Random sampling of plane partitions

O. Bodini E. Fusy C. Pivoteau

Laboratoire d'Informatique de Paris 6 (LIP6)
INRIA Rocquencourt

(1) Pak's bijection
(2) Boltzmann sampler
(3) Analysis of Complexity
(1) Pak's bijection
(2) Boltzmann sampler

3 Analysis of Complexity
(1) Pak's bijection
(2) Boltzmann sampler
(3) Analysis of Complexity

- Plane partitions of $n(\mathcal{P})$
\rightarrow matrix of integers that are decreasing in both dimensions.

- Bounding rectangle of a plane partition
\rightarrow smallest rectangle such that all the cells outside are empty.
- $(p \times q)$-boxed plane partitions $\left(\mathcal{P}_{p, q}\right)$
\rightarrow the size of the bounding rectangle is at most $(p \times q)$.

Counting plane partitions

Generating function of plane partitions (Mac Mahon, 1912) :

$$
P(z)=\prod_{r \geq 1}\left(1-z^{r}\right)^{-r}
$$

- simple expression for the generating function
- combinatorial isomorphism with a constructible class (symbolic methods)

$$
\mathcal{P} \simeq \mathcal{M} \quad \text { and } \quad \mathcal{P}_{p, q} \simeq \mathcal{M}_{p, q}
$$

- non-trivial bijection
- for long, non constructive proof...

An isomorphic class

- $\mathcal{M}=\operatorname{MSet}\left(\mathbb{N}^{2}\right) \sim$ multiset of pairs of integers
\rightarrow example : $\{(0,0),(1,0),(2,0),(2,0),(0,1),(1,2)\}$, size $=15$
\rightarrow size of $(i, j):(i+j+1)$
- $\mathcal{M}_{p, q}=\operatorname{MSet}\left(\mathbb{N}_{<p} \times \mathbb{N}_{<q}\right)$
- Diagram of an element $\in \mathcal{M}$ or $\mathcal{M}_{p, q}$

$$
\{(0,0),(1,0),(2,0),(2,0),(0,1),(1,2)\}
$$

$$
\neg \quad \begin{array}{|l|l|l|}
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 2 \\
\hline
\end{array} \quad \text { size }=15
$$

$$
|D|=\sum_{i, j} m_{i, j}(i+j+1)
$$

\rightarrow sum of the hook lengths weighted by the values of the cells.

Pak's bijection

Application of Pak's algorithm on an example.

Boltzmann sampler

Boltzmann sampling (2003)

Boltzmann sampling basic principles :

- for any constructible class
- an object γ is drawn proportionally to $x^{|\gamma|}$
- same probability for all objects of the same size
- size distribution spread over the whole combinatorial class

construction	sampler
$\mathcal{C}=\mathcal{A}+\mathcal{B}$	$\Gamma C(x): \left.=\operatorname{Bern} \frac{A(x)}{C(x)} \longrightarrow \Gamma A(x) \right\rvert\, \Gamma B(x)$
$\mathcal{C}=\mathcal{A} \times \mathcal{B}$	$\Gamma C(x):=(\Gamma A(x) ; \Gamma B(x))$
$\mathcal{C}=\operatorname{SEQ}(\mathcal{A})$	$\Gamma C(x):=(\operatorname{Geom} A(x) \Longrightarrow \Gamma A(x))$

Generating multisets

$$
\begin{gathered}
\mathcal{C}=\operatorname{MSET}(\mathcal{A}) \cong \prod_{\gamma \in \mathcal{A}} \operatorname{SEQ}(\gamma) \Rightarrow C(z)=\prod_{n \geq 1}\left(1-z^{n}\right)^{-C_{n}} \\
C(z)=\exp \left(\sum_{k=1}^{\infty} \frac{1}{k} A\left(z^{k}\right)\right)=\prod_{k=1}^{\infty} \exp \left(\frac{1}{k} A\left(z^{k}\right)\right)
\end{gathered}
$$

$\exp (A(z))$

$\exp \left(\frac{1}{3} A\left(z^{3}\right)\right)$

$\operatorname{MSet}(\mathcal{A})$

- Boltzmann sampler for
- $\mathcal{M}=\operatorname{MSet}\left(\mathbb{N}^{2}\right)$.
- $\mathcal{M}_{p, q}=\operatorname{MSET}\left(\mathbb{N}_{<p} \times \mathbb{N}_{<q}\right)$

$$
=\prod_{\substack{0 \leq i<p \\ 0 \leq j<q}} \operatorname{SEQ}(\mathcal{Z} \times i \times j)
$$

Output: a diagram D.

- Pak's algorithm transforms D into a plane partition.
- Size of the ouptut plane partition $=$ size of the original diagram.

Boltzmann sampler

\square			\sim	M
0	1	0		$\begin{gathered} \{(0,0),(1,0), \\ (2,0),(2,0), \\ (0,1),(1,2)\} \end{gathered}$
1	0	0		
1	1	2		

1 Pak's bijection

1	0	0
2	2	1
4	3	2

How to choose x such that the size of the output partition is n ?

- Probability of drawing a partition of size $n: \frac{P_{n} x^{n}}{P(x)}$
- Expectation of the size of a partition : $x \frac{P^{\prime}(x)}{P(x)}$

\Rightarrow Targetted sampler + rejection.

Theorem (Expected complexity)

- Plane partitions :
- approximate-size : $O\left(n \ln (n)^{3}\right)$
- exact-size : $O\left(n^{\frac{4}{3}}\right)$
- $(p \times q)$-boxed plane partitions (for fixed $p, q)$:
- approximate-size : $O(1)$ as $n \rightarrow \infty$
- exact-size : bounded by Cpq.n, where $C>0$ is a constant.

\sim size	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}
ΓM	$\sim 0.1 \mathrm{~s}$	$\sim 0.5 \mathrm{~s}$	$\sim 2-3 \mathrm{~s}$	$\sim 10 \mathrm{~s}$	$\sim 60 \mathrm{~s}$
bijection	$\sim 0.1 \mathrm{~s}$	$\sim 0.3 \mathrm{~s}$	$\sim 2 \mathrm{~s}$	$\sim 20-30 \mathrm{~s}$	$\sim 8-9 \mathrm{~min}$

Analysis of Complexity

General scheme

Generation of a plane partition of size n (resp. $\sim n$), with a targetted sampler, i.e., with a parameter tuned such that $\mathbb{E}\left(N_{x}\right)=n$.

(1) cost of one call to $\Gamma M: O\left(n^{\frac{2}{3}}\right)$
(2) expected number of calls to the sampler :

- approximate size sampler : $O(1)$
- exact size sampler : $O\left(n^{\frac{2}{3}}\right)$
(3) expected complexity of Pak's algorithm applied to a diagram of size $n: O\left(n \ln (n)^{3}\right)$

Conclusion

Theorem (Expected complexity)

- Plane partitions :
- approximate-size : $O\left(n \ln (n)^{3}\right)$
- exact-size : $O\left(n^{\frac{4}{3}}\right)$
- $(p \times q)$-boxed plane partitions (for fixed $p, q)$:
- approximate-size : $O(1)$ as $n \rightarrow \infty$
- exact-size : bounded by Cpq.n, where $C>0$ is a constant.

Efficiency of Boltzmann samplers combined with results of bijective combinatorics yields a polynomial time sampler for planes partitions.

