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Absiract: In this paper, o new defintiom of the skeletom of an object. cilled the corvatre skeleton, s presented. This definition
i hused o the cween eee maxsio camputed aling the sbiget™s ¢ontowrs, Some principles of this mathemateal model are wied
tir bmplement o pew method of parmetrisatle sketetonization af binary mages. The Bimary algorithm afs e melE-evel ey

soale ) image skeletonizataon,

Ko wordy: Shelelon, contoor processing abporithun, thineing alponthm, ridges éxtrction.

1. Iniroduction

Skelotomization, more widely known as pattern
thinning, 15 @ major iS50 in image processing,
Amonp vanous works concerning this subject, one
may distinguish two classes of methods, The more
usual slgorithms, bused on Hilditch's views (1969),
process severa] passes (iterations) on a bimary
image, For cach pass, the neighbourhood configu-
riation {usually 3+3) of cach pixel has to be tested.
According to this test, the pixel 15 cither removed or
kept

Muore recently, suthors such as Martinge-Perez
{1987y or Shapiro (1981) have proposed alporithms
bused on the ohject’s contour processing in imuges
gither in raster format or already 1o vector form.
The latter are generally faster, but they may not be

always suitable for complex images because they
sometmmes cut off the skeleton.

Mevertheless, the object's contour processing
seems 1o be o very interesting approach. We pro-
pose o new mathematical modeling (Section 2)
shivwing the local maxima of the curvature, com-
puted along the ohject’s contour, which allows the
generation of the skeleton branches,

A new definition of skeleton. called the curvature
skeleton, extends bevond the usual definition quot-
ed by Shapiro (1981): “The skeleton (sometimes
called ‘medial axis® or “symmetric axis’) of the inside
of & black object or "blob” on a4 white background
in# two-dimensional Euclidian plane js the set of
points {x) such that there are at least two pomnts on

- the objeet’s contour that are equidistant from {x)

and are closest Lo (x)."
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Some aspects of our new mathematical formalism
are parts of the binary skeletonization algorithm,
The aim of our method is 10 obtain, choosing the
right parameters, the skeleion which fits perfectly
Lhie user’s needs.

Our process, close to Hilditeh's approach (1969),
1% relutively expensive in terms of computing time.
However, il 13 always possible 1o reduce this tme,
for example by using a contour processing method
as described by Van Vet and Verwer (| 95%).

The principles used in binary images skeletoniza-
tion are remtroduced inomolt-level (gray scale)
impge pirocessing. With o didactic view in mind. we
have made o multi-level test image [rom the binary
image showing the letter “A". The results obtained
for each of these images allow Lhe reader 1o eslimate
the accuracy of the relation between binary and
multi-level processing,

2. Mathematical model of the curvature skeleton

Notations

Let £ beun object and Cils contour, Cis 4 closed
curve or a set of closed curves when E has holes. Tt
is assumed in this section that exch closed curve is
at beast twice derivable i each point.

Cis denoled in parametrical form.

c {F{r} =C:::) P U.....T}.

with r varying trigonometncally.

]

PATTERN RECOGNITION LETTERS

s |99

The curvatare K(t) in point P(r) is given by;

x.' Jli
~
Kiny=—t—=<1__
{‘1.:’2 +}|"2'.3|.3
Xy — xy
Kl = O 4 FIPn (1)

Erosion of E by a disk of vadius e (denoted E,), is
defined as the set of points belonging to E and at
a distanee frem the comtour C greater than or equal
10-E,

Let

o )
' dr
T diy(o)
i dr

be the vector tangent to C in P(r), and let

()

be the veotor normal to € in P{).

C, is defined us the paint by pornt translared curs
from €. with a distance & along the v vector (Figure
1k
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Defrnitian of the curvature skeleton

K= %) —
Pt} =

P.it) belongs to the skeleton if and only ift

[T} P.(t) belongs Lo the erosion E,. and

(2} D1or D2 or D3 holds:

I, Py is o curvature local maximum slong C,.

D2, x and y derivatives are zéroin P.ft).

D3 The €, curve intersects itscll in Pfr), ie.
di'st, with P(t°) = Pii).

The [ull curvature skeleton is achieved when &
takes all values from 0 1o infinity (or at least while
the Er erosion i not emptv).

