Algorithms for Combinatorial Systems:

Between
Analytic Combinatorics
and
Species Theory.

Carine Pivoteau - LIGM - december 2011

joint work with Bruno Salvy and Michèle Soria

I Introduction

Context

Aim: Algorithms for analytic combinatorics.
Well-defined input provided by species theory.
Efficiency by computer algebra.

Bonus: Unified framework for constructible combinatorial classes.

A small set of species

- \mathcal{E} (or 1), \mathcal{Z} , \times , +, SEQ, SET, CYC,
- cardinality constraints that are finite unions of intervals,
- can be used recursively (implicit systems).

Examples:

- Regular languages
- Unambiguous context-free languages
- Trees $(\mathcal{B} = \mathcal{Z} + \mathcal{Z} \times \mathcal{B}^2, \ \mathcal{T} = \mathcal{Z} \times \operatorname{SET}(\mathcal{T}))$
- Mappings, . . .

Two related problems:

- **1 Enumeration**: number of objects of size n for n = 0, 1, 2, ...
- **2** Random sampling: all objects of size n with the same proba.

Two contexts: labelled/unlabelled.

What do we need for Random Sampling?

We have:

- A combinatorial specification
- A recursive algorithm to compute structures
- Implicit equations on generating functions

$$\begin{cases} S &= \operatorname{SEQ}(\mathcal{Z} + \mathcal{P}), \\ \mathcal{P} &= \operatorname{SET}_{>0}(\mathcal{Z} + \mathcal{S}). \end{cases}$$
$$\begin{cases} S(z) &= 1/(1 - (z + P(z)), \\ P(z) &= \exp(z + S(z)) - 1. \end{cases}$$

$$(P(z) = \exp(z + S(z)) - 1.$$

or $P(z) = \exp(\sum ... (z^k + S))$

$$P(z) = \exp(\sum_{k\geq 0} (z^k + S(z^k))/k) - 1.$$

We need:

- Recursive Method (Flajolet, Zimmerman, Van Cutsem 94):
 Enumeration sequences for each class of the specification.
- Boltzmann Method (Duchon et al. 04):
 - ▷ A Numerical Oracle that gives values of the gfs at a given (well chosen) point.
 - ▷ Ultimately, a way to evaluate the singularities of the gfs.

Oracle \equiv solving large systems?

The generating series are given by implicit systems of equations.

We need:

- only one solution;
- the right one;
- only numerically.

In the worst case, these requirements would make no difference.

But these systems inherit structure from combinatorics.

Even more complicated in the unlabeled case.

Oracle \equiv solving large systems?

The generating series are given by implicit systems of equations.

We need:

- only one solution;
- the right one;
- only numerically.

In the worst case, these requirements would make no difference.

But these systems inherit structure from combinatorics.

```
sys := \begin{bmatrix} C0 = x \ C1 \ C2 \ C3 \ (C1 + C3), Z = x, C1 = x \\ + \frac{x}{1 - CI^2 \ C2^2}, C2 = 2 \ x + \frac{x}{(1 - x \ CI^2 \ C2^2)} (1 - C2), \\ C3 = x + \frac{x(3x + x^2 + x^2 \ C1 \ C3)}{1 - CI^2} \\ > \\ > \begin{bmatrix} seq(subs(t, C0), t = solve(subs(x = 0, 1, sys))); \\ [0.0001125169973, 0.0007429960174, 0.01391132169, \\ -0.01391089776, 0.06534819752, 0.1516695772, \\ 0.5931967039, -0.5909308297, -0.002843524044, \\ -0.00653754124, -0.00496904471, 0.024685020262, \\ 1.016379119, 0.2631789750 + 0.13840801161, \\ -0.391146331, 0.2631789750 + 0.13840801161, \\ -0.002894993353, -0.007632515320, -0.1768253273, \\ -0.6704728314, 0.6676342030, 1.015911152, 0.2617092228 \\ +0.137913143311, -0.3359391708, 0.2617092228 \\ -0.137913143311, -0.3359391708, 0.2617092228 \\ -0.13791314331] \end{aligned}
```

Idea

By iteration

Numerical Oracle:

numerical iteration that converges to the unique **relevant** solution

介

convergence of the iteration on counting series

convergence of the iteration on combinatorial functional systems

Fast oracle: Newton iteration

Binary trees: $B(z) = z + B(z)^2$

Results (1/2): Fast Enumeration

Theorem (Enumeration in Quasi-Optimal Complexity)

First N coefficients of gfs of constructible species in

- arithmetic complexity:
 - $O(N \log N)$ (both ogf and egf);
- a binary complexity:
 - $O(N^2 \log^2 N \log \log N)$ (unlabeled, ogf);
 - $O(N^2 \log^3 N \log \log N)$ (labeled, egf).

