Random sampling of plane partitions

O. Bodini É. Fusy C. Pivoteau

Laboratoire d'Informatique de Paris 6 (LIP6)

INRIA Rocquencourt

Context

- Young tableaux : natural generalization of integer partitions in 3D,
- huge literature, e.g. the Alternating Sign Matrix Conjecture (Zeilberger 1995),
- Mac Mahon: beautiful (and simple) generating function (~ 1912)
- for long, no bijective proof,
- Krattenthaler, 1999, proof based on interpretation the hook-length formula,
- sampling of plane partitions in a box $a \times b \times c$: \rightarrow hexagon tilings by rhombi,
- 2002 : Pak's bijection for general planes partitions,
- 2004 : Boltzmann sampling
- today : efficient samplers for some classes of plane partitions.

Motivations

- mathematics,
- statistical physics,
- random sampling according to a natural parameter (volume),
- very large object \rightarrow observation of limit properties,
- in particular : limit shape
 - Cerf and Kenyon,
 - Okounkov and Reshetikhin
- phenomena such as frozen boundaries,
- ...

Plan of the talk

- Pak's bijection
- 2 Boltzmann sampler
- 3 Analysis of Complexity

Planes partitions

- λ : Integer partition \simeq Shape of plane partition e.g. : $\lambda = \{4, 3, 1, 1\}$.
- h(i,j): hook length of the cell (i,j)
- Plane partitions of shape λ (\mathcal{P})
 - λ filled with integers > 0, decreasing in both dimensions
 - matrix filled with integers ≥ 0 , decreasing in both dimensions
- Reverse plane partition of shape λ (\mathcal{RP}) λ filled with integers ≥ 0 that are increasing in both dimensions
- Size of a plane partition : sum of the entries

3			
2	4	6	
0	3	5	
0	1	2	4
0	0	2	3

reverse plane partition

Boxed and skew planes partitions

- Bounding rectangle of a plane partition the smallest rectangle containing all the non-zero cells
- $(a \times b)$ -boxed plane partitions $(\mathcal{P}_{a,b})$ the size of the bounding rectangle is at most $(a \times b)$
- Skew plane partitions (S) plane partition of shape λ/μ , where λ, μ are integer partitions and $\lambda \supset \mu$
- Corner of a skew plane partition

$$S \equiv \mathcal{RP}$$

Specialization of reverse plane partitions

Counting plane partitions

Hook content formula:

$$\sum_{A \in \mathcal{RP}(\lambda)} z^{|A|} = \prod_{(i,j) \in [\lambda]} \frac{1}{1 - z^{h(i,j)}}$$

Set λ to be an infinite rectangle :

$$\prod_{i,j\geq 0} \frac{1}{1-z^{i+j+1}}$$

Generating function of plane partitions (Mac Mahon, 1912):

$$P(z) = \prod_{r \ge 1} (1 - z^r)^{-r}$$

• combinatorial isomorphisms with constructible classes (symbolic methods)

$$\mathcal{P} \simeq \mathcal{M}$$
, $\mathcal{P}_{a,b} \simeq \mathcal{M}_{a,b}$ and $\mathcal{S}_D \simeq \mathcal{M}_D$

• non-trivial bijection, for long, non constructive proof...

Isomorphic classes

$$\prod_{i,j\geq 0} \frac{1}{1-z^{i+j+1}} = \prod_{i,j\geq 0} \operatorname{SEQ}(\mathcal{Z} \times \mathcal{Z}^i \times \mathcal{Z}^j) = \operatorname{MSet}(\mathcal{Z} \times \operatorname{SEQ}(\mathcal{Z})^2)$$

- $\mathcal{M} = \mathrm{MSet}(\mathbb{N}^2) \sim \mathrm{multiset}$ of pairs of integers
 - \rightarrow example: $\{(0,0),(1,0),(2,0),(2,0),(0,1),(1,2)\}$, size = 15
 - \rightarrow size of (i,j):(i+j+1)
- Diagram of an element $\in \mathcal{M}$

$$|D| = \sum_{i,j} m_{i,j} (i+j+1)$$

 \rightarrow sum of the hook lengths weighted by the values of the cells.

