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Modern Computer Algebra

Analytic

INATORIAL
PECIES AND
EE-LIKE
Combinatorics

Philippe Flajolet and
Robert Sedgewick

Aim:  Algorithms for analytic combinatorics.
Well-defined input provided by species theory.
Efficiency by computer algebra.

Bonus: Unified framework for constructible combinatorial classes.
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Framework: Constructible Species (Flajolet, Sedgewick)

A small set of species

e & (orl),Z,x,+,SEQ, SET, CYC,
e cardinality constraints that are finite unions of intervals,
e can be used recursively (implicit systems).

Examples:

@ Regular languages
@ Unambiguous context-free languages %m
o Trees (B=Z+ Z x B T = Z x SET(T))

o Mappings, ...

Two related problems:
@ Enumeration: number of objects of size n for n =0,1,2,....
@ Random sampling: all objects of size n with the same proba.

Two contexts: labelled/unlabelled.
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What do we need for Random Sampling?

We have:
S = SEQ(Z +P),
@ A combinatorial specification P = SET-o(Z +S).
@ A recursive algorithm to
compute structures {S(Z) = 1/(1 - (z+ P(2)),
@ Implicit equations on P(z) = exp(z+5(2)) - 1.

generating functions or

P(z) = exp(Xyso(2" + S(29))/K) — 1.
We need:
@ Recursive Method (Flajolet, Zimmerman, Van Cutsem 94):
> Enumeration sequences for each class of the specification.
@ Boltzmann Method (Duchon et al. 04):

> A Numerical Oracle that gives values of the gfs at a given
(well chosen) point.

> Ultimately, a way to evaluate the singularities of the gfs.
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Oracle = solving large systems?

The generating series are given by implicit systems of equations.

We need:

@ only one solution; ) \

o the right one;

o only numerically.

In the worst case, these
requirements would make no
difference.

But these systems inherit
structure from combinatorics.

> Even more complicated in the unlabeled case.
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Oracle = solving large systems?

The generating series are given by implicit systems of equations.

We need:
SYs ’('l/ xCIC2C3(Cl1+C3),Z=x,Cl=x

@ only one solution; . .

+ ——,C2=2x+ —= .
1 -crrcs (1=xcrrc?) (1-c2)

o the right one; rors 2B dcics)

1-cr’

T

o 0n|y numerlca"y. > [seq(subs(t,C0),t=solve(subs(x=0.1,sys)))];
[0.0003125169973, 0.0007429960174, 0.01391132169.
001391089776, 006534819752, 01516695772,

I n the Worst Case these 0.5931967039, -0.5909308297, -0.002843524044,

-0.006587551424, -0.02496904471, 0.02486320262,

. 1016379119, 02631789750 + 01384080116 1,
reql‘”rements would make no 03391146531, 0.2631789750 — 013840801161,
. -0.002894993353, -0.006718005666, ~0.02619777844,
difference. 0.02609673139, ~0.07632515320, ~0.1768253273,
. . -0.6704728314, 0.6676342030, 1.015911152, 02617092228
But these Syste ms inherit + 01379131433 1, ~0.3359391708, 0.2617092228

—0.1379131433 1]

structure from combinatorics.

> Even more complicated in the unlabeled case.
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By iteration

Numerical Oracle:

numerical iteration that converges 0‘3A/
to the unique relevant solution

/ﬂ 0,2 y

convergence of the iteration ‘
. . 0,59
on counting series
ﬂ 0.4
convergence of the iteration on N

combinatorial functional systems 0&/‘/
. . 02 . — - + .
Fast oracle: Newton iteration L

Binary trees: B(z) = z + B(z)?
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Results (1/2): Fast Enumeration

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of gfs of constructible species in
© arithmetic complexity:
o O(NlogN) (both ogf and egf);
© binary complexity:
o O(N?log® Nloglog N) (unlabeled, ogf);
o O(N?log® Nloglog N) (labeled, egf).