▷ Quasi-optimal: linear with respect to the size of the output, up to possibly logarithmic factors.

> Very simple method, easy to implement.

Bonus: Differential Systems

$$oldsymbol{\mathcal{Y}}(\mathcal{Z}) = oldsymbol{\mathcal{H}}(\mathcal{Z},oldsymbol{\mathcal{Y}}(\mathcal{Z})) + \int_0^{\mathcal{Z}} oldsymbol{\mathcal{G}}(\mathcal{T},oldsymbol{\mathcal{Y}}(\mathcal{T})) d\mathcal{T}$$

Results (2/2): Oracle

- The egfs and the ogfs of constructible combinatorial classes are convergent in the neighborhood of 0;
- **2** A numerical iteration converging to $\mathbf{Y}(\alpha)$ in the labelled case $(\alpha \text{ inside the disk})$;
 - ▷ convergence asymptotically quadratic
- A numerical iteration converging to the sequence

$$\mathbf{Y}(\alpha), \mathbf{Y}(\alpha^2), \mathbf{Y}(\alpha^3), \dots$$

in the unlabeled case (α inside the disk);

bybrid algorithm;

... and also: a criterion to decide if α is inside the disk of cvg of **Y**.

From Analytic Combinatorics to Species Theory

Analytic Combinatorics:

- Symbolic method to describe recursive combinatorial classes
- A restricted set of combinatorial constructions, with a dictionary for gfs.
- Powerful tools for enumeration (singularity analysis,...)
- Automatic methods for random generation (Recursive, Boltzmann)

But no well-founded systems...

Species Theory:

- A more general framework for combinatorial structures
- Implicit species theorem
- Labelle's work on the combinatorial derivative
- Combinatorial Newton iteration (Decoste, Labelle, Leroux)
- Combinatorial differential systems

But no analytic tools...

II Combinatorics

The key point

Theorem (Implicit Species Theorem (Joyal 81))

Let \mathcal{H} be a vector of multisort species, such that

- $\mathcal{H}(\mathbf{0},\mathbf{0})=\mathbf{0}$ and
- ullet the Jacobian matrix $\partial \mathcal{H}/\partial \mathcal{Y}(\mathbf{0},\mathbf{0})$ is nilpotent.

The system of equations

$$\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$$

admits a vector ${\mathcal S}$ of species solution such that ${\mathcal S}(0)=0$, which is unique up to isomorphism.

- What do the bold symbols mean?
- $\mathcal{H}(0,0) = 0$?
- What about the other condition?
- Why is it so important?

Definition (Species \mathcal{F})

finite set $U \mapsto$ finite set $\mathcal{F}[U]$ bij. $\sigma: U \to V \mapsto$ bij. $\mathcal{F}[\sigma]: \mathcal{F}[U] \to \mathcal{F}[V]$

- 0, 1, Z;
- Set;
- Seq, Cyc.

Species \mathcal{F} :

- 0, 1, Z;
- Set;
- Seq, Cyc.

Species \mathcal{F} :

• Composition $\mathcal{F} \circ \mathcal{G}$:

- 0, 1, Z;
- Set;
- Seq, Cyc.

Species \mathcal{F} :

• Composition $\mathcal{F} \circ \mathcal{G}$:

- 0, 1, Z;
- Set:
- Seq, Cyc.

•
$$\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$$

species	derivative
A + B	$\mathcal{A}'+\mathcal{B}'$
$\mathcal{A}\cdot\mathcal{B}$	$\mathcal{A}'\cdot\mathcal{B}+\mathcal{A}\cdot\mathcal{B}'$
$\operatorname{SeQ}(\mathcal{B})$	$\operatorname{SeQ}(\mathcal{B}) \cdot \mathcal{B}' \cdot \operatorname{SeQ}(\mathcal{B})$
$\mathrm{Cyc}(\mathcal{B})$	$\operatorname{Seq}(\mathcal{B})\cdot \mathcal{B}'$
$\operatorname{Set}(\mathcal{B})$	$\operatorname{Set}(\mathcal{B})\cdot\mathcal{B}'$

