## Random sampling of plane partitions

O. Bodini É. Fusy C. Pivoteau

Laboratoire d'Informatique de Paris 6 (LIP6)
INRIA Rocquencourt


- Young tableaux : natural generalization of integer partitions in 3D,
- huge literature, e.g. the Alternating Sign Matrix Conjecture (Zeilberger 1995),
- Mac Mahon : beautiful (and simple) generating function ( $\sim 1912$ )
- for long, no bijective proof,
- Krattenthaler, 1999, proof based on interpretation the hook-length formula,
- sampling of plane partitions in a box $a \times b \times c$ :
$\rightarrow$ hexagon tilings by rhombi,
- 2002 : Pak's bijection for general planes partitions,
- 2004 : Boltzmann sampling
- today : efficient samplers for some classes of plane partitions.
- mathematics,
- statistical physics,
- random sampling according to a natural parameter (volume),
- very large object $\rightarrow$ observation of limit properties,
- in particular : limit shape
- Cerf and Kenyon,
- Okounkov and Reshetikhin
- phenomena such as frozen boundaries,
- ...



## Boltzmann sampling technics

 $+$Explicit bijection with a constructible class $\Downarrow$
Polynomial-time sampler for plane partitions
(1) Pak's bijection
(2) Boltzmann sampler
(3) Analysis of Complexity

- $\lambda$ : Integer partition $\simeq$ Shape of plane partition e.g. : $\lambda=\{4,3,1,1\}$.
- $h(i, j)$ : hook length of the cell $(i, j)$
- Plane partitions of shape $\lambda(\mathcal{P})$
- $\lambda$ filled with integers $>0$, decreasing in both dimensions
- matrix filled with integers $\geq 0$, decreasing in both dimensions
- Reverse plane partition of shape $\lambda(\mathcal{R} \mathcal{P})$
$\lambda$ filled with integers $\geq 0$ that are increasing in both dimensions
- Size of a plane partition : sum of the entries



| 3 |  |  |  |
| :--- | :--- | :--- | :--- |
| 2 | 4 | 6 |  |
| 0 | 3 | 5 |  |
| 0 | 1 | 2 | 4 |
| 0 | 0 | 2 | 3 |

reverse plane partition

- Bounding rectangle of a plane partition the smallest rectangle containing all the non-zero cells
- $(a \times b)$-boxed plane partitions $\left(\mathcal{P}_{a, b}\right)$ the size of the bounding rectangle is at most $(a \times b)$
- Skew plane partitions $(\mathcal{S})$ plane partition of shape $\lambda / \mu$, where $\lambda, \mu$ are integer partitions and $\lambda \supset \mu$
- Corner of a skew plane partition

$$
\mathcal{S} \equiv \mathcal{R} \mathcal{P}
$$


reverse plane partition


## Counting plane partitions

Hook content formula :

$$
\sum_{A \in \mathcal{R P}(\lambda)} z^{|A|}=\prod_{(i, j) \in[\lambda]} \frac{1}{1-z^{h(i, j)}}
$$

Set $\lambda$ to be an infinite rectangle :

$$
\prod_{i, j \geq 0} \frac{1}{1-z^{i+j+1}}
$$

Generating function of plane partitions (Mac Mahon, 1912) :

$$
P(z)=\prod_{r \geq 1}\left(1-z^{r}\right)^{-r}
$$

- combinatorial isomorphisms with constructible classes (symbolic methods)

$$
\mathcal{P} \simeq \mathcal{M}, \quad \mathcal{P}_{a, b} \simeq \mathcal{M}_{a, b} \quad \text { and } \quad \mathcal{S}_{D} \simeq \mathcal{M}_{D}
$$

- non-trivial bijection, for long, non constructive proof...

$$
\prod_{i, j \geq 0} \frac{1}{1-z^{i+j+1}}=\prod_{i, j \geq 0} \operatorname{SEQ}\left(\mathcal{Z} \times \mathcal{Z}^{i} \times \mathcal{Z}^{j}\right)=\operatorname{MSET}\left(\mathcal{Z} \times \operatorname{SEQ}(\mathcal{Z})^{2}\right)
$$

