
Real-time rendering of complex surfaces defined by
atlas of discoids

Benoît Piranda Sylvain Magdelaine Didier Arquès

SISAR Team
University of Marne La Vallée

5, boulevard Descartes, Champs sur Marne
77454, Marne La Vallée, France

piranda@univ-mlv.fr ewik@free.fr arques@univ-mlv.fr

ABSTRACT
This paper expounds a new method of complex surfaces rendering permitting to visualize atlas of discoids in
real-time. The atlas of discoids allow to define surfaces very easily without the topological constraints we could
get with the classical methods such as polygons meshes ones. Our basic model is completed by many algorithms
permitting either to reconstruct implicit surfaces or to calculate the global illumination using radiosity algorithm.
But up to now, no fast viewing method has been proposed for this modeling algorithm.
We present here a real time rendering algorithm which exploits the recent extensions of OpenGL library and the
possibilities offered by GPU like the shaders programs to perform non standard fragments mixing operations.

Keywords
Surface reconstruction, real-time visualization, atlas of discoids.

1. INTRODUCTION
Computer graphics techniques propose a large choice
of solutions for surface modeling. The most widely
used method consists in defining any surface by a
polygonal mesh [Fol90]. Even if a classical structure
like the winged-edge data structure [Sil94] allows to
represent efficiently such a mesh, many drawbacks
exist. In a rendering process, visual artifacts due to
preponderant directions (the edges of the polygons)
appear. Manipulation such as patch subdivisions
become complex (see for instance [Man88] for a
complete overview about solid modeling) because
topological constraints between neighboring patches
have to be maintained. We can also point out that
similar topological problems appear in the surfaces
reconstruction process of from a set of points
[Boi84].
An interesting alternative consists in using Spline

[Bar89] or Nurbs [Roc89] surfaces which model any
surface by a collection of piecewise-polynomial
patches instead of previous planar ones. More
complex surfaces can be modeled but the main
drawbacks concern continuity constraints in the
junction points [Wat93] and rendering computation
time generated by ray-tracing algorithm.
Different interesting works aim at combining the
previous approaches. Szeliski and Tonnesen [Sze92]
propose to use disks or particles to represent the
mesh describing an implicit surface. Oriented
particles interact each other according to repulsion
and attraction forces to automatically treat
modifications of the surface (split, join, extend).
Indeed, Witkin and Heckbert [Wit94] use oriented
particles to sample regularly an implicit surface.

The recent point-base rendering model allows to
visualize a surface described by a set of points.
Splats defined in [Zwi01] are commonly represented
by disks centered on these points, and that may
overlap each others. These splats are projected onto
the screen and filtered by a Gaussian kernel in order
to represent a continuous textured and illuminated
surface.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8
WSCG’2006, January 30-February 3, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Other recent works [Arq00a] present another method
using elements of surfaces (discoids) that can overlap
each others. So, defining such a surface with a set of
disk-like patches imposes few constraints. For
example, it avoids completely topological constraints

associated to a classical mesh. On the contrary,
overlapping areas are welcomed. We just have to
place surface elements in the area we want the
surface to exist, and we choose the geometry and the
size of each discoid in order to obtain a "total
covering" of the surface (cf. figure 1).

Figure 1: scene completely defined by atlas of

discoids.
In [Arq00b], this geometrical model is completed by
a rendering algorithm based on the radiosity global
illumination model. However, in the two former
papers, the visualization of surfaces described by
atlas of discoids suffers the drawbacks of the ray-
tracing algorithm, a calculation time that doesn’t
allow real-time utilization.

The following image shows a human face made of
only 19 more general discoids defined by
overlapping polynomial surfaces.

Figure 2 : surface defined by 19 discoids.

Recent new capacities of the OpenGL library in
programming the Z-Buffer algorithm allow to
intervene in the heart of the rendering process
developing short programs : the shaders. One of the
categories of these short programs, called "fragment
shaders", allows to modify the algorithm that selects
the visible polygon in order to determine the color of
the filled pixel.