> Quasi-optimal: linear with respect to the size of the output, up
to possibly logarithmic factors.

> Very simple method, easy to implement.

Bonus : Differential Systems
z
V(@)= HEVE@)+ [ GT. VT
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Results (2/2): Oracle

©Q The egfs and the ogfs of constructible combinatorial classes
are convergent in the neighborhood of 0;

@ A numerical iteration converging to Y(«) in the labelled case
(v inside the disk);
> convergence asymptotically quadratic

© A numerical iteration converging to the sequence
Y(a),Y(a?),Y(a?),...

in the unlabeled case (« inside the disk);
> hybrid algorithm;

. and also: a criterion to decide if « is inside the disk of cvg of Y.
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From Analytic Combinatorics to Species Theory

Analytic Combinatorics: Species Theory:
@ Symbolic method to describe @ A more general framework
recursive combinatorial classes for combinatorial structures

(]

@ A restricted set of Implicit species theorem

combinatorial constructions,
with a dictionary for gfs.

@ Labelle's work on the
combinatorial derivative

@ Powerful tools for enumeration
(singularity analysis,...)

@ Combinatorial Newton

iteration
@ Automatic methods for random (Decoste, Labelle, Leroux)
generatl.on o Combinatorial differential
(Recursive, Boltzmann) systems
But no well-founded systems... But no analytic tools...
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Il Combinatorics
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The key point

Theorem (Implicit Species Theorem (Joyal 81))

Let H be a vector of multisort species, such that

e #(0,0) =0 and

o the Jacobian matrix OH /0Y(0,0) is nilpotent.
The system of equations

Y=H(Z))

admits a vector 8 of species solution such that S(0) = 0, which is
unique up to isomorphism.

v

@ What do the bold symbols mean?
e H(0,00=07

@ What about the other condition?
o Why is it so important?
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Short introduction to Species

Examples:
Definition (Species F) 00 1 2
finite set U + finite set F[U] o SET-
bij. o : V — bij. : % ’
ij. 0:U— V — bij. Flo]: F[U] — F[V] o SEQ, CYC.
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Short introduction to Species

Species F: Examples:
00,1, Z
@ SET;
@ SEQ, Cyc.
labeled!
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Short introduction to Species

Species F:

labeled!

@ Composition F o G:

FoG ¥
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Examples:
00,1, Z
@ SET;

@ SEQ, Cyc.
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Short introduction to Species

Species F:

labeled!

@ Composition F o G:

FoG ¥
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Examples:

0,1, Z;
SET;
SEQ, Cyc.

Y="H(Z,))
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Derivative
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Derivative
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Derivative

species derivative

A+ B A +B

A-B A -B+A-B
SEQ(B) SEQ(B)-B' - SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B
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Derivative

species derivative

A+ B A +B

A-B A -B+A-B
SEQ(B) SEQ(B)-B' - SEQ(B)
Cyc(B) SEQ(B) - B/
SET(B) SET(B) - B

Example:

H(G,S,P) = (S +P,SEQ(Z + P),SET(Z + S)).

0 1 1
g—% =|0 0 SEQ(Z + P)-1-SEQ(Z + P)
Y \o ser(z+8)-1 0
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Back to Joyal’s Implicit Species Theorem

If H(0,0)= 0 and dH/8Y(0,0) is nilpotent, then Y = H(Z,Y)
has a unique solution, limit of

ylol — o, yirtl — gz, yihy (n>0).

Def. A =, B if they coincide up to size k (contact k).

If y[n+1] =, YU then Ylrtrtll —,  YIr+el (5 = dimension).

Yo
[ "ﬂ [ ")] -\/[VVCI
[ ’\’1 Yo [ ?J H - 0 [ 1
....... = 4 + 0
[ ?] [ "\)] V["\]
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Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z,.A), then

A+Z< (2, A)l-(’H(Z,A)—A)

i>0

has contact 2k + 1 with it.