- $\mathcal{M}=\operatorname{MSET}\left(\mathbb{N}^{2}\right) \sim$ multiset of pairs of integers
$\rightarrow$ example : $\{(0,0),(1,0),(2,0),(2,0),(0,1),(1,2)\}$, size $=15$
$\rightarrow$ size of $(i, j):(i+j+1)$
- Diagram of an element $\in \mathcal{M}$

- $\mathcal{M}_{a, b}=\operatorname{MSET}\left(\mathcal{Z} \times \operatorname{SEQ}_{<a}(\mathcal{Z}) \times \operatorname{SEQ}_{<b}(\mathcal{Z})\right)$

$$
=\prod_{\substack{0 \leq i<a \\ 0 \leq j<b}} \operatorname{SEQ}\left(\mathcal{Z} \times \mathcal{Z}^{i} \times \mathcal{Z}^{j}\right)
$$

$\sim \operatorname{MSET}\left(\mathbb{N}_{<a} \times \mathbb{N}_{<b}\right)$

- $\mathcal{M}_{D}=\prod_{(i, j) \in D} \operatorname{SEQ}\left(\mathcal{Z} \times \mathcal{Z}^{i-\ell(i)} \times \mathcal{Z}^{j-d(j)}\right)=\prod_{(i, j) \in D} \operatorname{SEQ}\left(\mathcal{Z}^{h(i, j)}\right)$
- Diagrams

- Hook length of $(i, j) \in D: h(i, j)=(i-\ell(i))+(j-d(j))+1$
$\ell(i) \leftarrow$ min. abscissa such that $(\ell(i), j) \in D$
$d(j) \leftarrow$ min. ordinate such that $(i, d(j)) \in D$



## Pak's bijection

- sequential update of the corners of the multiset $M$
- at each step, the current plane partition (of shape $\lambda$ ) correspond to the restriction of $M$ to $\lambda$
- prop. 1 : for any corner, the value of the cell, in the plane partition $=$ the maximum value of a monotone path, in the multiset.
- prop. 2 : for any extreme cell, diagonal sum, in the plane partition $=$ rectangular sum, in the multiset.
- order constraint, size constraint
- dynamic programming
simple algorithm, but difficult proof!

Pak's bijection - illustrated example

$$
\begin{aligned}
& \begin{array}{|l|l}
\hline \mathrm{a} & \\
\hline \mathrm{c} & \mathrm{r} \\
& c \leftarrow c+\max (a, r) \\
\hline
\end{array} \\
& \{(0,0),(1,0),(2,0),(2,0),(0,1),(1,2)\} \\
& M \in \mathcal{M} \quad \text { bounding rectangle }
\end{aligned}
$$

$$
\begin{aligned}
& P \in \mathcal{P}
\end{aligned}
$$

Application of Pak's algorithm on an example.

Input : a diagram $D$ of a multiset in $\mathcal{M}$.
Output: a plane partition.
Let $\ell$ be the length and $w$ be the width of $D$.
for $i:=\ell-1$ downto 0 do

$$
\text { for } j:=w-1 \text { downto } 0 \text { do }
$$

$$
D[i, j] \leftarrow D[i, j]+\max (D[j+1, i]), D[i, j+1])
$$

$$
\text { for } c:=1 \text { to } \min (w-1-j, \ell-1-i) \text { do }
$$

$$
x \leftarrow i+c ; y \leftarrow j+c
$$

$$
D[x, y] \leftarrow \max (D[x+1, y], D[x, y+1])
$$

$$
+\min (D[x+1, y], D[x, y+1])
$$

$$
-D[x, y]
$$

Return $D$;

## Boltzmann sampler

- for any constructible class
- approximate size sampling,
- size distribution spread over the whole combinatorial class, but uniform for a sub-class of objects of the same size,
- control parameter,
- automatized sampling : the sampler is compiled from specification automatically,
- very large objects can be sampled.