The three cases D1, D2 and D3 are dependent on
the value £ in relation to the curvature radii |/Kir}
eomputed within one interval of the original curye
C
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Figure 2 Currarure skeferon acheved by applying definitions D, D2 and D3 Circles show Uhe curvature rudii B tnpoits P,owith mak
mal curature K wlong the origingl turve £ {a) Simple case showing (he seemslored cwrre O, o7 severil values of o (b} &n ordinary
cage shopwing only the-erosion contours £,

D1: case of e = |/K(f) lor all points of the inter-
val,

D2 cage of ¢ = 1/K(1) for only ong point of the
mierval,

D3: case of & = /K1) for al least one point of the
interval,
and are shown in Figures Za and 2b.

For each curvature maximum value K. oalong
the original curve €. we drew the circle located at
the curvature center whose riadios value is 1/K

Figure Za depicts a theoretical situation of a
curve whose parametrical equation is locally,

(ﬂn =y
W= — r)'

Figure 2b shows some ordinary object whese cur-
vature skeleton was drawn by hand.

In Fipure 2a, when & is greater than 1/2, the C
curve produces one ‘loop” and (wo ‘relum-pointy’
within the neighbourhood of P(0). In Figure 2b,
these 'loops” have been removed to keep only the E,
grosion contours,

Dizeussion

Skeleron points referenced by the DY definition
are exactly those reférenced by the olassical defini-
tion quoted by Shapiro (1981),

Pefinition D1 allows us to extend the usual skele-
ton to reach the object’s contour.

Difinition D2 relerences the points joiming the

37
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D1 definition pointsand the D3 definition points.
Crrvatnre propertics of the translated curie

1n this section we search for one relation between
the curvature in a point P{f) and the curvature in
1ts tramslared pomt PAD).,

It 15 easy to prove that the translated curve
contuins the contour of the B, erosion.

Using equations {(2) und (1), the first derivative in
Pithis:

fx = x'(1 = iK),

= 3
"7t =y —ek), o

where K I8 the curvature in Kir) of the original
curve €. We note that o, and w are co-linear {when
K=/} This fact allows us to prove that the
(e + ') radius erosion E, . isequal to the ¢ madius
erosion of the & ridius erosion:

‘EI' +iaf - {El"}f-' = {E‘_}:.-
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Coordinates of the wecond derivative are:

d*OP()  [xf=x"{1 —EK) —ex'K", )
dt* =11 —8K) — ey K.

The curvature K,(t) in the point P{t)is given by:

X ¥
¥ %

(%2 + 2 T

K=

ind using equations (3), (4) and (1);

¥

.ﬁ.:fr}=—|1_EK|. {5)
In each pomt, when & < 1/K(t), we notice that:
convexity: K, > K = 0, translated curves are
more and more convex,
— concavity: K< K_< 0, translated curves arc
less und less concave.

Figure 3 Curtiaiurs skeletan of the objec! (Figure 2a) {for several threshold valses.
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Curvature variations are given by

d(K,(6) K’
dt |l =Kl —eK)

K= (6

When ¢ is less than |/K(r), K, and K’ have the
same sign and take the value 0 simultaneously,

In particular, if P(f) is a curvature maximum
(K'=0), then P,1) i5 a curvature maximum
(K, =0}, This proves some sparial continuity {con-
tiguity) of the eurvature skeleton points referenced
by the DI definition.

Threshalding of the curvature skeleton

Let P, 1) he the skeleton points applving our defi-
nitions. On this set, we deline the curvaturs funciion
as:

Kty incase DI,

KPP =
(e A0 {4_ 7, in case D2 or D3,

Removing from the image the skeleton pomts
whose curvature #'(P.{t}} is less than @ given
threshold K+, we obtain a new skeleton, which is al-
ways ‘conneeted’, albeit with a reduced size (Figure
3

In these figures, the disk centered at the curvature
center whose radius is | /K¢ has been added in bold
print. Points referenced by the D1 definition and lo-
cated without the disk have been removed.

Figure 3a shows a threshold equal 1o 0; the full
skeleton resulting from definitions D1, D2 and D3
is unchanged (sce Figure 2b).

