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Planes partitions

Plane partitions of n (P)
→ matrix of integers that are decreasing in both dimensions.
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Bounding rectangle of a plane partition
→ smallest rectangle such that all the cells outside are empty.

(p× q)-boxed plane partitions (Pp,q)
→ the size of the bounding rectangle is at most (p× q).
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Counting plane partitions

Generating function of plane partitions (Mac Mahon, 1912) :

P (z) =
∏
r≥1

(1− zr)−r

simple expression for the generating function
combinatorial isomorphism with a constructible class
(symbolic methods)

P 'M and Pp,q 'Mp,q

non-trivial bijection
for long, non constructive proof...
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An isomorphic class

M = MSet(N2) ∼ multiset of pairs of integers

→ example : {(0, 0), (1, 0), (2, 0), (2, 0), (0, 1), (1, 2)}, size = 15

→ size of (i, j) : (i + j + 1)

Mp,q = MSet(N<p × N<q)

Diagram of an element ∈M or Mp,q

{ (0,0), (1,0), (2,0), (2,0), (0,1), (1,2) }
1 1 2
1 0 0

010

...and other constructible ones

M = MSet(Z × Seq(Z)2) ∼ multiset of pairs of integers

→ example : {(0, 0), (1, 0), (2, 0), (2, 0), (0, 1), (1, 2)}, size = 15

Mp,q = MSet(Z × Seq<p(Z)× Seq<q(Z))

∼ { (x, y) | x ∈ [0..p], y ∈ [0..q] }.

Diagram of an element ∈M or Mp,q

{ (0,0), (1,0), (2,0), (2,0), (0,1), (1,2) }

1 1 2

1 0 0

010

|D| =
∑

i,j mi,j(i + j + 1)

→ sum of the hook lengths weighted by the values of the cells.
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|D| =
∑

i,j mi,j(i + j + 1)

→ sum of the hook lengths weighted by the values of the cells.
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Pak’s bijection (2001)
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rectangle of T ∈ T from right to left and top to bottom (see example). Now, let us
describe the algorithmic version of Pak’s bijection.

Algorithm 1: Pak’s Algorithm
Input : a multiset M ∈M represented by its diagram.
Output: a plane partition.
Let l be the length and w be the width of M .
for i := l − 1 downto 0 do

for j := h− 1 downto 0 do
M [i, j] ← M [i, j] + max(M [j + 1, i]),M [i, j + 1]);
for c := to min(h− 1− j, l − 1− i) do

x ← i + c; y ← j + c;
M [x, y] ←
max(M [x+1, y],m[x, y+1])+min(M [x−1, y],M [x, y−1])−M [x, y];

end
end

end

The proof of the correctness of this algorithm can be find in [7]. We deduce from
this the following theorem :

Theorem 3.3. There is combinatorial isomorphism between P and MSet(Z ×
Seq(Z)2).

Proof. It suffices to observe that the Pak’s bijection preserves the size functions. So,
P is isomorphic to T . By transitivity, as T is isomorphic to MSet(Z × Seq(Z)2),
the result follows. !
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Figure 3. Example of iterations of Pak’s Algorithm.

We can observe that the Pak’s bijection send each element T ∈ T with bounding
rectangle of size p ∗ q into a plane partition which has only p columns and q lines.
That can be rewrite as follows :

Theorem 3.4. There is combinatorial isomorphism between the set of all plane par-
titions which has only p columns and q lines and MSet(Z×Seq<p(Z)×Seq<q(Z))
where Seq<p(A) denotes the combinatorial class of all sequences of at most p − 1
elements of A.