## Definition

In the unlabelled case, Boltzmann model assigns to any object $c \in \mathcal{C}$ the following probability :

$$
\mathbb{P}_{x}(c)=\frac{x^{|c|}}{C(x)}
$$

A Boltzmann sampler $\Gamma C(x)$ for the class $\mathcal{C}$ is a process that produces objects from $\mathcal{C}$ according to this model.
$\rightarrow 2$ object of the same size will be drawn with the same probability. The probability of drawing an object of size $N$ is then :

$$
\mathbb{P}_{x}(N=n)=\sum_{|c|=n} \mathbb{P}_{x}(c)=\frac{C_{n} x^{n}}{C(x)}
$$

Then, the expected size of an object drawn by a generator with parameter $x$ is :

$$
\mathbb{E}_{x}(N)=x \frac{C^{\prime}(x)}{C(x)}
$$

- Free samplers : produce objects with randomly varying sizes!
- Tuned samplers : choose $x$ so that expected size is $n$.
- Run the targeted sampler until the output size is in the desired range (rejection).
- Size distribution of free sampler determines complexity.



## Unions, products, sequences

## Disjoint unions

Boltzmann sampler $\Gamma C$ for $\mathcal{C}=\mathcal{A} \cup \mathcal{B}$ :
With probability $\frac{A(x)}{C(x)}$ do $\Gamma A(x)$ else do $\Gamma B(x) \quad \rightarrow$ Bernoulli.

## Products

Boltzmann sampler $\Gamma C$ for $\mathcal{C}=\mathcal{A} \times \mathcal{B}$ :
Generate a pair $\langle\Gamma A(x), \Gamma B(x)\rangle \quad \rightarrow$ independent calls.

## Sequences

Boltzmann sampler $\Gamma C$ for $\mathcal{C}=\operatorname{Seq}(\mathcal{A})$ :
Generate $k$ according to a geometric law of parameter $A(x)$
Generate a $k$-tuple $\langle\Gamma A(x), \ldots, \Gamma A(x)\rangle \rightarrow$ independent calls.
Remark: $A(x), B(x)$, and $C(x)$ is given by an oracle.

## Generating multisets

$$
\begin{gathered}
\mathcal{C}=\operatorname{MSET}(\mathcal{A}) \cong \prod_{\gamma \in \mathcal{A}} \operatorname{SEQ}(\gamma) \Rightarrow C(z)=\prod_{\gamma \in \mathcal{A}}\left(1-z^{|\gamma|}\right)^{-1} \\
C(z)=\exp \left(\sum_{k=1}^{\infty} \frac{1}{k} A\left(z^{k}\right)\right)=\prod_{k=1}^{\infty} \exp \left(\frac{1}{k} A\left(z^{k}\right)\right)
\end{gathered}
$$


$\exp (A(z))$

$\exp \left(\frac{1}{3} A\left(z^{3}\right)\right)$

$\operatorname{MSet}(\mathcal{A})$


## Sampling an object of $\mathcal{M}$

## Algorithm $\Gamma M(x)$

$M$ is the diagram of the multiset to be generated

- Draw $m$, the max. index of a subset, depending on $x$;
- For each index $k$ of a subset until $m-1$
- Draw the number $p$ of elements to sample, according to a Poisson law of parameter $\frac{x^{k}}{k\left(1-x^{k}\right)^{2}}$.
- Perform $p$ calls to the sampler for $\mathcal{Z} \times \operatorname{Seq}(\mathcal{Z})^{2}$ with parameter $x^{k}$, and each time, add $k$ copies of the result to the multiset.
Repeat $p$ times :

$$
\begin{aligned}
& i \leftarrow \operatorname{Geom}\left(x^{k}\right) ; \\
& j \leftarrow \operatorname{Geom}\left(x^{k}\right) ; \\
& M[i, j] \leftarrow M[i, j]+k
\end{aligned}
$$

- for index $m$, draw the number $p$ of elements to generate, according to a non zero Poisson law.
$\Gamma M_{a, b}(x)$ [Boltzmann sampler for $\mathcal{M}_{a, b}$ ]

```
\(M\) is the diagram of the multiset to be generated
for \(i \leftarrow 0\) to \(a-1\) do
        for \(j \leftarrow 0\) to \(b-1\) do
        \(M[i, j] \leftarrow \operatorname{Geom}\left(x^{i+j+1}\right) ;\)
return \(M\);
```

$\Gamma S_{D}(x)$ [Boltzmann sampler for $\mathcal{M}_{D}$ ]

```
M is the diagram of the multiset to be generated
for (i,j)\inD do
    LM[i,j]\leftarrowGeom( }\mp@subsup{x}{}{i+j+1}\mathrm{ );
return M;
```

!
the free Boltzmann samplers operate in linear time in the size of the bounding rectangle of the diagram produced.