species	derivative
A + B	$\mathcal{A}'+\mathcal{B}'$
$\mathcal{A}\cdot\mathcal{B}$	$\mathcal{A}'\cdot\mathcal{B}+\mathcal{A}\cdot\mathcal{B}'$
$\operatorname{Seq}(\mathcal{B})$	$\operatorname{SeQ}(\mathcal{B}) \cdot \mathcal{B}' \cdot \operatorname{SeQ}(\mathcal{B})$
$\mathrm{Cyc}(\mathcal{B})$	$\operatorname{Seq}(\mathcal{B})\cdot\mathcal{B}'$
$\operatorname{Set}(\mathcal{B})$	$\operatorname{SET}(\mathcal{B})\cdot\mathcal{B}'$

$$\mathcal{H}(\mathcal{G}, \mathcal{S}, \mathcal{P}) := (\mathcal{S} + \mathcal{P}, \text{Seq}(\mathcal{Z} + \mathcal{P}), \text{Set}(\mathcal{Z} + \mathcal{S})).$$

$$\frac{\partial \boldsymbol{\mathcal{H}}}{\partial \boldsymbol{\mathcal{Y}}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & \operatorname{Seq}(\boldsymbol{\mathcal{Z}} + \boldsymbol{\mathcal{P}}) \cdot 1 \cdot \operatorname{Seq}(\boldsymbol{\mathcal{Z}} + \boldsymbol{\mathcal{P}}) \\ 0 & \operatorname{Set}(\boldsymbol{\mathcal{Z}} + \boldsymbol{\mathcal{S}}) \cdot 1 & 0 \end{pmatrix}$$

Back to Joyal's Implicit Species Theorem

Theorem

If $\mathcal{H}(0,0)=0$ and $\partial\mathcal{H}/\partial\mathcal{Y}(0,0)$ is nilpotent, then $\mathcal{Y}=\mathcal{H}(\mathcal{Z},\mathcal{Y})$ has a unique solution, limit of

$$\mathbf{\mathcal{Y}}^{[0]} = \mathbf{0}, \qquad \mathbf{\mathcal{Y}}^{[n+1]} = \mathbf{\mathcal{H}}(\mathbf{\mathcal{Z}}, \mathbf{\mathcal{Y}}^{[n]}) \quad (n \geq 0).$$

Def. $A =_k B$ if they coincide up to size k (contact k).

Key Lemma

If
$$\mathcal{Y}^{[n+1]} =_k \mathcal{Y}^{[n]}$$
, then $\mathcal{Y}^{[n+p+1]} =_{k+1} \mathcal{Y}^{[n+p]}$, $(p = \text{dimension})$.

Combinatorial Newton Iteration

Theorem (essentially Labelle)

For any well-founded system $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$, if \mathcal{A} has contact k with the solution and $\mathcal{A} \subset \mathcal{H}(\mathcal{Z}, \mathcal{A})$, then

$$\mathcal{A} + \sum_{i \geq 0} \left(\frac{\partial \mathcal{H}}{\partial \mathcal{Y}}(\mathcal{Z}, \mathcal{A}) \right)^i \cdot (\mathcal{H}(\mathcal{Z}, \mathcal{A}) - \mathcal{A})$$

has contact 2k + 1 with it.

$$A + A^{+} = \begin{pmatrix} A \\ A \end{pmatrix} + \begin{pmatrix} A$$

Combinatorial Newton Iteration

Theorem (essentially Labelle)

For any well-founded system $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$, if \mathcal{A} has contact k with the solution and $\mathcal{A} \subset \mathcal{H}(\mathcal{Z}, \mathcal{A})$, then

$$\mathcal{A} + \sum_{i \geq 0} \left(rac{\partial \mathcal{H}}{\partial \mathcal{Y}} (\mathcal{Z}, \mathcal{A})
ight)^i \cdot (\mathcal{H}(\mathcal{Z}, \mathcal{A}) - \mathcal{A})$$

has contact 2k + 1 with it.

