the energy exchanged between disk-
like patches.

2.2. Developing the Radiosity Solution

In this section, we consider that each surface describing a
scene is represented by an atlas of disk-like patches and we
present a complete radiosity approach which takes into ac-
count this hypothesis. The method we propose here is similar
to the classical radiosity approach: an energy balance allows
us to compute a radiosity value (supposed constant) for each
disk.

Even if we develop the radiosity solution in a set of basis
functions, this approach differs from the Galerkin method for
many reasons. In the classical Galerkin approach, H.R. Zatz
uses a set of orthogonal functions that allows to simplify the
calculus of the coefficients by a classical inner product. In
our approach, the function basis is not necessarily orthogo-
nal. Moreover no dual basis can be directly obtained because
the functionα is too complex, depending on the overlapping
areas between neighboring disks. As a consequence, classi-
cal developments of the Galerkin method can not be applied
and a solution consists in substituting equation 1 in both left
and right sides of the rendering equation.

2.2.1. Rewriting the Rendering Equation

If we consider a pointM of a given surfaceS (cf. figure 4),
the energy living this point is classically expressed by the
following energy balance equation[16] expressed in term of
radiosity:

B(M) = E(M)+ρ(M)H(M) (3)

whereE(M) is the self radiosity (exitance),ρ(M) the diffuse
reflectance andH(M) the illumination ofM:

H(M) =∑
j

Z
Sj

B(Mj )F(M;Mj)dMj

whereMj is a point of the surfaceSj andF(M;Mj) is the
classical elementary form factor between the two elemen-
tary surfaces centered onM andMj . It includes the visibility
term, i.e.F(M;Mj) = 0 if there is another object betweenM
andMj . Following the previous developments (section 2.1),
equation (2) is used to express the radiosity, the reflectance

coefficient and the exitance ofM. We have:

B(M) = ∑
i=M2Di

αi(M)Bi(M)

E(M) = ∑
i=M2Di

αi(M)Ei(M)

ρ(M) = ∑
i=M2Di

αi(M)ρi(M)

where the indexi identifies the disk-like patchesDi of Sthat
coverM (cf. figure 4).

Substituting these relations in equation (3) gives:

∑
i=M2Di

αi(M)Bi(M) = ∑
i=M2Di

αi(M)Ei(M)

+H(M) ∑
i=M2Di

αi(M)ρi(M)
(4)

To simplify the development, the different terms of this
equation are treated separately.

2.2.2. Development ofH(M)

First, we considerH(M) and we substituteB(Mj) by its ex-
pression. We obtain:

H(M) =

∑
j

Z
Sj

∑
k=Mj2Dk

αk(Mj )Bk(Mj)F(M;Mj)dMj

wherek identifies disk-like patches covering the pointMj .
The presence functionαk(Mj) being null outside the disk
Dk, we can write:

H(M) =

∑
j

∑
k=Dko fSj

Z
Dk

αk(Mj )Bk(Mj )F(M;Mj)dMj

Finally, if ND is the total disk number of the scene, we can
rewrite this expression by simplifying the double sum:

H(M) =
ND

∑
k=1

Z
Dk

αk(N)Bk(N)F(M;N)dN (5)

whereND represents any point of any surfaceSj and where
k now identifies each disk-like patch of the scene.

2.2.3. A New Radiosity Equation

The last step consists in integrating equation (4) over the
disk-like patchDh of S (see figure 4), in order to obtain the
radiosity of each disk-like patch.

Z
Dh

∑
i=M2Di

αi(M)Bi(M)dM =

Z
Dh

∑
i=M2Di

αi(M)Ei(M)dM

+
Z

Dh
∑

i=M2Di

αi(M)ρi(M)H(M)dM

(6)

We first develop:

I1 =
Z

Dh
∑

i=M2Di

αi(M)Bi(M)dM (7)
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Figure 5: Example of association of points Mi that approxi-
mate M for each disk Di .

