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ABSTRACT 
This paper expounds a new method of complex surfaces rendering permitting to visualize atlas of discoids in 
real-time. The atlas of discoids allow to define surfaces very easily without the topological constraints we could 
get with the classical methods such as polygons meshes ones. Our basic model is completed by many algorithms 
permitting either to reconstruct implicit surfaces or to calculate the global illumination using radiosity algorithm. 
But up to now, no fast viewing method has been proposed for this modeling algorithm.  
We present here a real time rendering algorithm which exploits the recent extensions of OpenGL library and the 
possibilities offered by GPU like the shaders programs to perform non standard fragments mixing operations. 
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1. INTRODUCTION 
Computer graphics techniques propose a large choice 
of solutions for surface modeling. The most widely 
used method consists in defining any surface by a 
polygonal mesh [Fol90]. Even if a classical structure 
like the winged-edge data structure [Sil94] allows to 
represent efficiently such a mesh, many drawbacks 
exist. In a rendering process, visual artifacts due to 
preponderant directions (the edges of the polygons) 
appear. Manipulation such as patch subdivisions 
become complex (see for instance [Man88] for a 
complete overview about solid modeling) because 
topological constraints between neighboring patches 
have to be maintained. We can also point out that 
similar topological problems appear in the surfaces 
reconstruction process of from a set of points 
[Boi84]. 
An interesting alternative consists in using Spline 

[Bar89] or Nurbs [Roc89] surfaces which model any 
surface by a collection of piecewise-polynomial 
patches instead of previous planar ones. More 
complex surfaces can be modeled but the main 
drawbacks concern continuity constraints in the 
junction points [Wat93] and rendering computation 
time generated by ray-tracing algorithm. 
Different interesting works aim at combining the 
previous approaches. Szeliski and Tonnesen [Sze92] 
propose to use disks or particles to represent the 
mesh describing an implicit surface. Oriented 
particles interact each other according to repulsion 
and attraction forces to automatically treat 
modifications of the surface (split, join, extend). 
Indeed, Witkin and Heckbert [Wit94] use oriented 
particles to sample regularly an implicit surface.  

The recent point-base rendering model allows to 
visualize a surface described by a set of points. 
Splats defined in [Zwi01] are commonly represented 
by disks centered on these points, and that may 
overlap each others. These splats are projected onto 
the screen and filtered by a Gaussian kernel in order 
to represent a continuous textured and illuminated 
surface. 
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Other recent works [Arq00a] present another method 
using elements of surfaces (discoids) that can overlap 
each others. So, defining such a surface with a set of 
disk-like patches imposes few constraints. For 
example, it avoids completely topological constraints 



associated to a classical mesh. On the contrary, 
overlapping areas are welcomed. We just have to 
place surface elements in the area we want the 
surface to exist, and we choose the geometry and the 
size of each discoid in order to obtain a "total 
covering" of the surface (cf. figure 1). 

 
Figure 1: scene completely defined by atlas of 

discoids. 
In [Arq00b], this geometrical model is completed by 
a rendering algorithm based on the radiosity global 
illumination model. However, in the two former 
papers, the visualization of surfaces described by 
atlas of discoids suffers the drawbacks of the ray-
tracing algorithm, a calculation time that doesn’t 
allow real-time utilization. 

The following image shows a human face made of 
only 19 more general discoids defined by 
overlapping polynomial surfaces. 

 
Figure 2 : surface defined by 19 discoids. 

Recent new capacities of the OpenGL library in 
programming the Z-Buffer algorithm allow to 
intervene in the heart of the rendering process 
developing short programs : the shaders. One of the 
categories of these short programs, called "fragment 
shaders", allows to modify the algorithm that selects 
the visible polygon in order to determine the color of 
the filled pixel. 

In this paper, we propose a new method permitting to 
visualize surfaces reconstructed from an atlas of 
simple surfaces that overlap each other in real-time 
using recent capacities of the OpenGL library in 
programming the Z-Buffer algorithm. We first 

present the atlas of discoids model, then we show 
how use shaders programs to calculate the melting of 
overlapping discoids. Then, we present some results 
on images. 

2. ATLAS OF DISCOIDS AND Z-BUFFER 
The atlas of discoid 
On a given surface S, the atlas system allows to 
reconstruct any interest function F, for instance a 
temperature or luminance function from an atlas of 
discoids. We define an atlas of discoids as a set of N 
disks-like patches { }NiDi K1, =  that cover entirely 
but approximately the surface S without taking into 
account overlapping problems. (cf. figure 3).  