Rmk: Generation by increasing Strahler numbers.

$$\mathcal{Y}_{n+1} = \mathcal{Y}_n + \operatorname{SEQ}(\mathcal{Z} \times \mathcal{Y}_n \times \star + \mathcal{Z} \times \star \times \mathcal{Y}_n) \times (1 + \mathcal{Z} \times \mathcal{Y}_n^2 - \mathcal{Y}_n).$$

$$\mathcal{Y}_{n+1} = \mathcal{Y}_n + \operatorname{SEQ}(\mathcal{Z} \times \mathcal{Y}_n \times \star + \mathcal{Z} \times \star \times \mathcal{Y}_n) \times (1 + \mathcal{Z} \times \mathcal{Y}_n^2 - \mathcal{Y}_n).$$

$$\mathcal{Y}_0 = 0$$
 $\mathcal{Y}_1 = \circ$

$$\mathcal{Y}_3 = \mathcal{Y}_2 + \mathcal{Y}_0 + \cdots + \mathcal{Y}_0 + \cdots$$

[Décoste, Labelle, Leroux 1982]

III Algorithms

Example: Series-Parallel Graphs

$$\begin{cases} \mathcal{G} &= \mathcal{S} + \mathcal{P}, \\ \mathcal{S} &= \operatorname{Seq}(\mathcal{Z} + \mathcal{P}), \\ \mathcal{P} &= \operatorname{Set}_{>0}(\mathcal{Z} + \mathcal{S}). \end{cases} \frac{\partial \mathcal{H}}{\partial \mathcal{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & \operatorname{Seq}^{2}(\mathcal{Z} + \mathcal{P}) \\ 0 & \operatorname{Set}(\mathcal{Z} + \mathcal{S}) & 0 \end{pmatrix}$$

$$\begin{cases} \mathcal{G} &= \mathcal{S} + \mathcal{P}, \\ \mathcal{S} &= \operatorname{SEQ}(\mathcal{Z} + \mathcal{P}), \\ \mathcal{P} &= \operatorname{SET}_{>0}(\mathcal{Z} + \mathcal{S}), \end{cases} \frac{\partial \mathcal{H}}{\partial \mathcal{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & \operatorname{SEQ}^{2}(\mathcal{Z} + \mathcal{P}) \\ 0 & \operatorname{SET}(\mathcal{Z} + \mathcal{S}) & 0 \end{pmatrix}$$

$$\begin{cases} G &= S + P, \\ S &= (1 - z - P)^{-1}, \\ P &= \exp(z + S) - 1. \end{cases} \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & \exp(z + S) & 0 \end{pmatrix}$$

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1}, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & \exp(z + S) & 0 \end{pmatrix}$$

Newton iteration:
$$\mathbf{Y}^{[n]} := \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix}$$
,

$$\mathbf{Y}^{[n+1]} = \mathbf{Y}^{[n]} + \left(\operatorname{Id} - \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \right)^{-1} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \operatorname{mod} z^{2^{n+1}}.$$

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1}, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & \exp(z + S) & 0 \end{pmatrix}$$

Newton iteration: $\mathbf{Y}^{[n]} := \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix}$,

$$\mathbf{Y}^{[n+1]} = \mathbf{Y}^{[n]} + \left(\operatorname{Id} - \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \right)^{-1} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \operatorname{mod} z^{2^{n+1}}.$$

⇒ What about the inverse? And the exponential?

$$\begin{cases} G = S + P, \\ S = (1 - z - P)^{-1}, & \frac{\partial \mathbf{H}}{\partial \mathbf{Y}} = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & (1 - z - P)^{-2} \\ 0 & \exp(z + S) & 0 \end{pmatrix}$$

Newton iteration:
$$\mathbf{Y}^{[n]} := \begin{pmatrix} G^{[n]} \\ S^{[n]} \\ P^{[n]} \end{pmatrix}$$
,

$$\begin{cases} U^{[n+1]} &= U^{[n]} + U^{[n]} \cdot \left(\frac{\partial \mathbf{H}}{\partial \mathbf{Y}} (\mathbf{Y}^{[n]}) \cdot U^{[n]} + \operatorname{Id} - U^{[n]} \right) \operatorname{mod} z^{2^{n}}, \\ \mathbf{Y}^{[n+1]} &= \mathbf{Y}^{[n]} + U^{[n+1]} \cdot \left(\mathbf{H} (\mathbf{Y}^{[n]}) - \mathbf{Y}^{[n]} \right) \operatorname{mod} z^{2^{n+1}}. \end{cases}$$

