Average Analysis of Glushkov Automata under a BST-Like Model

C. Nicaud, C. Pivoteau, B. Razet

FSTTCS, December 2010

Introduction

What is the...

average number of transitions in large Glushkov automata?

(1) What is a Glushkov automata?
a What does mean average number of transitions?
(3) What is the shape of a large random regular expression ?
(4) What is the appropriate probabilistic distribution on regular expressions?
(5) Why is this question interesting

Introduction

What is the...

average number of transitions in large Glushkov automata?

(1) What is a Glushkov automata?
(2) What does mean average number of transitions?
(3) What is the shape of a large random regular expression ?
(0) What is the appropriate probabilistic distribution on regular expressions?
(5) Why is this question interesting

Introduction

What is the...

average number of transitions in large Glushkov automata?

(1) What is a Glushkov automata?
(2) What does mean average number of transitions?
(3) What is the shape of a large random regular expression?
(0) What is the appropriate probabilistic distribution on
regular expressions?
(Why is this question interesting ?

Introduction

What is the...

average number of transitions in large Glushkov automata?

(1) What is a Glushkov automata?
(2) What does mean average number of transitions?
(3) What is the shape of a large random regular expression?
(1) What is the appropriate probabilistic distribution on regular expressions?
(6) Why is this question interesting ?

Introduction

What is the...

average number of transitions in large Glushkov automata?

(1) What is a Glushkov automata?
(2) What does mean average number of transitions?
(3) What is the shape of a large random regular expression?
(9) What is the appropriate probabilistic distribution on regular expressions?
(6) Why is this question interesting

Introduction

What is the...

average number of transitions in large Glushkov automata?

(1) What is a Glushkov automata?
(2) What does mean average number of transitions?
(3) What is the shape of a large random regular expression?
(1) What is the appropriate probabilistic distribution on regular expressions?
\triangleright Average Analysis of Glushkov Automata under a BST-Like Model
(${ }^{\circ}$ Why is this question interesting

Introduction

What is the...

average number of transitions in large Glushkov automata?

(1) What is a Glushkov automata?
(2) What does mean average number of transitions?
(3) What is the shape of a large random regular expression?
(1) What is the appropriate probabilistic distribution on regular expressions?
\triangleright Average Analysis of Glushkov Automata under a BST-Like Model
(Why is this question interesting?

Motivations

Why are we interested in ...

- ... the number of transitions in Glushkov

automata?

- bounds on time and space complexity of the algorithm compiling the Glushkov automaton
- to compare different algorithms compiling regular expressions into automata
- ... average analysis?
- average analysis of algorithms
- to give more relevant information on practical running times of algorithms (in comparison with worst case analysis)
- ... the BST-like model ?
- easy random sampling
- often used in practice
- better modeling of regular expressions
\triangleright e.g. the number of nested stars in expressions

Random regular expressions

Random unary-binary trees : the BST-like model

Size : number of \square-nodes.

BST-like distribution of probabilities over unary-binary trees :

$$
\left\{\begin{array}{l}
\mathbb{P}\left(\begin{array}{l}
\square
\end{array}\right)=\mathbb{P}\left(\begin{array}{l}
\square \\
\vdots \\
\square
\end{array}\right)=1 \\
\mathbb{P}\binom{\square}{\vdots}=q \cdot \mathbb{P}(T) \\
\mathbb{P}\binom{\square}{T_{1} T_{2}}=(1-q) \cdot \frac{1}{n-2} \cdot \mathbb{P}\left(T_{1}\right) \cdot \mathbb{P}\left(T_{2}\right) \quad \text { if }\left|T_{1}\right|+\left|T_{2}\right|+1=n
\end{array}\right.
$$

The BST-like distribution is not uniform

Uniform : $\mathbb{P}\left(T_{1}\right)=\mathbb{P}\left(T_{2}\right)$
BST-like : $(1-q)^{2} / 3 \stackrel{?}{=}(1-q) / 3 \quad \rightarrow$ No solution!
Uniform random unary-binary tree (1021 nodes) \triangleright \sim height : $\Theta(\sqrt{n})$ [Flajolet, Odlyzko 82]
∇ BST-like random unary-binary tree (1000 nodes) \sim height : $\Theta(\log n) \quad$ [Robson79, Devroye86, Drmota01]