 
Figure 3 : example of planar and complex 

surfaces defined by an atlas of discoids. 
Only for understanding reasons and notation 
simplifications, we just consider in this section the 
case of a planar surface S. Any point M of S is 
covered by a subset of discoids as shown in figure 4. 
Then the value of the interest function F in M is 
defined by : 
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where : 
( )MFi  is the local interest function defined for each 
point of the disk Di covering M; 
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Figure 4 : only gray disks are used to define the 

interest function in M. 
The choice of the function αi for each disk Di is 
relatively free. It can be seen as a decomposition of 
the interest function in a function base with a local 
geometrical support: the discoid. An interesting 
method consists in choosing any set of positive 
functions βi and to define αi by: 
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For example, the βi functions may depend on the 
distance from M to the center of the discoid. By 



choosing a function βi which varies continuously 
from 1 in the center to 0 in the border of each disk, it 
is easy to verify that the merging operator runs as a 
smoothing operator only in the overlapping area. 
In this paper, we propose to define the βi function 
over the discoid with a gray level texture for each 
discoid (cf. figure 5). Black points are null values of 
βi and the white ones correspond to .  1=iβ

Just notice that null values of the βi define the 
boundaries of the discoid. 

a)  b)  
Figure 5: two shapes of discoids defined by a 

texture : a disk (a) and a star (b) 

Z-Buffer and fragment 
First, let’s remind the well-known Z-buffer 
algorithm, and its implementation in the OpenGL 
library. The Z-Buffer algorithm consists in painting 
every polygon of the scene. For each pixel filled by 
the polygon, the process emits a "fragment" that 
contains the geometrical information and 
illumination coefficients of the polygon. One of these 
fragments is selected to be used to color the 
corresponding pixel in the color buffer.  
Fragment shaders programs allow to develop our 
own treatments applied to each fragment. For 
example, we have developed a short fragment 
program that calculates the illumination applying 
Phong [Pho75] illumination model in the level of the 
fragment. By using this fragment program instead of 
classical OpenGL lighting program, we obtain a 
smoother surface aspect as shown on figure 6. 
 

  
Figure 6: the same model rendered using OpenGL 
method (left) and with fragment program (right). 

3. ADAPTATIONS FOR REAL-TIME 
VISUALISATION 
Geometrical considerations 
If we consider now the general case, the disks do not 
exactly cover the surface S. We have to associate to 
the point M and for each disk Di a point Mi. Equation 
(1) becomes: 
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Using the Z-Buffer algorithm to render the surface, 
we mix the points Mi projected on the point M of the 
surface. If we consider a point of view O and the 
direction of viewing u

r
, the points Mi correspond to 

the intersection point between the ray [ )uO
r

 and the 
discoid Di as shown in the figure 7.  
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Figure 7: association of points Mi of discoids to 

point M of the surface. 
Then during the Z-Buffer process, the pixel on with 
the point M is projected receives a fragment for each 
discoid that covers M. Then, knowing the value βi 
(memorized in the gray level texture) for the n 
discoids Mi projected in M, we deduce from equation 
(3): 
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In the Z-Buffer algorithm, the denominator part of 
the equation (5) is only known at the end of the 
process, ie when all fragments are arrived. So, in 
order to calculate the interest function of the surface 
as soon as the fragments arrive, we express the 
equation (4) under a new incremental formulation: 
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Where t is the order of the fragments’ arrival. 



Level of details  
More precisely, a problem of level of details appears. 
Considering all discoids that produce a fragment for 
the same pixel, we have to melt only discoids that 
effectively cover the same point of the surface. We 
don’t have to mix far away discoids as shown in 
figure 8 and presented in a practical case in the 
image of figure 12 (where the two skulls are 
faraway).  