4. Boltzmann sampling and algorithm

The existence of a constructive bijection between P ∈ P and M ∈M gives us
a simple method to compute a plane partitions sampler. Indeed, getting a spec-
ification for M involving only classical combinatorial constructions allows us to
use general techniques of sampling based on class decomposition such as the ones
described in [5], [2] and [3]. The first article refers to exact-size uniform random

{ (0,0), (1,0), (2,0), (2,0), (0,1), (1,2) }
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c← c + max(a, r)

c← max(a, r) + min(l, b)− c
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c← c + max(a, r)

c← max(a, r) + min(l, b)− c
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Application of Pak’s algorithm on an example.
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Boltzmann sampler
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Boltzmann sampling (2003)

Boltzmann sampling basic principles :

for any constructible class
an object γ is drawn proportionally to x|γ|

same probability for all objects of the same size
size distribution spread over the whole combinatorial class

construction sampler

C = A+ B ΓC(x) := Bern A(x)
C(x) −→ ΓA(x) | ΓB(x)

C = A× B ΓC(x) := ( ΓA(x); ΓB(x) )

C = Seq(A) ΓC(x) := ( Geom A(x) =⇒ ΓA(x) )

Random sampling of plane partitions



Generating multisets

C = MSet(A) ∼=
∏
γ∈A

Seq(γ) ⇒ C(z) =
∏
n≥1

(1− zn)−Cn

C(z) = exp

( ∞∑
k=1

1

k
A(zk)

)
=

∞∏
k=1

exp

(
1

k
A(zk)

)

taille=1

taille=3

taille=4

taille=2

A parallel-series electrical circuit is a set of components
that are alternatively in series or in parallel. They have
a tree-like structure and are specified by the following
equations:

C = P + S + Z
S = Seq≥2(P + Z)
P = MSet≥2(S + Z)

The figure shows a circuit of size 150.
An integer partition into distinct parts can
be described as a powerset of integers:

P = PSet(Z × Seq(Z)).

The figure on the right shows a partition of
size 105. Our sampler can generate a parti-
tion of size 1010 in a few minutes.
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A sampler for plane partitions

Boltzmann sampler for
M = MSet(N2).

Mp,q=MSet(N<p × N<q)

=
∏

0≤i<p

0≤j<q

Seq(Z × i× j)

Output : a diagram D.

Pak’s algorithm transforms D into
a plane partition.

Size of the ouptut plane partition
= size of the original diagram.

4 3 2
2 2 1

001

1 1 2
1 0 0

010
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rectangle of T ∈ T from right to left and top to bottom (see example). Now, let us
describe the algorithmic version of Pak’s bijection.

Algorithm 1: Pak’s Algorithm
Input : a multiset M ∈M represented by its diagram.
Output: a plane partition.
Let l be the length and w be the width of M .
for i := l − 1 downto 0 do

for j := h− 1 downto 0 do
M [i, j] ← M [i, j] + max(M [j + 1, i]),M [i, j + 1]);
for c := to min(h− 1− j, l − 1− i) do

x ← i + c; y ← j + c;
M [x, y] ←
max(M [x+1, y],m[x, y+1])+min(M [x−1, y],M [x, y−1])−M [x, y];

end
end

end

The proof of the correctness of this algorithm can be find in [7]. We deduce from
this the following theorem :

Theorem 3.3. There is combinatorial isomorphism between P and MSet(Z ×
Seq(Z)2).

Proof. It suffices to observe that the Pak’s bijection preserves the size functions. So,
P is isomorphic to T . By transitivity, as T is isomorphic to MSet(Z × Seq(Z)2),
the result follows. !
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Figure 3. Example of iterations of Pak’s Algorithm.

We can observe that the Pak’s bijection send each element T ∈ T with bounding
rectangle of size p ∗ q into a plane partition which has only p columns and q lines.
That can be rewrite as follows :

Theorem 3.4. There is combinatorial isomorphism between the set of all plane par-
titions which has only p columns and q lines and MSet(Z×Seq<p(Z)×Seq<q(Z))
where Seq<p(A) denotes the combinatorial class of all sequences of at most p − 1
elements of A.