Considering homogeneous overlapped areas of the diskDh,
equation (7) becomes:

I1 = ∑
i=Di\Dh 6=;

Z
Dh

αi(M)Bi(M)dM (8)

This expression is exact for planar surfaces, but has to be
approximated in the case of non planar surfaces. In a super-
position area (cf. figure 5) each pointM of S is associated
to the pointsMi of the disksDi which overlapM. Simple
algorithms[1] are used. Equation 8 becomes:

I1 � ∑
i=Di\Dh 6=;

Z
Dh

αi(Mi)Bi(Mi)dM

In this caseDi \Dh corresponds to the overlapping area be-
tweenDi andDh.

We now develop:

I2 =
Z

Dh
∑

i=M2Di

αi(M)ρi(M)H(M)dM

By substitutingρ(M) by a similar expression of equation (8)
andH(M) by (5), we obtain:

I2 = ∑
i=Di\Dh 6=;

Z
Dh

ρi(M)αi(M)�

ND

∑
k=1

Z
Dk

αk(N)Bk(N)F(M;N)dNdM

If, as in a classical radiosity approach, we suppose that the
radiosity, the exitance and the reflectance are constant over
each disk, (Bi(M) = Bi , Ei(M) = Ei andρi(M) = ρi), equa-
tion (6) becomes:

∑
i=Di\Dh 6=;

Bi

Z
Dh

αi(M)dM =

∑
i=Di\Dh 6=;

Ei

Z
Dh

αi(M)dM+ ∑
i=Di\Dh 6=;

ρi�

ND

∑
k=1

Bk

Z
Dh

Z
Dk

αi(M)αk(N)F(M;N)dNdM

If we define:cih =
R
Dh

αi(M)dM and

Fihjk =

Z
Dh

Z
Dk

αi(M)αk(N)F(M;N)dNdM

a new form factor defined between the portionDi \Dh and
another diskDk, we finally obtain for each disk-like patch

Dh:

∑
i=Di\Dh 6=;

Bicih = ∑
i=Di\Dh 6=;

Eicih

+ ∑
i=Di\Dh 6=;

ρi

ND

∑
k=1

BkFihjk

(9)

2.3. Matrix Representation

The expression of equation (9) for each disk-like patchDh
leads to a linear system of equations. We express it using a
matrix form. Becausecih is null if Di \Dh = ; for any disk-
like patchDh, we obtain:

ND

∑
i=1

0
@cih� ∑

j=Dj\Dh 6=;

ρ j Fjhji

1
ABi =

ND

∑
i=1

cihEi

or finally in matrix formM�B=C�E with

Mih = cih� ∑
j=Dj\Dh 6=;

ρ jFjhji

2.4. Classical Radiosity Retrieval

It is interesting to see that this new energy balance (9) is a
generalization of the classical radiosity. Equation (9) can be
simplified to retrieve classical radiosity equation in the case
of a classical mesh. If overlapping areas tend towards zero,
only Dh has a superposing area with itself. So, equation (9)
becomes:

Bhchh= Ehchh+ρh

ND

∑
k=1

BkFhhjk

In the same time, the presence functionαi(M) is constant,
equal to 1 for each pointM of Dh, so:

chh=
Z

Dh

αh(M)dM = Ah

whereAh is the surface of the disk-like patchDh.

For the same reason, the new form factor expressionFhhjk
is simplified in:

Fhhjk =
Z

Dh

Z
Dk

V
cosθh cosθk

πr2 dMdN

= AhFhk

whereFhk is the classical form factor, andV the occlusion
function.

We finally retrieve the classical radiosity equation:

AhBh = AhEh+Ahρh

ND

∑
k=1

BkFhk

3. IMPLEMENTATION
In this section, we describe an implementation of the over-
lapping radiosity method. As in classical radiosity, we use
a two-pass algorithm. The first pass consists in resolving
the radiosity system (9), and the second pass uses a view-
dependent algorithm that computes the final image. An ap-
proach similar to the progressive refinement algorithm[4]

c
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can be developed for the first pass. We express the contri-
bution of the unshot radiosity ofDk to the radiosity and the
unshot radiosity of any other diskDh. But contrary to clas-
sical radiosity, this energy has to be distributed to the disks
that overlapDh (includingDh). The energy contribution (in
Watt) of the unshot radiosity∆Bk of the diskDk to the radio-
sity of the disks overlappingDh is defined by:

EC= ∑
i=Di\Dh 6=;