$$\begin{split} \hat{Y}_2^{[0]}(z) &= \mathbf{0} \quad \hat{Y}_3^{[0]}(z) = \mathbf{0} \\ \hat{Y}_2^{[1]}(z) &= z^2 + 3 \, z^3 + \frac{29}{6} \, z^4 + \frac{139}{12} \, z^5 + \frac{3337}{120} \, z^6 + \frac{601}{9} \, z^7 + \frac{808243}{5040} \, z^8 + \cdots \\ \hat{Y}_3^{[1]}(z) &= \frac{1}{2} \, z^2 + \frac{7}{6} \, z^3 + \frac{61}{24} \, z^4 + \frac{721}{120} \, z^5 + \frac{10351}{720} \, z^6 + \frac{173867}{5040} \, z^7 + \frac{667957}{8064} \, z^8 + \cdots \\ \hat{Y}_2^{[2]}(z) &= z^2 + 3 \, z^3 + \frac{61}{12} \, z^4 + \frac{29}{2} \, z^5 + \frac{15961}{360} \, z^6 + \frac{2841}{20} \, z^7 + \frac{9484021}{20160} \, z^8 + \cdots \\ \hat{Y}_3^{[2]}(z) &= \frac{1}{2} \, z^2 + \frac{7}{6} \, z^3 + \frac{73}{24} \, z^4 + \frac{1051}{120} \, z^5 + \frac{19381}{720} \, z^6 + \frac{436087}{5040} \, z^7 + \frac{11584693}{40320} \, z^8 + \cdots \\ \hat{Y}_2^{[3]}(z) &= z^2 + 3 \, z^3 + \frac{61}{12} \, z^4 + \frac{29}{2} \, z^5 + \frac{15961}{360} \, z^6 + \cdots + \frac{366558482492939101}{108972864000} \, z^{15} + \cdots \\ \hat{Y}_3^{[3]}(z) &= \frac{1}{2} \, z^2 + \frac{7}{6} \, z^3 + \frac{73}{24} \, z^4 + \frac{1051}{120} \, z^5 + \frac{19381}{720} \, z^6 + \frac{386081655546862081}{186810624000} \, z^{15} + \cdots \\ \mathbf{y}^{[1]} &= (\mathbf{0}.1230510663209943063722 \dots, \qquad \mathbf{0}.06462664750711721439535 \dots) \\ \mathbf{y}^{[2]} &= (\mathbf{0}.1627000389319615796926 \dots, \qquad \mathbf{0}.09201293266034877734970 \dots) \\ \mathbf{y}^{[3]} &= (\mathbf{0}.1724333307003245710686 \dots, \qquad \mathbf{0}.09798441803578338336038 \dots) \\ \mathbf{y}^{[4]} &= (\mathbf{0}.1730460965507535353574 \dots, \qquad \mathbf{0}.09836831514307466499845 \dots) \\ \mathbf{y}^{[5]} &= (\mathbf{0}.1730486392973095133433 \dots, \qquad \mathbf{0}.09836989917963665326450 \dots) \\ \mathbf{y}^{[6]} &= (\mathbf{0}.1730486393408452105149 \dots, \qquad \mathbf{0}.09836989920678769126015 \dots) \\ \mathbf{y}^{[6]} &= \mathbf{0}.01627000389319615796926 \dots, \qquad \mathbf{0}.0983699920678769126015 \dots) \\ \mathbf{y}$$

Example: Unlabelled Rooted Trees

• Well-founded system: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$

Example: Unlabelled Rooted Trees

- Well-founded system: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{Seq}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) - \mathcal{Y}^{[n]})$$

Example: Unlabelled Rooted Trees

- Well-founded system: $\mathcal{Y} = \mathcal{Z} \cdot \operatorname{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{SEQ}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) - \mathcal{Y}^{[n]})$$

3 OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

Example: Unlabelled Rooted Trees

- Well-founded system: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- 2 Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{SEQ}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) - \mathcal{Y}^{[n]})$$