.A A =k yv
A+ 4 - H A r Y- At =
" = A+ AT =341 Y,
A
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Combinatorial Newton lteration

Theorem (essentially Labelle)

For any well-founded system Y = H(Z,Y), if A has contact k
with the solution and A C H(Z, A), then

A+Z< (2, A)> (H(Z,A) - A)

i>0

has contact 2k + 1 with it.

y[m][m] )
¥ Y " v -
k4
V[mfl o
VC"‘] V

Rmk : Generation by increasing Strahler numbers.
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Newton lteration for Binary Trees Y=1+Zx)?

Vg1 =Vn +SEQ(Z X Vp X *x+ Zx %X V) x (1+Z x V2> —V,).
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Newton lteration for Binary Trees

Vg1 =Vn +SEQ(Z X Vp X *x+ Zx %X V) x (1+Z x V2> —V,).

Yo=0

V= o
y2:° + <<Z+ &%-}-...4_ A ST
< el

6 e
Vs =2 + <é Fooodr % S -+ T
R

[Décoste, Labelle, Leroux 1982]
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Il Algorithms
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Example: Series-Parallel Graphs

g =8+P,
S =SEQ(Z+P),
P =SETo(Z+S).
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Example: Series-Parallel Graphs (labelled case)

G =S+P, 0 1 1
oH )

P =SET-0(Z + S). 0 SET(Z+S) 0

G =S+P

+ P, . on [0 1 ro

S =1-z-P) 1, — =10 0 (1-z-P)
oY

P =exp(z+S)-1. 0 exp(z+S5) 0
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Example: Series-Parallel Graphs (labelled case)

G =5+P, 0 1 1
OH 5
S =(1-z-pP)Y, ——=10 0 (1-z-P)
oY
P =exp(z+S)—1. 0 exp(z+S) 0

. . Glnl
Newton iteration: Y .= <5[n]>,
plnl

3H -1 n+1
[+1] _ ] _OH iy [nly _ ylnl 2
Y Y +<Id oy (Y )> (H(Y ) - Y )modz .
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Example: Series-Parallel Graphs (labelled case)

G =S+P, 0 1 1
_ OH 5
S =(1-z-pP)Y, =10 0 (1-z—-P)
oY
P =exp(z+S5)—1 0 exp(z+S) 0
Glnl
Newton iteration: Y[ := <5[n] >
plnl

n+1

yin+1] — ylnl 4 (Id _67( "])> . <H(Y[”]) - Y[”]) mod z°

= What about the inverse? And the exponential?
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Example: Series-Parallel Graphs (labelled case)

G =5+P, 0 1 1
OH 5
S =1-z-P)Y —S=10 0 (1-z-P)
oY
P =exp(z+S)-1. 0 exp(z+Y9) 0

Glnl
Newton iteration: Y .= <5[n] )

ylr+11 - — ylal 4 gyl <%(Y["]) Ul 1d — U[”]) mod 22",
Y1yl el ( H(Y ) vlnl) mod 22"
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v =0 vz =0

V() =
Vi) =

() =

y[2
y“

’)
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20 4 139 5 3337 ; 601 ; 808243 ,
— 3 _ _ _ _
Z+Z+62+12 120 ° "9 % T 50a0 ¢
Z 2 Ts 61 4 T2 5 10351 o ITISCT . G6TOST
6 227 T 120 720 5040 8064
2, 5,8 +%z4+? 5, 15961 , 2841 ; 9481021
2. T8, T8 4 1051 ;0 U10381 o 436087 . 11584693
6 24 120 720 5040 10320
61 , 29 . 15961 , 366558482492939101
24828+ — 2+ 5+ z °
12 2 360 108972864000
1 2+7 5, 78 4, 1051 ; 19381 386081655546862081 .
- — —z
2% 7% 24 120 720 186810624000

=
(
(
=
=
=

0.1230510663209943063722 . ..
0.1627000389319615796926 . . .

0.1724333307003245710686 . . .

0.1730460965507535353574 . . .,
0.1730486392973095133433.. . .,

0.1730486393408452105149 ..