Random regular expressions

Proba. of a random size n reg. exp. in the BST-like model :

$$
\begin{array}{lll}
\mathbb{P}\left(T^{*}\right) & =\mathbb{P}(T) & \text { if } n=2 \\
\mathbb{P}\left(T^{*}\right) & =q \cdot \mathbb{P}(T) & \text { if } n>2 \\
\mathbb{P}\left(T_{1} \cup T_{2}\right) & =\mathbb{P}\left(T_{1} \bullet T_{2}\right)=\frac{1}{2} \frac{1-q}{(n-2)} \mathbb{P}\left(T_{1}\right) \mathbb{P}\left(T_{2}\right) & \text { if }\left|T_{1}\right|+\left|T_{2}\right|+1=n
\end{array}
$$

When $\mathrm{n}=1$ (for the leaves) $: \mathbb{P}(\varepsilon)=p_{\varepsilon}$ and $\sum_{a \in A} \mathbb{P}(a)=1-p_{\varepsilon}$.
$\mathrm{RE}(n)$ Random Sampler ---if $n=1$ then return ε with proba p_{ε} or a letter ℓ with proba $\mathbb{P}(\ell)$ if $n=2$ then return ($\operatorname{RE}(1))^{*}$
else, choose "unary" with proba q or "binary" with proba $1-q$ if "unary" then return $(\operatorname{RE}(n-1))^{*}$
else choose k uniformly at random between 1 and $n-2$ return $\operatorname{RE}(k) \cup \operatorname{RE}(n-k-1)$ with proba $1 / 2$ or return $\operatorname{RE}(k) \bullet \operatorname{RE}(n-k-1)$ with proba $1 / 2$

Glushkov Automaton

Glushkov Automaton

Glushkov (1961) ; McNaughton and Yamada (1960) ;
Berry and Sethi (1986).
$T=b^{*} \bullet(a \cup b \bullet b)^{*} \quad \xrightarrow{\text { Relabeling }} \quad \widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$
First $(T)=\left\{\alpha_{j} \mid\right.$ a word of $L(\widetilde{T})$ begins with $\left.\alpha_{j}\right\}$

Last $(T)=\left\{\alpha_{j} \mid\right.$ a word of $L(\widetilde{T})$ ends with $\left.\alpha_{j}\right\}$

Follow $(T, \alpha)=\left\{\beta_{j} \mid \beta_{j}\right.$ can follow α in a word of $\left.L(\widetilde{T})\right\}$

Glushkov Automaton for $\widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$

Glushkov Automaton for $\widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$

First $(T)=\left\{b_{1}, a_{2}, b_{3}\right\}$

Glushkov Automaton for $\widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$

Follow $\left(T, b_{1}\right)=\left\{b_{1}, a_{2}, b_{3}\right\}$

Glushkov Automaton for $\widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$

Follow $\left(T, a_{2}\right)=\left\{a_{2}, b_{3}\right\}$

Glushkov Automaton for $\widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$

Follow $\left(T, b_{3}\right)=\left\{b_{4}\right\}$

Glushkov Automaton for $\widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$

Follow $\left(T, b_{4}\right)=\left\{a_{2}, b_{3}\right\}$

Glushkov Automaton for $\widetilde{T}=b_{1}^{*} \bullet\left(a_{2} \cup b_{3} \bullet b_{4}\right)^{*}$

$\operatorname{Last}(T)=\left\{b_{1}, a_{2}, b_{4}\right\}$

Average analysis

Average number of transitions

Theorem

In the BST-like model, the average number of transitions in the Glushkov automaton of a size n regular expression is quadratic, i.e., in $\Theta\left(\mathbf{n}^{2}\right)$.

Rmk : in the worst case, the number of transitions is also quadratic.

Recall that:

Theorem (Nicaud 09)

The average number of transitions of the Glushkov automaton associated to a regular expression of size n, for the uniform distribution, is in $\Theta(n)$.

Sketch of proof

The (non initial) transitions in the Glushkov Automaton of T :
(Edges $(\varepsilon)=$ Edges $(a)=0$
Edges $\left(T^{*}\right)=\operatorname{Edges}(T) \cup$ Last $(T) \times$ First (T)
Edges $\left(T_{1} \cup T_{2}\right)=$ Edges $\left(T_{1}\right) \cup$ Edges $\left(T_{2}\right)$
Edges $\left(T_{1} \bullet T_{2}\right)=$ Edges $\left(T_{1}\right) \cup$ Edges $\left(T_{2}\right) \cup$ Last $\left(\mathbf{T}_{\mathbf{1}}\right) \times$ First $\left(\mathbf{T}_{\mathbf{2}}\right)$

- The number of new transitions produced by $T_{1} \bullet T_{2}$ is \mid Last $\left(T_{1}\right)|\cdot|$ First $\left(T_{2}\right) \mid$
- The average size of First (or Last) is linear.
\triangleright There is a non zero probability that a size n expression leads to an automaton with at least βn^{2} transitions, $\beta>0$.
\triangleright By Markov inequality : $\mathbb{E}[X] \geq a \cdot \mathbb{P}(X \geq a)$, the average number of transitions is in $\Omega\left(n^{2}\right)$.