3 OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

Mewton for OGF (thanks to the combinatorial derivative):

$$\tilde{Y}^{[n+1]} = \tilde{Y}^{[n]} + \frac{H(z, \tilde{Y}^{[n]}) - \tilde{Y}^{[n]}}{1 - H(z, \tilde{Y}^{[n]})}$$
0,

$$z+z^2+z^3+z^4+\cdots,$$

$$z + z^2 + 2z^3 + 4z^4 + 9z^5 + 20z^6 + \cdots$$

Example: Unlabelled Rooted Trees

- Well-founded system: $\mathcal{Y} = \mathcal{Z} \cdot \text{Set}(\mathcal{Y}) =: \mathcal{H}(\mathcal{Z}, \mathcal{Y});$
- 2 Combinatorial Newton iteration:

$$\mathcal{Y}^{[n+1]} = \mathcal{Y}^{[n]} + \operatorname{SEQ}(\mathcal{H}(\mathcal{Y}^{[n]})) \cdot (\mathcal{H}(\mathcal{Y}^{[n]}) - \mathcal{Y}^{[n]})$$

3 OGF equation: $\tilde{Y}(z) = H(z, \tilde{Y}(z))$

$$\tilde{Y}(z) = z \exp(\tilde{Y}(z) + \frac{1}{2}\tilde{Y}(z^2) + \frac{1}{3}\tilde{Y}(z^3) + \cdots)$$

IV Well-founded combinatorial systems

The nature of combinatorial systems...

Joyal's Implicit Species Theorem is too restrictive:

- We don't want the condition $\mathcal{H}(\mathbf{0},\mathbf{0})=\mathbf{0}$.
- To allow equations such as $\mathcal{Y} = 1 + \mathcal{Z}\mathcal{Y}$.
- We want to characterize precisely which are the systems that define combinatorial structures > well-founded systems.

Bonus:

A better understanding of the role played by the Jacobian matrix and a better knowledge of the structure of combinatorial systems.

General Implicit Species Theorem

Theorem (General Implicit Species Theorem)

Let $\mathcal{H}=(\mathcal{H}_{1:m})$ be any vector of species, such that the system $\mathcal{Y}=\mathcal{H}(\mathcal{Z},\mathcal{Y})$ is well-founded. Then, this system admits a solution \mathcal{S} such that $\mathcal{S}(\mathbf{0})=\mathcal{H}^m(\mathbf{0},\mathbf{0})$, which is unique up to isomorphism.

Definition (Well-founded combinatorial system)

 $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$ is said to be *well-founded* when the iteration

$$\mathbf{\mathcal{Y}}^{[0]} = \mathbf{0}$$
 and $\mathbf{\mathcal{Y}}^{[n+1]} = \mathbf{\mathcal{H}}(\mathbf{\mathcal{Z}}, \mathbf{\mathcal{Y}}^{[n]}), \quad n \geq 0$ (Φ)

is well-defined, defines a convergent sequence and the limit ${\cal S}$ of this sequence has no zero coordinate.

Algorithmic Characterization

Definition

Companion system of $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$:

$$\mathcal{Y} = \mathcal{K}(\mathcal{Z}_1, \mathcal{Z}, \mathcal{Y}), \quad \text{where} \quad \mathcal{K} = \mathcal{H}(\mathcal{Z}, \mathcal{Y}) - \mathcal{H}(\mathbf{0}, \mathbf{0}) + \mathcal{Z}_1 \mathcal{H}(\mathbf{0}, \mathbf{0}).$$

Theorem (Characterization of well-founded systems)

Let $\mathcal{H} = (\mathcal{H}_{1:m})$ be a vector of species. The combinatorial system $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$ is well-founded if and only if

- $oldsymbol{0}$ the companion system $oldsymbol{\mathcal{Y}} = \mathcal{K}(\mathcal{Z}_1, \mathcal{Z}, oldsymbol{\mathcal{Y}})$ is well-founded at $oldsymbol{0}$
- ② if $S_1(\mathcal{Z}_1, \mathcal{Z})$ is the solution of $\mathcal{Y} = \mathcal{K}(\mathcal{Z}_1, \mathcal{Z}, \mathcal{Y})$ with $S_1(0, \mathbf{0}) = \mathbf{0}$, then $S_1(\mathcal{Z}_1, \mathcal{Z})$ is polynomial in \mathcal{Z}_1 .

In this case, the limit of (Φ) is $\mathcal{S}_1(1, \mathcal{Z})$.