4. Boltzmann sampling and algorithm

The existence of a constructive bijection between P ∈ P and M ∈M gives us
a simple method to compute a plane partitions sampler. Indeed, getting a spec-
ification for M involving only classical combinatorial constructions allows us to
use general techniques of sampling based on class decomposition such as the ones
described in [5], [2] and [3]. The first article refers to exact-size uniform random

{ (0,0), (1,0),
  (2,0), (2,0), 

    (0,1), (1,2)  }
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We can observe that the Pak’s bijection send each element T ∈ T with bounding
rectangle of size p ∗ q into a plane partition which has only p columns and q lines.
That can be rewrite as follows :

Theorem 3.4. There is combinatorial isomorphism between the set of all plane par-
titions which has only p columns and q lines and MSet(Z×Seq<p(Z)×Seq<q(Z))
where Seq<p(A) denotes the combinatorial class of all sequences of at most p − 1
elements of A.

4. Boltzmann sampling and algorithm

The existence of a constructive bijection between P ∈ P and M ∈M gives us
a simple method to compute a plane partitions sampler. Indeed, getting a spec-
ification for M involving only classical combinatorial constructions allows us to
use general techniques of sampling based on class decomposition such as the ones
described in [5], [2] and [3]. The first article refers to exact-size uniform random
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the cardinality of An. To each combinatorial class A, we associate the generating
function A(z) =

∑
Anzn.

Two combinatorial classes (A, |.|A) and (B, |.|B) are said to be combinatorially
isomorphic (A ! B), if and only if there exists a one-to-one map from A to B that
preserves the size. Let us notice that two classes A and B are isomorphic if and
only if their generating functions are equal.

Here are some classical constructions on combinatorial classes that will be used
in this paper. Notations and rules are summarized in Figure 1 (a more general
presentation can be found in [6]):.

– E and Z are atoms of size 0 and 1.
– Disjoint union A+ B: the union of two distinct copies of A and B.
– Cartesian product A× B: the set of pairs (α, β) where α ∈ A and β ∈ B.

Given a class A not containing empty atoms,
– Sequence: Seq(A) is the class of ordered sequences of objects of A.
– Multiset: MSet(A) is the class of finite sets of objects ofA, with repetitions

allowed.
Observe that, in a multiset µ ∈ MSet(A), each element α ∈ A has a multiplicity
cα ≥ 0. Hence, if A is a finite set,

(1) MSet(A) !
∏

α∈A
Seq(α).

C = E C(z) = 1 neutral object of size 0
C = Z C(z) = z atom of size 1
C = A+ B C(z) = A(z) + B(z) disjoint union
C = A× B C(z) = A(z)×B(z) cartesian product
C = Seq(A) C(z) = (1−A(z))−1 E +A+A×A+A×A×A+ ...
C = MSet(A) C(z) = exp(

P
(1/k)A(zk)) a multiset of elements of A

Figure 1. Some constructions on combinatorial classes.

A plane partition (Figure 2) of n is a two-dimensional array of integers (ai,j)N2

that are non-increasing both from left to right and bottom to top and that add up
to n. In other words,

(2) ai,j ≥ ai,j+1, ai,j ≥ ai+1,j ∀(i, j) ∈ N2 and
∑

i,j

ai,j = n.

We denote by P the combinatorial class of plane partitions, endowed with the
size function

∣∣(ai,j)N2

∣∣ =
∑

i,j ai,j . Plane partitions have a natural representation
in 3D-space as a heap of cubes with decreasing height in the direction of the x-
axis and y-axis, see Figure 2. Observe that the size of the plane partition exactly
corresponds to the number of cubes in the 3D-representation.

The bounding rectangle of a plane partition (ai,j)N2 is the smallest double range
R = [0, #− 1]× [0, w− 1] such that ai,j = 0 for all index pairs (i, j) outside of R. A
(p×q)-boxed plane partition is a plane partition whose bounding rectangle is at most
p × q. Equivalently, ai,j is null for any (i, j) such that i ≥ p or j ≥ q. We denote
by Pp,q the class of (p × q)-boxed plane partitions. Define the two combinatorial
classes M and Mp,q as follows, where Seq<d(A) denotes the class of sequences of
at most d− 1 elements of A.