- Targeted Boltzmann sampler for
- $\mathcal{M} \rightarrow$ plane partitions
- $\mathcal{M}_{a, b} \rightarrow$ boxed plane partitions
- $\mathcal{S}_{D} \rightarrow$ skew planes partitions

Output: a diagram $D$.

- Rejection
- Pak's algorithm transforms $D$ into a plane partition.
- Size of the output plane partition $=$ size of the original diagram.

Boltzmann sampler


亿 Pak's bijection

| 1 | 0 | 0 |
| :--- | :--- | :--- |
| 2 | 2 | 1 |
| 4 | 3 | 2 |



## Theorem (Expected complexity)

- Plane partitions :
- approximate-size : $O\left(n \ln (n)^{3}\right)$
- exact-size : $O\left(n^{\frac{4}{3}}\right)$
- $(p \times q)$-boxed plane partitions (for fixed $a, b)$ :
- approximate-size : $O(1)$ as $n \rightarrow \infty$
- exact-size : bounded by Cab.n
- skew plane partitions ( $\mathcal{S}_{D}$ ) :
- approximate-size : $O(1)$ as $n \rightarrow \infty$
- exact-size : bounded by $C|D| . n$
where $C_{1}, C_{2}>0$ are constants.

| $\sim$ size | $10^{4}$ | $10^{5}$ | $10^{6}$ | $10^{7}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\Gamma M$ | $\sim 0.4 \mathrm{~s}$ | $\sim 2-3 \mathrm{~s}$ | $\sim 10 \mathrm{~s}$ | $\sim 60 \mathrm{~s}$ |
| rect. size | $\sim 50$ | $\sim 100$ | $\sim 200-300$ | $\sim 600-800$ |
| bijection | $\sim 0.05 \mathrm{~s}$ | $\sim 10 \mathrm{~s}$ | $\sim 20 \mathrm{~s}$ | $\sim 250-300 \mathrm{~s}$ |

Results - 2

$\leftarrow$ A $(100 \times 100)$-boxed plane partition of size 999400 drawn under Boltzmann distribution at $x=0.9931$.
gen. time $: \sim 5 s$
bij. time $: \sim 0.7 s$
$\rightarrow$ A skew plane partition of size 1005532 on the indexdomain :
$[0 . .99] \times[0 . .99] \backslash[0 . .49] \times[0 . .49]$, drawn under Boltzmann distribution at $x=0.9942$.
gen. time $: \sim 4 s$.
bij. time $: \sim 0.35 \mathrm{~s}$.


Random sampling of plane partitions

## Analysis of Complexity

## Theorem (Expected complexity)

- Plane partitions :
- approximate-size : $O\left(n \ln (n)^{3}\right)$
- exact-size : $O\left(n^{\frac{4}{3}}\right)$
- $(p \times q)$-boxed plane partitions (for fixed $a, b)$ :
- approximate-size : $O(1)$ as $n \rightarrow \infty$
- exact-size : bounded by Cab.n
- skew plane partitions $\left(\mathcal{S}_{D}\right)$ :
- approximate-size : $O(1)$ as $n \rightarrow \infty$
- exact-size : bounded by $C|D| . n$
where $C_{1}, C_{2}>0$ are constants.


## General scheme

Generation of a plane partition of size $n($ resp. $\sim n)$, with a targeted sampler, i.e., with a parameter tuned such that $\mathbb{E}\left(N_{x}\right)=n$.

| mean cost |
| :---: |
| $=$ |
| cost of one call to $\Gamma M \times$ expected number of calls |
| + |
| cost of Pak's algorithm |

(1) cost of one call to $\Gamma M: O\left(n^{\frac{2}{3}}\right)$
(2) expected number of calls to the sampler :