Joyal's conditions:

$$\mathcal{Y} = \operatorname{Seq}(\mathcal{Z}) \checkmark \quad \mathcal{Y} = \operatorname{Seq}(\mathcal{Z} \operatorname{Seq}(\mathcal{Z})) \checkmark \quad \mathcal{Y} = \operatorname{Seq}(\operatorname{Seq}(\mathcal{Z})) \checkmark$$
 $\mathcal{H}'(0) = 0 \quad \mathcal{H}'(0) = 0 \quad \mathcal{H}'(0) \text{ not defined!}$

$$\mathcal{Y} = \mathcal{Z} \mathcal{Y} \checkmark$$
 $\mathcal{Y} = \mathcal{Z} + \mathcal{Z} \mathcal{Y} \checkmark$ $\mathcal{H}'(0,0) = 0$ $\mathcal{H}'(0,0) = 0$

$$\mathcal{Y} = \mathcal{Z} + \mathcal{Y} X$$

 $\mathcal{H}'(0,0) = 1$

 $\mathcal{H}'(0,0) = 1$

Joyal's conditions:

$$\mathcal{Y} = \operatorname{SEQ}(\mathcal{Z}) \checkmark \quad \mathcal{Y} = \operatorname{SEQ}(\mathcal{Z} \operatorname{SEQ}(\mathcal{Z})) \checkmark \quad \mathcal{Y} = \operatorname{SEQ}(\operatorname{SEQ}(\mathcal{Z})) \checkmark$$
 $\mathcal{H}'(0) = 0 \quad \mathcal{H}'(0) = 0 \quad \mathcal{H}'(0) \text{ not defined!}$
 $\mathcal{Y} = \mathcal{Z} \mathcal{Y} \checkmark \quad \mathcal{Y} = \mathcal{Z} + \mathcal{Z} \mathcal{Y} \checkmark \quad \mathcal{Y} = \mathcal{Z} + \mathcal{Y} \checkmark$

With our conditions:

$$\mathcal{Y} = \mathcal{Z} \ \mathcal{Y} \ \mathsf{X}$$
 because $\mathcal{Y} = 0$.

 $\mathcal{H}'(0,0) = 0$ $\mathcal{H}'(0,0) = 0$

How to detect 0 coordinates:

Look for 0 in
$$\mathcal{H}^m(\mathcal{Z}, \mathbf{0})$$
.

Joyal's conditions:

$$\mathcal{Y} = \operatorname{SEQ}(\mathcal{Z}) \checkmark \quad \mathcal{Y} = \operatorname{SEQ}(\mathcal{Z} \operatorname{SEQ}(\mathcal{Z})) \checkmark \quad \mathcal{Y} = \operatorname{SEQ}(\operatorname{SEQ}(\mathcal{Z})) \checkmark$$
 $\mathcal{H}'(0) = 0 \quad \mathcal{H}'(0) = 0 \quad \mathcal{H}'(0) \text{ not defined!}$
 $\mathcal{Y} = \mathcal{Z} \mathcal{Y} \checkmark \quad \mathcal{Y} = \mathcal{Z} + \mathcal{Z} \mathcal{Y} \checkmark \quad \mathcal{Y} = \mathcal{Z} + \mathcal{Y} \checkmark$

With our conditions:

$$\mathcal{Y} = \mathcal{Z} \mathcal{Y} \times$$
 because $\mathcal{Y} = 0$.

 $\mathcal{H}'(0,0) = 0$ $\mathcal{H}'(0,0) = 0$

How to detect 0 coordinates:

Look for 0 in
$$\mathcal{H}^m(\mathcal{Z}, \mathbf{0})$$
.

Examples:

$$\begin{cases} \mathcal{A} = \mathcal{B} \\ \mathcal{B} = \mathcal{C} \\ \mathcal{A} = \mathcal{Z} \end{cases} \begin{cases} \mathcal{A} = \mathcal{B} \\ \mathcal{B} = \mathcal{Z} + \mathcal{C} \\ \mathcal{A} = \mathcal{Z} \mathcal{C} \end{cases}$$

 $\mathcal{H}'(0,0) = 1$

$$\begin{cases} \mathcal{Y}_1 = \mathcal{Z} \ \mathcal{Y}_2 \\ \mathcal{Y}_2 = \mathcal{Z} \ \mathcal{Y}_1 \ \mathrm{SEQ}(\mathcal{Y}_2) \end{cases} \quad \checkmark \quad \begin{pmatrix} 0 & 0 \\ \mathcal{Z} \ \mathrm{SEQ}(\mathcal{Y}_2) & \mathcal{Z} \ \mathcal{Y}_1 \ \mathrm{SEQ}(\mathcal{Y}_2)^2 \end{pmatrix} \bigg|_{0,0} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{cases} \mathcal{Y}_1 = \mathcal{Z} + \mathcal{Y}_2 \\ \mathcal{Y}_2 = \mathcal{Z} \ \mathcal{Y}_1 \ \mathrm{Seq}(\mathcal{Y}_2) \end{cases} \checkmark \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\begin{cases} \mathcal{Y}_1 = \mathcal{Z} + \mathcal{Y}_2^2 \\ \mathcal{Y}_2 = \mathcal{Y}_1 \end{cases} \qquad \checkmark \quad \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Definition