Isomorphic classes -2

$$\begin{array}{lcl}
\bullet & \mathcal{M}_{a,b} & = & \operatorname{MSET}(\mathcal{Z} \times \operatorname{SEQ}_{$$

•
$$\mathcal{M}_D = \prod_{(i,j)\in D} \operatorname{SEQ}(\mathcal{Z} \times \mathcal{Z}^{i-\ell(i)} \times \mathcal{Z}^{j-d(j)}) = \prod_{(i,j)\in D} \operatorname{SEQ}(\mathcal{Z}^{h(i,j)})$$

• Diagrams

• Hook length of $(i,j) \in D$: $h(i,j) = (i - \ell(i)) + (j - d(j)) + 1$ $\ell(i) \leftarrow \min$ abscissa such that $(\ell(i),j) \in D$ $d(j) \leftarrow \min$ ordinate such that $(i,d(j)) \in D$

Summary

Pak's bijection

Pak's bijection – principles

- sequential update of the corners of the multiset M
- at each step, the current plane partition (of shape λ) correspond to the restriction of M to λ
- prop. 1: for any corner, the value of the cell, in the plane partition = the maximum value of a monotone path, in the multiset.
- prop. 2: for any extreme cell, diagonal sum, in the plane partition = rectangular sum, in the multiset.
- order constraint, size constraint
- dynamic programming

simple algorithm, but difficult proof!

Pak's bijection – illustrated example

Application of Pak's algorithm on an example.

Pak's algorithm

```
Input: a diagram D of a multiset in \mathcal{M}.
Output: a plane partition.
Let \ell be the length and w be the width of D.
for i := \ell - 1 downto 0 do
    for j := w - 1 downto 0 do
        D[i,j] \leftarrow D[i,j] + \max(D[j+1,i]), D[i,j+1]);
        for c := 1 to \min(w - 1 - i, \ell - 1 - i) do
            x \leftarrow i + c; y \leftarrow j + c;
            D[x,y] \leftarrow \max(D[x+1,y],D[x,y+1]);
            +\min(D[x+1,y],D[x,y+1]);
                    -D[x,y];
Return D;
```

Boltzmann sampler

Random sampling under Boltzmann model

- for any constructible class
- approximate size sampling,
- size distribution spread over the whole combinatorial class, but uniform for a sub-class of objects of the same size,
- control parameter,
- automatized sampling: the sampler is compiled from specification automatically,
- very large objects can be sampled.

Model definition

Definition

In the unlabelled case, Boltzmann model assigns to any object $c \in \mathcal{C}$ the following probability :

$$\mathbb{P}_x(c) = \frac{x^{|c|}}{C(x)}$$

A Boltzmann sampler $\Gamma C(x)$ for the class \mathcal{C} is a process that produces objects from \mathcal{C} according to this model.

 \rightarrow 2 object of the same size will be drawn with the same probability.

The probability of drawing an object of size N is then:

$$\mathbb{P}_x(N=n) = \sum_{|c|=n} \mathbb{P}_x(c) = \frac{C_n x^n}{C(x)}$$

Then, the expected size of an object drawn by a generator with parameter x is :

$$\mathbb{E}_x(N) = x \frac{C'(x)}{C(x)}$$

Approximate and exact-size samplers

- Free samplers : produce objects with randomly varying sizes!
- Tuned samplers: choose x so that expected size is n.
- Run the targeted sampler until the output size is in the desired range (rejection).
- Size distribution of free sampler determines complexity.

Unions, products, sequences

Disjoint unions

Boltzmann sampler ΓC for $C = A \cup B$:

With probability $\frac{A(x)}{C(x)}$ do $\Gamma A(x)$ else do $\Gamma B(x)$ \rightarrow Bernoulli.

Products

Boltzmann sampler ΓC for $\mathcal{C} = \mathcal{A} \times \mathcal{B}$:

Generate a pair $\langle \Gamma A(x), \Gamma B(x) \rangle \rightarrow \text{independent calls.}$

Sequences

Boltzmann sampler ΓC for $\mathcal{C} = \text{Seq}(\mathcal{A})$:

Generate k according to a geometric law of parameter A(x)

Generate a k-tuple $\langle \Gamma A(x), \ldots, \Gamma A(x) \rangle \rightarrow \text{independent calls.}$

Remark : A(x), B(x), and C(x) is given by an **oracle**.

Generating multisets

$$C = \text{MSET}(\mathcal{A}) \cong \prod_{\gamma \in \mathcal{A}} \text{SEQ}(\gamma) \implies C(z) = \prod_{\gamma \in \mathcal{A}} (1 - z^{|\gamma|})^{-1}$$

$$C(z) = \exp\left(\sum_{k=1}^{\infty} \frac{1}{k} A(z^k)\right) = \prod_{k=1}^{\infty} \exp\left(\frac{1}{k} A(z^k)\right)$$

$$= \exp\left(\frac{1}{2} A(z^2)\right) \exp\left(\frac{1}{2} A(z^2)\right) \exp\left(\frac{1}{2} A(z^3)\right)$$