(]

0.06462664750711721439535.. ..
0.09201293266034877734970. . .
0.09798441803578338336038 . . .

0.09836831514307466499845 . . .
0.09836989917963665326450 . . .
0.09836989920678769126015 . .



Example: Unlabelled Rooted Trees

O Well-founded system: Y = Z - SET(Y) =: H(Z,)); Y ,L
A Py
% ‘
07
B
\&"\" ! /
7
5
WG
Ay
" ("
N/
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Example: Unlabelled Rooted Trees

Q Well-founded system: Y = Z - SET(Y) =: H(Z,)); VA4

R
@ Combinatorial Newton iteration: Wit
‘.
ol
Yt — ylal L gpq(a (V) - (R — Yl %
B
\&”\" ~ |
Y %
0
s’ y
o (}'
N/
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Example: Unlabelled Rooted Trees

O Well-founded system: Y = Z - SET(Y) =: H(Z,)); S ,'(
@ Combinatorial Newton iteration: ) \«(4,
‘.
ol
y[n+1] — y["] + SEQ(?—[(JJ["])) . (H(y["]) _ y["]) .‘x',
~ ~ Wi
@ OGF equation: Y(z) = H(z, Y(z)) \"‘Q«(, )
- 1. 1. ’
V(2) = zexp(V(2) + 5 V() + 3 V() + ) Yo
..s’ "‘
(}'
A
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Example: Unlabelled Rooted Trees

O Well-founded system: Y = Z - SET(Y) =: H(Z,));

oif
@ Combinatorial Newton iteration: Jtpi
’.
ol
Vit = yirl 4 Spq(H M) - () — Yio) o
~ ~ »‘\r»"r
© OGF equation: Y(z) = H(z, Y(2)) - ? Sy
() v Lo oy, 1o 3 &
GRUCIUGRC RIS
© Newton for OGF (thanks to the combinatorial derivative): »
it — gl H(z, VIr) - ¥l iy

1— H(z, Yl
0,

z+z2—|—z3—|—z4—|—---,
24+ 22423 +424 4925 +202%+ ...
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Example: Unlabelled Rooted Trees

O Well-founded system: Y = Z - SET(Y) =: H(Z,));

@ Combinatorial Newton iteration:

© Numerical iteration:

n

y17(0.3)

y1(0.33)

G~ W N RO

0

43021322639
.54875612912
.55709557053
.55713907945
.55713908064

0.99370806338e-1
0.99887132154e-1
0.99887147197e-1
0.99887147198e-1
0.99887147198e-1

0

0.27759817516e-1
0.27770629187e-1
0.27770629189e-1
0.27770629189e-1
0.27770629189-1
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IV Well-founded combinatorial

systems
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The nature of combinatorial systems...

Joyal's Implicit Species Theorem is too restrictive:

@ We don't want the condition H(0,0) = 0.
@ To allow equations such as Y =1+ Z).

@ We want to characterize precisely which are the systems that
define combinatorial structures > well-founded systems.

Bonus :
A better understanding of the role played by the Jacobian matrix
and a better knowledge of the structure of combinatorial systems.
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General Implicit Species Theorem

Theorem (General Implicit Species Theorem)

Let H = (H1.m) be any vector of species, such that the system
Y =H(Z,Y) is well-founded. Then, this system admits a
solution 8 such that S(0) = H™(0,0), which is unique up to
isomorphism.

Definition (Well-founded combinatorial system)

Y =H(Z,Y) is said to be well-founded when the iteration
YO =0 and YU =—3(z Y n>o0 (®)

is well-defined, defines a convergent sequence and the limit S of
this sequence has no zero coordinate.

v
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Algorithmic Characterization

Definition
Companion system of Y = H(Z,Y):

Y=K(21,2,Y), where K=H(Z,Y)-H(0,0)+21%(0,0).