 $\mathcal{F}(\mathcal{Z}_1,\mathcal{Z}_2)$ is polynomial in the sorts \mathcal{Z}_1 when, for all $n\geq 0$, the species $\mathcal{F}_{=(.,n)}=\sum_{k\geq 0}\mathcal{F}_{=(k,n)}$ is polynomial.

Examples:

- ullet SEQ $(\mathcal{Z}_1+\mathcal{Z}_2)$: not polynomial in \mathcal{Z}_1 or \mathcal{Z}_2
- ullet SEQ $(\mathcal{Z}_1 \cdot \mathcal{Z}_2)$: polynomial in \mathcal{Z}_1 and \mathcal{Z}_2 (but not in $oldsymbol{\mathcal{Z}}$)
- $\mathcal{Z}_1 Seq(\mathcal{Z}_2)$: polynomial in \mathcal{Z}_1 and not in \mathcal{Z}_2 .

Well-founded Systems?

$$\begin{cases} \mathcal{Y}_1 = \mathcal{Z} + \mathcal{Y}_1 \mathcal{Y}_2 \\ \mathcal{Y}_2 = 1 \end{cases} \qquad \begin{cases} \mathcal{Y}_1 = \mathcal{Z} + \mathcal{Y}_2 \mathcal{Y}_1^2 \\ \mathcal{Y}_2 = 1 \end{cases}$$

Definition

 $\mathcal{F}(\mathcal{Z}_1,\mathcal{Z}_2)$ is polynomial in the sorts \mathcal{Z}_1 when, for all $n\geq 0$, the species $\mathcal{F}_{=(.,n)}=\sum_{k\geq 0}\mathcal{F}_{=(k,n)}$ is polynomial.

Examples:

- ullet SEQ($\mathcal{Z}_1+\mathcal{Z}_2$): not polynomial in \mathcal{Z}_1 or \mathcal{Z}_2
- ullet SEQ $(\mathcal{Z}_1\cdot\mathcal{Z}_2)$: polynomial in \mathcal{Z}_1 and \mathcal{Z}_2 (but not in $oldsymbol{\mathcal{Z}}$)
- $\mathcal{Z}_1 Seq(\mathcal{Z}_2)$: polynomial in \mathcal{Z}_1 and not in \mathcal{Z}_2 .

Well-founded Systems?

$$\begin{cases} \mathcal{Y}_1 = \mathcal{Z} + \mathcal{Y}_1 \mathcal{Y}_2 \\ \mathcal{Y}_2 = \mathcal{Z}_1 \end{cases} \quad \mathbf{X} \qquad \begin{cases} \mathcal{Y}_1 = \mathcal{Z} + \mathcal{Y}_2 \mathcal{Y}_1^2 \\ \mathcal{Y}_2 = \mathcal{Z}_1 \end{cases}$$

Information given by the Jacobian Matrix

Role of the Jacobian Matrix:

- Well-founded systems at $\mathbf{0}$: nilpotence of $\partial \mathcal{H}/\partial \mathcal{Y}(\mathbf{0},\mathbf{0})$
- ② Implicit polynomial species: nilpotence of $\partial \mathcal{H}/\partial \mathcal{Y}(\mathcal{Z},\mathcal{Y})$
- $\begin{tabular}{ll} \textbf{3} & \text{Implicit partially polynomial species:} \\ & \text{nilpotence of } \partial \mathcal{H}/\partial \mathcal{Y}(\mathcal{Z}_1, \boldsymbol{0}, \mathcal{S}(\mathcal{Z}_1, \boldsymbol{0})) \\ & (+ \text{ conditions on } \mathcal{H} \text{ and } \mathcal{S}(\mathcal{Z}_1, \boldsymbol{0})) \\ \end{tabular}$
- Well-founded systems: both 1 and 3.
- The key for Newton iteration.

But no information on the 0 coordinates.

What's next?

Use this to compute gfs singularities...