$$= \exp(A(z)) \exp\left(\frac{1}{2} A(z^2)\right) \exp\left(\frac{1}{2} A(z^3)\right)$$

$$= \exp(A(z)) \exp\left(\frac{1}{2} A(z^2)\right) \exp\left(\frac{1}{2} A(z^3)\right)$$

$$= \exp(A(z)) \exp\left(\frac{1}{2} A(z^2)\right)$$

$$= \exp\left(\frac{1}{2} A(z^3)\right)$$

Sampling an object of \mathcal{M}

Algorithm $\Gamma M(x)$

M is the diagram of the multiset to be generated

- Draw m, the max. index of a subset, depending on x;
- For each index k of a subset until m-1
 - Draw the number p of elements to sample, according to a Poisson law of parameter $\frac{x^k}{k(1-x^k)^2}$.
 - Perform p calls to the sampler for $\mathcal{Z} \times \text{SEQ}(\mathcal{Z})^2$ with parameter x^k , and each time, add k copies of the result to the multiset.

```
Repeat p times :

i \leftarrow \text{Geom}(x^k);

j \leftarrow \text{Geom}(x^k);

M[i,j] \leftarrow M[i,j] + k
```

• for index m, draw the number p of elements to generate, according to a non zero Poisson law.

Sampling $\mathcal{M}_{a,b}$ an \mathcal{M}_D

$\Gamma M_{a,b}(x)$ [Boltzmann sampler for $\mathcal{M}_{a,b}$]

M is the diagram of the multiset to be generated for $i \leftarrow 0$ to a-1 do for $j \leftarrow 0$ to b-1 do $M[i,j] \leftarrow \operatorname{Geom}(x^{i+j+1});$ return M;

$\Gamma S_D(x)$ [Boltzmann sampler for \mathcal{M}_D]

M is the diagram of the multiset to be generated for $(i,j) \in D$ do $\bigsqcup M[i,j] \leftarrow \text{Geom}(x^{i+j+1});$ return M;

the free Boltzmann samplers operate in linear time in the size of the bounding rectangle of the diagram produced.

Summary

- Targeted Boltzmann sampler for
 - $\mathcal{M} \to \text{plane partitions}$
 - $\mathcal{M}_{a,b} \to \text{boxed plane partitions}$
 - $S_D \to \text{skew planes partitions}$

Output: a diagram D.

- Rejection
- Pak's algorithm transforms *D* into a plane partition.
- Size of the output plane partition = size of the original diagram.

Boltzmann sampler

Ţ					$M \in \mathcal{M}$
	0	1	0		{ (0,0), (1,0),
	1	0	0	\sim	(2,0), (2,0),
	1	1	2		(0,1), (1,2) }

Pak's bijection

1	0	0
2	2	1
4	3	2

Results

Theorem (Expected complexity)

- Plane partitions:
 - approximate-size : $O(n \ln(n)^3)$
 - exact-size : $O(n^{\frac{4}{3}})$
- $(p \times q)$ -boxed plane partitions (for fixed a, b):
 - approximate-size : O(1) as $n \to \infty$
 - ullet exact-size : bounded by Cab.n
- skew plane partitions (S_D) :
 - approximate-size : O(1) as $n \to \infty$
 - exact-size : bounded by C|D|.n

where $C_1, C_2 > 0$ are constants.

~size	10^{4}	10^{5}	10^{6}	107
ΓM	$\sim 0.4 s$	\sim 2-3s	~10s	$\sim 60 \mathrm{s}$
rect. size	~ 50	~ 100	$\sim 200 300$	$\sim \! 600 800$
bijection	$\sim 0.05 \mathrm{s}$	$\sim 10 \mathrm{s}$	$\sim 20 s$	$\sim 250 - 300 s$

Results – 2

Results – 3

 \leftarrow A (100 × 100)-boxed plane partition of size 999400 drawn under Boltzmann distribution at x=0.9931.

gen. time : $\sim 5s$

bij. time : $\sim 0.7s$

 \rightarrow A skew plane partition of size 1005532 on the indexdomain: [0..99] \times [0..99] \times [0..49] \times [0..49], drawn under Boltzmann distribution at x=0.9942.

gen. time : $\sim 4s$.

bij. time : $\sim 0.35s$.

Analysis of Complexity

Theorem (Expected complexity)

- Plane partitions:
 - $approximate\text{-}size: O(n \ln(n)^3)$
 - exact-size : $O(n^{\frac{4}{3}})$
- $(p \times q)$ -boxed plane partitions (for fixed a, b):
 - approximate-size : O(1) as $n \to \infty$
 - ullet exact-size : bounded by Cab.n
- skew plane partitions (S_D) :
 - approximate-size : O(1) as $n \to \infty$
 - \bullet exact-size : bounded by C|D|.n

where $C_1, C_2 > 0$ are constants.