Theorem (Characterization of well-founded systems)

Let H = (H1.m) be a vector of species. The combinatorial system
Y =H(Z,Y) is well-founded if and only if

Q the companion system'Y = IC(Z21, Z,Y) is well-founded at 0
Q if81(21, 2) is the solution of Y = IC(Z21, Z,Y)
with 81(0,0) = 0, then 81(Z1, Z) is polynomial in Z;.
In this case, the limit of (®) is S1(1, Z).
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Examples 7(0,0) =0

Joyal's conditions:
Y =SEQ(Z2) v Y = SEQ(Z SEQ(Z)) vV Y = SEQ(SEQ(Z)) X

H'(0) =0 H'(0) =0 H'(0) not defined!
y=2yv y=ZzZ+zYyV/ y=Z2+YKX
H'(0,00=0  #(0,0)=0 2/(0,0) = 1
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SET S 7#(0,0) =0

Joyal's conditions:

Y =SEQ(Z2) v Y = SEQ(Z SEQ(Z)) vV Y = SEQ(SEQ(Z)) X

H'(0) =0 H'(0) =0 H'(0) not defined!
y=2yv Y=2+z2yV/ y=2z+yX
1(0,00=0  #(0,0)=0 2/(0,0) = 1

With our conditions:

Y=ZY X because) =0.

How to detect 0 coordinates:
Look for 0 in H™(Z,0).
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SET S 7#(0,0) =0

Joyal's conditions:

Y =SEQ(Z2) v Y = SEQ(Z SEQ(Z)) vV Y = SEQ(SEQ(Z)) X

H'(0) =0 H'(0) =0 H'(0) not defined!
y=2yv Y=2+2ZyV y=2+yX
H'(0,00=0  #(0,0)=0 2/(0,0) = 1
With our conditions: Examples:
=Z b =0.
Yy yX ecause Y A=B A=B
How to detect 0 coordinates: B=C B=2Z+C
Look for 0 in H™(Z,0). A=Z A=ZzC
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Examples

V=2 v < 0 0 >
Y2 = Z Y1 SEQ())) 2o 2050 )|

Z+y2 ‘/ (O 1>
yZ—ZyISEQ () 00

_(0 1)
0.0 10

=2+ X ( 0 1 )
= Z 4+ Y1 SEQ(D%») SEQ()2) V1 SEQ(V2)?

=Z4+)2 0 0
=W / <1 O>
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Examples

Definition

F(Z1,2,) is polynomial in the sorts Z; when, for all n > 0, the
species F_(. n) = > k>0 F=(k,n) IS polynomial.

Examples:
@ SEQ(Z1 + Z3): not polynomial in Z1 or Z;
@ SEQ(Z1 - Z»): polynomial in Z; and 2, (but not in Z)
e Z1SEQ(Z2,): polynomial in Z; and not in Z5.
Well-founded Systems?

N =2+ V1= Z+ )2
y2:1 yQZ].
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Examples

Definition

F(Z1,2,) is polynomial in the sorts Z; when, for all n > 0, the
species F_(. n) = > k>0 F=(k,n) IS polynomial.

Examples:
@ SEQ(Z1 + Z3): not polynomial in Z1 or Z;
@ SEQ(Z1 - Z»): polynomial in Z; and 2, (but not in Z)
e Z1SEQ(Z2,): polynomial in Z; and not in Z5.
Well-founded Systems?

N =2+ X Vi = Z+ )3 4
W =2 W =2
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Information given by the Jacobian Matrix

Role of the Jacobian Matrix:
© Well-founded systems at 0: nilpotence of 8% /9Y(0,0)
@ Implicit polynomial species: nilpotence of 9H /OY(Z,Y)

© Implicit partially polynomial species:
nilpotence of OH/0Y(Z1,0,S8(Z1,0))
(+ conditions on ‘H and S(Z1,0))

©Q Well-founded systems: both 1 and 3.

© The key for Newton iteration.

But no information on the 0 coordinates.
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What's next?

Use this to compute gfs singularities...
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