In this paper, we propose a new method permitting to
visualize surfaces reconstructed from an atlas of
simple surfaces that overlap each other in real-time
using recent capacities of the OpenGL library in
programming the Z-Buffer algorithm. We first

present the atlas of discoids model, then we show
how use shaders programs to calculate the melting of
overlapping discoids. Then, we present some results
on images.

2. ATLAS OF DISCOIDS AND Z-BUFFER
The atlas of discoid
On a given surface S, the atlas system allows to
reconstruct any interest function F, for instance a
temperature or luminance function from an atlas of
discoids. We define an atlas of discoids as a set of N
disks-like patches { }NiDi K1, = that cover entirely
but approximately the surface S without taking into
account overlapping problems. (cf. figure 3).

Figure 3 : example of planar and complex

surfaces defined by an atlas of discoids.
Only for understanding reasons and notation
simplifications, we just consider in this section the
case of a planar surface S. Any point M of S is
covered by a subset of discoids as shown in figure 4.
Then the value of the interest function F in M is
defined by :

() ()∑
∈

=
iDMi

ii MFMMF
/

)(α (1)

where :
()MFi is the local interest function defined for each
point of the disk Di covering M;

αi is a merging operator, defined and positive on
each disk Di, and which verifies . () 1

/

=∑
∈ iDMi

i Mα

M

Figure 4 : only gray disks are used to define the

interest function in M.
The choice of the function αi for each disk Di is
relatively free. It can be seen as a decomposition of
the interest function in a function base with a local
geometrical support: the discoid. An interesting
method consists in choosing any set of positive
functions βi and to define αi by:

() ()
()∑

∈

=

jDMj
j

i
i

M

M
M

/

β

β
α (2)

For example, the βi functions may depend on the
distance from M to the center of the discoid. By

choosing a function βi which varies continuously
from 1 in the center to 0 in the border of each disk, it
is easy to verify that the merging operator runs as a
smoothing operator only in the overlapping area.
In this paper, we propose to define the βi function
over the discoid with a gray level texture for each
discoid (cf. figure 5). Black points are null values of
βi and the white ones correspond to . 1=iβ

Just notice that null values of the βi define the
boundaries of the discoid.

a) b)
Figure 5: two shapes of discoids defined by a

texture : a disk (a) and a star (b)

Z-Buffer and fragment
First, let’s remind the well-known Z-buffer
algorithm, and its implementation in the OpenGL
library. The Z-Buffer algorithm consists in painting
every polygon of the scene. For each pixel filled by
the polygon, the process emits a "fragment" that
contains the geometrical information and
illumination coefficients of the polygon. One of these
fragments is selected to be used to color the
corresponding pixel in the color buffer.
Fragment shaders programs allow to develop our
own treatments applied to each fragment. For
example, we have developed a short fragment
program that calculates the illumination applying
Phong [Pho75] illumination model in the level of the
fragment. By using this fragment program instead of
classical OpenGL lighting program, we obtain a
smoother surface aspect as shown on figure 6.

Figure 6: the same model rendered using OpenGL
method (left) and with fragment program (right).

3. ADAPTATIONS FOR REAL-TIME
VISUALISATION
Geometrical considerations
If we consider now the general case, the disks do not
exactly cover the surface S. We have to associate to
the point M and for each disk Di a point Mi. Equation
(1) becomes:

() ()∑
∈

=
iDMi

iiii MFMMF
/

)(α (3)

Using the Z-Buffer algorithm to render the surface,
we mix the points Mi projected on the point M of the
surface. If we consider a point of view O and the
direction of viewing u

r
, the points Mi correspond to

the intersection point between the ray [)uO
r

 and the
discoid Di as shown in the figure 7.

M0

M1

M

O u

D1

D2

Figure 7: association of points Mi of discoids to

point M of the surface.
Then during the Z-Buffer process, the pixel on with
the point M is projected receives a fragment for each
discoid that covers M. Then, knowing the value βi
(memorized in the gray level texture) for the n
discoids Mi projected in M, we deduce from equation
(3):

()
() ()

()∑

∑

=

== n

i
ii

n

i
iii

M

MFM
MF

1

1

β

β
 (4)

In the Z-Buffer algorithm, the denominator part of
the equation (5) is only known at the end of the
process, ie when all fragments are arrived. So, in
order to calculate the interest function of the surface
as soon as the fragments arrive, we express the
equation (4) under a new incremental formulation:

()()

()()

()() () () ()()

()
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+

=

=

∑

∑

=

−

=

−

t

i
ii

t
tt

t

i
ii

t

t

M

MFMMMF
MF

MF

1

1

1

1

0 0

β

ββ
(5)

Where t is the order of the fragments’ arrival.