ρiFihjk∆Bk

This energy must be distributed to the disks overlappingDh
in order to verify:

∑
i=Di\Dh 6=;

∆Bicih = EC

It can trivially be realized by adding the following proportion

cih

∑ j=Dj\Dh 6=; cjh
EC

to each diskDi . Using∑ j=Dj\Dh 6=; cjh = Ah the surface of
the diskDh, this energy variation corresponds to the follow-
ing radiosity variation:

∆Bi =
cih

Ah

EC
Ai

This development leads to the following algorithm:// ini-
tialization for each disk Dh do DeltaBh = Eh Bh = Eh end do //
shooting process repeat // select the emitter Dk Dk = disk of max-
imum Ckk*DeltaBk // computing the total energy received by Dh
Ec = 0 for each disk Di overlapping Dh do compute Fihk Ec +=
Fihk*Rhoi*DeltaBk end do // dispatching energy for each disk Di
overlapping Dh do Drad = Ec*Cih/(Ah*Ai) Bi += Drad DeltaBi +=
Drad end do end do // put unshot radiosity of Dk to 0 DeltaBk = 0
until convergence

4. RESULTS AND DISCUSSION
4.1. Modeling Considerations

In image 6, we show the geometrical disposition of the disk-
like patches.

This scene shows a room containing a cubic box, lighted
by a spotlight. We use here two kinds of disk-like patches:
disks and squares. Squares allow us to define precisely the
edges of the box, but other modeling approaches may be
used (smaller disks on borders for instance). Modeling ob-
jects with an atlas of disk-like patches gives us a large choice
of disk shapes and positions. For example, the previous reg-
ular disposition of the disks is not necessarily the best choice
and any random disposition does not change the complexity
of the treatments.

This new surface model efficiently simplifies the geom-
etry complexity by decreasing topological constraints be-
tween disk-like patches. Problems of complex geometrical
construction and storage disappear.

Any object is described by just a simple list of disk-like
patches. As a consequence, simple or complex surfaces are
similarly defined, and efficiently treated by this method as
shown in figure 8 (a sand heap), figure 9 (a cave wall) and

Figure 6: Geometry of the disk-like patches.

Figure 7: Small disks without any overlapping area.

figure 10 (a tunnel). It also explains that some of our ac-
tual works concern adaptive subdivision algorithms that are
plenty simplified because we do not have to store and update
a complex geometry representation.

4.2. Rendering Considerations

It is also interesting to point out that the different levels of
rendering are obtained by the same algorithm with different
β functions. Figure 11 shows the previous scene rendered
with a function constant for any disk-like patch. This choice
underlines overlapping areas between disk-like patches. In
the last image 12, we use aβ function that is varying contin-
uously from 1 in the center of the disk to 0 in the border of
each disk to obtain a more realistic rendering.

c
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Figure 8: a sand heap.

Figure 9: a cave.

In the classical radiosity approach, different artifacts are
due to the polygonal mesh and to the preponderant directions
used in Gouraud shading. These artifacts disappear with our
method because circular disks admit no preponderant direc-
tions and because overlapping areas blur efficiently the limits
of the disks.

Computational times are similar to those obtained with
a classical radiosity approach but. In a first step, the over-
lapping areas are computed and stored with the geometrical
database then the complexity of a step in the progressive re-
finement algorithm is obviouslyO(ND) where the complex-
ity of the same step in the classical radiosity algorithm is
O(patchnumber). For example, considering the scene of fig-
ure 10 that is described by about 6400 disks, computational
time due to one iteration of the progressive refinement al-
gorithm is about 15 seconds (on a Pentium II 450 personal
computer).

Figure 10: the interior of a tunnel.

Figure 11: Case of a functionβi constant.

5. CONCLUSION
In this paper we present a new radiosity approach for the
rendering of a large variety of surfaces. We use a new geo-
metrical model that consists in a set of disk-like patches that
can overlap each other. This geometrical model allows us to
propose a new interesting base of local functions for solving
the rendering equation. As a consequence, classical render-
ing artefacts due to polygonal mesh desappears and the use
of theβ function leads to a large set of possibilities both for
modeling and rendering aspects. The resulting “overlapping
radiosity” generalizes previous radiosity approaches to over-
lapping patches.
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