Analytic Combinatorics

Ph. Flajolet, R. Sedgewick.

- Study of the asymptotic behavior of counting sequences of the form : $\left(a_{n}\right)_{n \in \mathbb{N}}$
- Use its generating function $A(z)$, the formal power series defined by

$$
A(z)=\sum_{n \in \mathbb{N}} a_{n} z^{n}
$$

- Recursive descriptions of sequences can automatically be translated into (differential) equations on generating functions.
- Many powerful results of Analytic Combinatorics to compute asymptotic estimates for the coefficients (the a_{n} 's).

The average size of First is linear

Theorem

The average size of First for a size n regular expression, according to the BST-like model, is asymptotically equivalent to K n, for some real constant $K \in] 0,1[$.

$$
\left\{\begin{array}{ll}
\text { First }\left(\begin{array}{c}
\stackrel{\wedge}{T_{1}} \\
\operatorname{First}\left(\begin{array}{cr}
T_{2}
\end{array}\right)=\operatorname{First}\left(T_{1}\right) \cup \operatorname{First}\left(T_{2}\right)
\end{array}\right. & \forall T_{1}, T_{2} \in \mathcal{T}, \varepsilon \in L\left(T_{1}\right) \\
T_{1} T_{2}
\end{array}\right)=\operatorname{First}\left(T_{1}\right) \quad \forall T_{1}, T_{2} \in \mathcal{T}, \varepsilon \notin L\left(T_{1}\right) .
$$

f_{n} : average size of $\operatorname{First}(T)$ when $|T|=n . \quad f_{1}=f_{2}=1-p_{\varepsilon}$

$$
f_{n+2}=q f_{n+1}+\frac{2(1-q)}{n} \sum_{\ell=1}^{n} f_{\ell}-\frac{1-q}{2 n} \sum_{\ell=1}^{n} r_{\ell} f_{n+1-\ell}, \quad n \geq 1
$$

\triangleright differential equation for $F(z) \quad \triangleright$ asymptotic estimate of f_{n}.

Recognizing the empty word

The size of First (and Last) is highly related to the probability of recognizing the empty word.

Theorem

A large random regular expression recognizes the empty word with high probability. More precisely, in the BST-like model, the probability that a size n regular expression does not recognize ε is asymptotically equivalent to

$$
r_{n} \sim \frac{C}{n^{q}}
$$

with $C=\frac{\left(1-p_{\varepsilon}\right)}{e^{1-q} \Gamma(1-q)}\left(1-\int_{0}^{1} \frac{e^{(1-q) t}(1-t)^{1-q}-1}{t^{2}} d t\right)$.
r_{n} : the probability that a size n regular expression does not recognize $\varepsilon\left(r_{0}=0\right)$

Recognizing the empty word (sketch of proof)

When does a regular expression recognize the empty word?

The sequence $\left(r_{n}\right)_{n \in \mathbb{N}}$ satisfies $r_{1}=1-p_{\varepsilon}, r_{2}=0$ and

$$
r_{n+2}=\frac{1-q}{n} \sum_{\ell=1}^{n} r_{\ell}, \quad n \geq 1
$$

\triangleright differential equation for $R(z)=\sum_{n \in \mathbb{N}} r_{n} z^{n}$;
\triangleright asymptotic equivalent for r_{n}.

Experiments

- x-axis : size of expressions defined on the alphabet $\{a, b\}$
- y-axis : number of transitions of Glushkov automata
- parameters : $q=\frac{1}{3}, p_{\varepsilon}=\frac{1}{100}$ and $\mathbb{P}(a)=\mathbb{P}(b)$

Perspectives

- Study of regular expressions where the Kleene Star operator $*$ has been replaced by a + operator : \triangleright prove the linear behavior empirically observed (work in progress).
- Consider average analysis of other constructions related to Glushkov automata, such as :
- the Follow automaton by Ilie and Yu,
- Antimirov automaton.