- approximate size sampler : $O(1)$
- exact size sampler : $O\left(n^{\frac{2}{3}}\right)$
(3) expected complexity of Pak's algorithm applied to a diagram of size $n: O\left(n \ln (n)^{3}\right)$
complexity of the free Boltzmann sampler, as $x \rightarrow 1^{-}$:

$$
\begin{gathered}
\Lambda P(x)=\Lambda M(x)+\mathbb{E}_{x}[\operatorname{PakAlgo}](x) \\
\Lambda M(x)=\sum_{i \geq 1} \mathbb{E}\left(\operatorname{Pois}\left(\frac{A\left(x^{i}\right)}{i}\right)\right) \Lambda A\left(x^{i}\right)=\sum_{i \geq 1} \frac{A\left(x^{i}\right)}{i} \Lambda A\left(x^{i}\right)
\end{gathered}
$$

using Mellin transform :

$$
\Lambda M(x)=\underset{x \rightarrow 1^{-}}{\mathcal{O}}\left(\frac{1}{(1-x)^{2}}\right)
$$

length of the bounding rectangle of a multiset drawn under Boltzmann model : $\mathcal{O}\left((1-x)^{-1} \ln \left((1-x)^{-1}\right)\right)$ as $x \rightarrow 1^{-}$:

$$
\mathbb{E}_{x}[\operatorname{PakAlgo}](x)=\underset{x \rightarrow 1^{-}}{\mathcal{O}}\left(\frac{1}{(1-x)^{3}} \ln \left(\frac{1}{1-x}\right)^{3}\right)=\Lambda P(x)
$$

using Mellin transform :

$$
\begin{aligned}
& \mathbb{E}\left(N_{x}\right)=\frac{2 \zeta(3)}{(1-x)^{3}}+\underset{x \rightarrow 1^{-}}{\mathcal{O}}\left(\frac{1}{(1-x)^{2}}\right) \\
& \mathbb{V}\left(N_{x}\right)=\frac{6 \zeta(3)}{(1-x)^{4}}+\underset{x \rightarrow 1^{-}}{\mathcal{O}}\left(\frac{1}{(1-x)^{3}}\right)
\end{aligned}
$$

tuned parameter : $\xi_{n}:=1-(2 \zeta(3) / n)^{1 / 3}$
expected complexity of $\Gamma M\left(\xi_{n}\right)$ and Pak's algorithm under the uniform distribution at a fixed size $n$ :

$$
\Lambda M\left(\xi_{n}\right)=\mathcal{O}\left(n^{\frac{2}{3}}\right), \quad \mathbb{E}_{n}[\mathrm{Pak}]=\mathcal{O}\left(n \log (n)^{3}\right)
$$

probability that the output of $\Gamma P\left(\xi_{n}\right)$ has size $n$ :

- using Chebyshev inequality : $\pi_{n, \epsilon} \underset{n \rightarrow \infty}{ } 1$
- using Mellin transform and the saddle-point method:

$$
\pi_{n} \underset{n \rightarrow \infty}{\sim} \frac{c}{n^{2 / 3}}, \text { with } c \approx 0.1023
$$

sampler for $(a \times b)$-boxed plane partitions :

$$
\begin{gathered}
\xi_{n}^{a, b}:=1-a b / n \\
\pi_{n, \epsilon} \underset{n \rightarrow \infty}{\sim} \mathcal{O}(1), \quad \pi_{n} \sim \mathcal{O}(n)
\end{gathered}
$$

$\Gamma P_{a, b}(x)$ is of constant complexity $C \cdot a \cdot b$
expected complexity of the approximate-size sampler :

$$
\Lambda P_{a, b}\left(\xi_{n}\right) / \pi_{n, \epsilon} \sim C \cdot a b
$$

expected complexity of the exact-size sampler :

$$
\Lambda P_{a, b}\left(\xi_{n}\right) / \pi_{n} \sim C a b n
$$

- Plane partitions and applications.
- The low-temperature expansion of the Wulff crystal in the 3D Ising model. R. Cerf, R. Kenyon.
- Another involution principle-free bijective proof of Stanley's hook-content formula. C. Krattenthaler.
- Random skew plane partitions and the pearcey process. A. Okounkov, N. Reshetikhin.
- Partition bijections, a survey. I. Pak.
- Random generation under Boltzmann model
- Boltzmann samplers for the random generation of combinatorial structures. P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer.
- Boltzmann sampling of unlabelled structures. P. Flajolet, E. Fusy, C. Pivoteau.
- Pak's bijection
- Hook length formula and geometric combinatorics. I. Pak.