M = MSet(Z × Seq(Z)2)(3)
Mp,q = MSet(Z × Seq<p(Z)× Seq<q(Z)).(4)

Pak's bijection
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Approximate and exact-size samplers

How to choose x such that the size of the output partition is n ?

Probability of drawing a partition of size n :
Pnxn

P (x)

Expectation of the size of a partition : x
P ′(x)

P (x)

x=0.845
x=0.875
x=0.899
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We can observe that the Pak’s bijection send each element T ∈ T with bounding
rectangle of size p ∗ q into a plane partition which has only p columns and q lines.
That can be rewrite as follows :

Theorem 3.3. There is combinatorial isomorphism between the set of all plane par-
titions which has only p columns and q lines and MSET (Z×Seq<p(Z)×Seq<q(Z))
where Seq<p(A) denotes the combinatorial class of all sequences of at most p − 1
elements of A.

4. Boltzmann sampling and algorithm

The existence of a constructive bijection between P and M gives us a simple
method to compute plane partitions sampler. Indeed, getting a specification for
M involving only classical combinatorial constructions allows us to use general
techniques of sampling based on class decomposition such as the ones described in
[5], [2] and [3]. The first article refers to exact-size uniform random generation when
the two others deal with approximate size sampling under Boltzmann model. We
are interested in generating very large plane partitions to observe their limit shape
(see [1]), thus the Boltzmann generation would be suitable, due to the complexity
gain obtained by relaxing the size constraint. We now present the basic principles of
Boltzmann sampling and describe in details how to compute a random sampler for
M. Then the plane partitions generator rise from the combination of this sampler
and Pak’s Algorithm (using the transformation of Lemma 3.1).

Definition 4.1 (Boltzmann model). Let C be a combinatorial class. The corre-
sponding Boltzmann model of parameter x ∈ R+ assigns to any element γ ∈ C the
probability:

Px(γ) =
x|γ|

C(x)

where C(x) is the generating function of C.

Coherent values of the parameter are then to be chosen within the radius of
convergence of C(x). What we call a Boltzmann sampler for C is an algorithm
that produces objects of C under this probability distribution. The probabilities
assigned to elements of same size are equal, which guaranties the uniformity of the
sampler. The output size is a random variable N , such that:

Px(N = n) =
Cnxn

C(x)

Figure 1 shows this probability distribution for plane partitions.
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⇒ Targetted sampler + rejection.

Random sampling of plane partitions



Result

Result

Theorem (Expected complexity)
Plane partitions :

approximate-size : O(n ln(n)3

exact-size : O(n
4
3 )

(p× q)-boxed plane partitions (for fixed p, q) :
approximate-size : O(1) as n→∞
exact-size : bounded by Cpq.n,
where C > 0 is a constant.

∼size 103 104 105 106 107

ΓM ∼0.1s ∼0.5s ∼2-3s ∼10s ∼60s
bijection ∼0.1s ∼0.3s ∼2s ∼20-30s ∼8-9min
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General scheme

Generation of a plane partition of size n (resp. ∼ n), with a
targetted sampler, i.e., with a parameter tuned such that
E(Nx) = n.

mean cost
=

cost of one call to ΓM × expected number of calls
+

cost of pak’s algorithm

1 cost of one call to ΓM : O(n
2
3 )

2 expected number of calls to the sampler :
approximate size sampler : O(1)

exact size sampler : O(n
2
3 )

3 expected complexity of Pak’s algorithm applied to a
diagram of size n : O(n ln(n)3)

Random sampling of plane partitions



Conclusion

Theorem (Expected complexity)

Plane partitions :
approximate-size : O(n ln(n)3)

exact-size : O(n
4
3 )

(p× q)-boxed plane partitions (for fixed p, q) :
approximate-size : O(1) as n →∞
exact-size : bounded by Cpq.n,
where C > 0 is a constant.

Efficiency of Boltzmann samplers combined with results of
bijective combinatorics yields a polynomial time sampler for
planes partitions.

Random sampling of plane partitions
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