Level of details
More precisely, a problem of level of details appears.
Considering all discoids that produce a fragment for
the same pixel, we have to melt only discoids that
effectively cover the same point of the surface. We
don’t have to mix far away discoids as shown in
figure 8 and presented in a practical case in the
image of figure 12 (where the two skulls are
faraway).

O

u

Figure 8: criteria of selection of overlapping

discoids
Two criteria are evaluated: the orientation of discoids
and the distance between discoids along the vision
axis. We use OpenGL culling test to delete fragments
corresponding to the bad-oriented discoids (in gray
in figure 8) and we use an adapted depth test to select
which fragments should be mixed. We melt only the
discoids that are very near to the memorize surface:
when the depth Z of a new fragment is very different
to the memorized depth Zmem, we apply the classical
algorithm of Z-Buffer.
More precisely, we first calculate the depth map of
the scene without melting discoids and save it in a
texture (called “depth” in the following code). Then
during the other steps of the program, we only treat
the discoids placed near this visible surface. The
threshold is a level of details parameter, it must be
chosen much smaller than the dimension of the
discoids.
// texture memorizing the depth buffer
uniform sampler2D depth;
// texture of beta values
uniform sampler2D discoid;
// threshold value
uniform float t;

void main (void)
{ float beta = texture2D(discoid,
 vec2(gl_TexCoord[0])).a;
 float dpt=texture2D(depth,
 vec2(gl_FragCoord/size)).x;
// depth buffer
 if(beta==0.0 || gl_FragCoord.z > dpt+t)
 { discard;
 }
}

For example, in figure 9 the same scene is drawn
with a excessive (left) and good (right) value of

threshold. We can observe some artefacts due to the
mixing of too far away discoids.

Figure 9: a scene rendered with two different

values of threshold

Illumination model
The illumination model used in our implementation
is based on Phong illumination model [Pho75]
applied on each fragment. The luminance L is
calculated using the following expression:

() ()γα Nsda KKKL coscos ++= (6)
Where Ka is the ambient term, Kd the Lambertian
diffusion coefficient, Ks the specular reflexion
coefficient, and N the shininess Phong coefficient.
The first developed solution doesn’t use the MRT
(Multi Render Target) library, so we have to write
illumination parameters in only 4 bytes (RGBA) per
fragment. So we use two times the equation (5) with

()αcos and ()γNcos as interest function. After
incremental calculation, the result is placed in the
RVBA memory according to the following table. The
two last bytes are reserved to memorize the
denominator part of equation (5).

R G B A

()∑
=

t

i
iii M

1
cosαβ ()∑

=

t

i
ii M

1
β()∑

=

t

i
iNii M

1
cos γβ

Table 1. illumination data of a fragment

It is also possible to directly calculate the

term using the blending capacities of the OpenGL
library. Each fragment sends its

()∑
=

t

i
ii M

1
β

iβ value coded in
two bytes of the fragment color (first 4 bits in A and
last 4 bits in B) and then the blending process
computes the sum in the color buffer.
// texture containing beta values
uniform sampler2D discoid;
void main (void)
{ // beta value on the fragment
 float beta = texture2D(discoid,
vec2(gl_TexCoord[0])).a;
 float coef = beta*256.;
 gl_FragColor.b = floor(coef/16.);
 coef-=gl_FragColor.b*16.;
 gl_FragColor.b/=256.;
 gl_FragColor.a = coef/256.;
}

We just have to copy this buffer in a texture in order
to use it in the next steps of the program. The value

of the term is finally obtained combining

the B and A components of the texture : Bx16 + A.