O

u

 
Figure 8: criteria of selection of overlapping 

discoids 
Two criteria are evaluated: the orientation of discoids 
and the distance between discoids along the vision 
axis. We use OpenGL culling test to delete fragments 
corresponding to the bad-oriented discoids (in gray 
in figure 8) and we use an adapted depth test to select 
which fragments should be mixed. We melt only the 
discoids that are very near to the memorize surface: 
when the depth Z of a new fragment is very different 
to the memorized depth Zmem, we apply the classical 
algorithm of Z-Buffer.  
More precisely, we first calculate the depth map of 
the scene without melting discoids and save it in a 
texture (called “depth” in the following code). Then 
during the other steps of the program, we only treat 
the discoids placed near this visible surface. The 
threshold is a level of details parameter, it must be 
chosen much smaller than the dimension of the 
discoids. 
// texture memorizing the depth buffer 
uniform sampler2D depth; 
// texture of beta values 
uniform sampler2D discoid; 
// threshold value 
uniform float t; 
 
void main (void) 
{ float beta = texture2D(discoid, 
                    vec2(gl_TexCoord[0])).a; 
  float dpt=texture2D(depth, 
                 vec2(gl_FragCoord/size)).x; 
// depth buffer 
  if(beta==0.0 || gl_FragCoord.z > dpt+t) 
  { discard;  
  } 
} 

For example, in figure 9 the same scene is drawn 
with a excessive (left) and good (right) value of 

threshold. We can observe some artefacts due to the 
mixing of too far away discoids. 

 
Figure 9: a scene rendered with two different 

values of threshold  

Illumination model 
The illumination model used in our implementation 
is based on Phong illumination model [Pho75] 
applied on each fragment. The luminance L is 
calculated using the following expression: 

( ) ( )γα Nsda KKKL coscos ++=  (6) 
Where Ka is the ambient term, Kd the Lambertian 
diffusion coefficient, Ks the specular reflexion 
coefficient, and N the shininess Phong coefficient. 
The first developed solution doesn’t use the MRT 
(Multi Render Target) library, so we have to write 
illumination parameters in only 4 bytes (RGBA) per 
fragment. So we use two times the equation (5) with 

( )αcos  and ( )γNcos  as interest function. After 
incremental calculation, the result is placed in the 
RVBA memory according to the following table. The 
two last bytes are reserved to memorize the 
denominator part of equation (5). 
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Table 1. illumination data of a fragment 

It is also possible to directly calculate the  

term using the blending capacities of the OpenGL 
library. Each fragment sends its 
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two bytes of the fragment color (first 4 bits in A and 
last 4 bits in B) and then the blending process 
computes the sum in the color buffer.  
// texture containing beta values 
uniform sampler2D discoid; 
void main (void) 
{ // beta value on the fragment 
  float beta = texture2D(discoid, 
vec2(gl_TexCoord[0])).a; 
  float coef = beta*256.; 
  gl_FragColor.b = floor(coef/16.); 
  coef-=gl_FragColor.b*16.; 
  gl_FragColor.b/=256.; 
  gl_FragColor.a = coef/256.; 
} 



We just have to copy this buffer in a texture in order 
to use it in the next steps of the program. The value 

of the  term is finally obtained combining 

the B and A components of the texture : Bx16 + A. 
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// texture containing encoded sumBeta values 
uniform sampler2D sumBeta; 
 
void main (void) 
{ // sBcode.ba : encoded values of sumBeta for the 
current fragment 
  vec4 sBcode = texture2D(sumBeta, vec2(gl_FragCoord 
/ size)); 
  float sumBeta = sBcode.b*16. + sBcode.a; 
} 

The following figure shows a sphere defined by 20 
discoids, with the beta function presented on figure 
5a. The first image (on left) shows the placement of 
the patches carrying the discoids. The image on the 
right is obtained by melting the previous discoids 
using our algorithm and applying a per fragment 
Phong lighting program. 

 
Figure 10: A sphere covered by 20 curved discoids 

4. RESULTS 
The two following examples presented below show 
surfaces described by atlas of discoids rendered by 
our program. The frame rate of these two examples is 
about 20 images per second on a NVidia Geforce 6 
6800 GT Graphic card. 

 
Figure 11: Eagle model defined by 8800 discoids 

 
Figure 12: Two skulls by 7176 planed discoids 

each. 

5. CONCLUSION AND FUTURE 
WORKS 
In this paper we propose a new algorithm permitting 
to visualize in real-time, surfaces defined by an atlas 
of discoids. This approach reduces topological 
constraints by simply describing any object by an 
atlas of discoids.  

Such method combined to a real-time visualization 
process is the first step to the development of a 
surface modeler that creates continuous surface from 
natural drawing of shapes. 

With the last new capacities proposed by OpenGL 
2.0, and more precisely MRT (Multiple Render 
Target), it is possible to memorize many interest 
functions for each discoid, written in different 
buffers. Moreover, the using of floating point 
textures allows better precision of calculation. These 
improvements will permit to construct surfaces 
associated to more illumination parameters and better 
speed of calculation. 
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