General scheme

Generation of a plane partition of size n (resp. $\sim n$), with a targeted sampler, i.e., with a parameter tuned such that $\mathbb{E}(N_x) = n$.

$\begin{array}{c} \text{mean cost} \\ = \\ \text{cost of one call to } \Gamma M \times \text{expected number of calls} \\ + \\ \text{cost of Pak's algorithm} \end{array}$

- cost of one call to $\Gamma M: O(n^{\frac{2}{3}})$
- \odot expected number of calls to the sampler :
 - approximate size sampler : O(1)
 - exact size sampler : $O(n^{\frac{2}{3}})$
- **3** expected complexity of Pak's algorithm applied to a diagram of size $n: O(n \ln(n)^3)$

Details – free sampler

complexity of the free Boltzmann sampler, as $x \to 1^-$:

$$\Lambda P(x) = \Lambda M(x) + \mathbb{E}_x[\text{PakAlgo}](x)$$

$$\Lambda M(x) = \sum_{i \geq 1} \mathbb{E}\left(\operatorname{Pois}\left(\frac{A(x^i)}{i}\right)\right) \Lambda A(x^i) = \sum_{i \geq 1} \frac{A(x^i)}{i} \Lambda A(x^i)$$

using Mellin transform:

$$\Lambda M(x) = \mathop{\mathcal{O}}_{x \to 1^{-}} \left(\frac{1}{(1-x)^{2}} \right)$$

length of the bounding rectangle of a multiset drawn under Boltzmann model : $\mathcal{O}((1-x)^{-1}\ln((1-x)^{-1}))$ as $x \to 1^-$:

$$\mathbb{E}_x[\operatorname{PakAlgo}](x) = \mathop{\mathcal{O}}_{x \to 1^-} \left(\frac{1}{(1-x)^3} \ln \left(\frac{1}{1-x} \right)^3 \right) = \Lambda P(x)$$

Details – targeted sampler

using Mellin transform:

$$\mathbb{E}(N_x) = \frac{2\zeta(3)}{(1-x)^3} + \mathcal{O}_{x \to 1^-} \left(\frac{1}{(1-x)^2}\right)$$

$$\mathbb{V}(N_x) = \frac{6\zeta(3)}{(1-x)^4} + \mathcal{O}_{x \to 1^-} \left(\frac{1}{(1-x)^3}\right)$$

tuned parameter : $\xi_n := 1 - (2\zeta(3)/n)^{1/3}$

expected complexity of $\Gamma M(\xi_n)$ and Pak's algorithm under the uniform distribution at a *fixed* size n:

$$\Lambda M(\xi_n) = \mathcal{O}(n^{\frac{2}{3}}), \quad \mathbb{E}_n[\text{Pak}] = \mathcal{O}(n\log(n)^3)$$

probability that the output of $\Gamma P(\xi_n)$ has size n:

- using Chebyshev inequality: $\pi_{n,\epsilon} \to 1$
- using Mellin transform and the saddle-point method :

$$\pi_n \sim \frac{c}{n^{2/3}}$$
, with $c \approx 0.1023$

Details – boxed, skew

sampler for $(a \times b)$ -boxed plane partitions:

$$\xi_n^{a,b} := 1 - ab/n$$

$$\pi_{n,\epsilon} \underset{n \to \infty}{\sim} \mathcal{O}(1), \quad \pi_n \sim \mathcal{O}(n)$$

 $\Gamma P_{a,b}(x)$ is of constant complexity $C \cdot a \cdot b$

expected complexity of the approximate-size sampler :

$$\Lambda P_{a,b}(\xi_n)/\pi_{n,\epsilon} \sim C \cdot ab$$

expected complexity of the exact-size sampler:

$$\Lambda P_{a,b}(\xi_n)/\pi_n \sim Cabn$$

Bibliography

- Plane partitions and applications.
 - The low-temperature expansion of the Wulff crystal in the 3D Ising model. R. Cerf, R. Kenyon.
 - Another involution principle-free bijective proof of Stanley's hook-content formula. C. Krattenthaler.
 - Random skew plane partitions and the pearcey process. A. Okounkov, N. Reshetikhin.
 - Partition bijections, a survey. I. Pak.
- Random generation under Boltzmann model
 - Boltzmann samplers for the random generation of combinatorial structures. P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer.
 - Boltzmann sampling of unlabelled structures. P. Flajolet,
 E. Fusy, C. Pivoteau.
- Pak's bijection
 - Hook length formula and geometric combinatorics. I. Pak.