()∑
=

t

i
ii M

1
β

// texture containing encoded sumBeta values
uniform sampler2D sumBeta;

void main (void)
{ // sBcode.ba : encoded values of sumBeta for the
current fragment
 vec4 sBcode = texture2D(sumBeta, vec2(gl_FragCoord
/ size));
 float sumBeta = sBcode.b*16. + sBcode.a;
}

The following figure shows a sphere defined by 20
discoids, with the beta function presented on figure
5a. The first image (on left) shows the placement of
the patches carrying the discoids. The image on the
right is obtained by melting the previous discoids
using our algorithm and applying a per fragment
Phong lighting program.

Figure 10: A sphere covered by 20 curved discoids

4. RESULTS
The two following examples presented below show
surfaces described by atlas of discoids rendered by
our program. The frame rate of these two examples is
about 20 images per second on a NVidia Geforce 6
6800 GT Graphic card.

Figure 11: Eagle model defined by 8800 discoids

Figure 12: Two skulls by 7176 planed discoids

each.

5. CONCLUSION AND FUTURE
WORKS
In this paper we propose a new algorithm permitting
to visualize in real-time, surfaces defined by an atlas
of discoids. This approach reduces topological
constraints by simply describing any object by an
atlas of discoids.

Such method combined to a real-time visualization
process is the first step to the development of a
surface modeler that creates continuous surface from
natural drawing of shapes.

With the last new capacities proposed by OpenGL
2.0, and more precisely MRT (Multiple Render
Target), it is possible to memorize many interest
functions for each discoid, written in different
buffers. Moreover, the using of floating point
textures allows better precision of calculation. These
improvements will permit to construct surfaces
associated to more illumination parameters and better
speed of calculation.

6. REFERENCES
[Arq00b] D. Arques, S. Michelin and B. Piranda,

Overlapping radiosity: using a new function base
with local disk support, WSCG'2000, vol. 3,
2000, pp. 236-243.

[Arq00a] D. Arquès, S. Michelin, B. Piranda.
Modelisation of Implicit Surfaces Driven by an
Atlas of Discoids, GraphiCon'2000, 2000.

[Bar89] R.H. Bartels and C.J. Beatty, A technique
for the direct manipulation of spline curves,
Graphics Interface’89, 1989, pp. 33-39.

[Boi84] J.D. Boissonnat, Geometric structure for
three dimensional shape representation, ACM

Transactions on Graphics, vol. 3(4), 1984, pp.
266-286.

[Fol90] J. Foley, A. Van Dam, S. Feiner and
J. Hugues, Computer graphics: principles and
practice, 2nd edition, Addison Wesley, 1990.

[Man88] M. Mäntylä, An introduction to solid
modeling, Computer Science Press, 1988.

[Pho75] B. T. Phong. Illumination for computer
generated pictures. Communication of the ACM,
Vol.18, n°6, 311-317, 1975.

[Roc89] A. Rockwood, K. Heaton and T. Davis,
Real-Time Rendering of Trimmed Surfaces,
SIGGRAPH '89 Proceedings, vol. 23(3), 1989.

[Sil94] F.X. Sillion and C. Puech, Radiosity and
global illumination, Morgan Kaufmann publisher,
1994.

[Sze92] R. Szelisky and D. Tonnesen, Surface
Modelling with Oriented Particle Systems,
Computer Graphics, vol. 26(2), 1992, pp.185-
194.

[Wat93] A. Watt, 3D Computer Graphics, 2nd
edition, Addison Wesley, 1993

[Wit94] A.P. Witkin and P.S. Heckbert, Using
Particles to Sample and Control Implicit Surfaces,
SIGGRAPH '94 Proceedings, 1994, pp. 269–277.

[Zwi01] M. Zwicker, H. Pfister, J. van Baar and M.
Gross, Surface splatting, In proceedings of ACM
SIGGRAPH 2001 (2001), pp. 371-378.

	INTRODUCTION
	ATLAS OF DISCOIDS AND Z-BUFFER
	The atlas of discoid
	Z-Buffer and fragment

	ADAPTATIONS FOR REAL-TIME VISUALISATION
	Geometrical considerations
	Level of details
	Illumination model

	RESULTS
	CONCLUSION AND FUTURE WORKS
	REFERENCES