Figure 30 shows an infinite Lhreshold; only points
referenced by the definitions D2 and D3 are saved

Figures 3b. 3¢, 3¢ and 3f describe. intermedlate
situations corresponding réspectively (o the increas-
ing threshold values K, K;. K; and K, these last
vilues being the curvature Jocal maxima compulted
along the eriginal curve € (Figure 2b),

These results may be considered as an answer to
the ‘extremity points’ processing problem which is
frequently encountered in the literature, For in-
stance, Paviidis (1980) uses a particuiar processing
with these points,

The thresholding allows us to retain among the
skeleton branches only those (or parts of them)
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mweneraled from pomts whose convexity 18 sharp
encugh,

Conelusions

The curvature skeleton definition extends and
compleles the usual one. The curvature local maxi-
ma along the original curve are the slarling points
af branches which converge on the central part of
the skeloton,

The possible noise may be cleared by the curva-
ture thresholding method.

Lustly, the curvature skeleton is larger than the
usual skeleton. The sive of the ariginal object is re-
called in a more exacting way, which may be impor-
tant in case of subsequen! messurements

3. Binary skeletonization

Without being a rigorous application. the binary
skeletonization algorithm described herg is largely
inspired by the preceding,

Unlike scarching for the curvature local maxima,
we- allow the skeleton to starr only from points
whose comvexity 1= greater than a given threshold
Ky

Netdtions

Let 2 banary imnage be given. We assign to object
pixels value one and to background pixels value
zero, The operations treated in this paper are based
on 3«3 neighbourhoods:

h3 B2 b
b a b
b5 ke b7

{setting b0 = bE)

Groen and Faoster ( 1984) define:
the number of 4-connected neighbours:

Py = E By

W= 024 6
the number of B-connected neighbours:
g = E h*.
i

= 0iiaat

We redafine the Filditch crossing number in 4-con-
nected neighbourhood:

He = }: hh with .’r* =
=0 2.4 h
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convexity =3  convexity =4

d-ponnecied

convaxity = 5

convexity=6 convexity =7

B-ponnected

Figure 4. Binury skeletons aohieved in dcoonected peighbourbood (0-e) and in $-connectied neighbourhood (F-{) md for several values

of the threshold &

T i, = Deand (B, =0)or (b, . =00,
in #-connected neighbourhood;

]'u == E -‘I* “rﬂh hi = |
V=0, k4.6

T (b = Oband ((h, ., = Dorib 2= 1)

Ohject pixels which hiave at ledst one of the 4
neighbours belonging 1o the background (4 = | and
iny < 4) are called contonr pixels. Tn each Heration,
only these may be removed.

Pixels which link-at least two parts of the object
vy = | ind-connected neighbourhood or 3 = 1 in
S-connected neighbourhood) are called connection
pixels. In ull skeletonization procasses, this kind of
proints ennned be removed.

The convexity of each contour pixel & roughly es-
timated by the maximum number of contiguous
background pixels among the 8 neighbours.

Examples:

¥
® & e ]

i
; : .
K=4 K=7 K=4
Algorithm
Two imuges are processed by the algorithm. One
cortesponds to the result in the preceding itcration

(Tmali,f1), the other to the current image {Tma'({./)).

a0

3456 T

d-connected skeletonization
1. Preceding and current mmages are iniialized to
original image values
2, Repeat
3. For each pixel (1,7} do
401 the pixe] belongs Lo the object (Lmaflf) = 1)
5 1f the pixel hbelongs to the contour
10 oy < 4)
6. 7 the convexaty 1 less thon the threshold
K <= Ky)
7.0 the pixel is nol & conpection point in
preceding image {y, < 1)
B, AT the pisel @5 nol 4 conrection paint n
current image (15 < 1)
4. Then remove this pisel from curnent
image (Tma'i.j) <0
endif
endil
endil
gndif
endif
cnddo
[ Current image becomes preceding image
(Imao «= Iman')
Lintil any one pixel may be removed [rom the
image.

The 8-connected algorithm i achieved by replac-
ing the py and vy tests of statements 7 and & by jg
and 15 tests,
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The no-disconnection test in the preceding image
(stutement 7) allows us not o erode the objects
mare strongly across seanning.

The no-disconnection lest in the current image
(statement 8) ensures not 1o cut ofl objects 2 pixels
wide.

Results:

Figure 4 shows several skeleions obtained rom a
hinary image (32:32) depicting the letter “*A’. Pro-
cosses were performed in 4-connected neighbour-
hood (Figures 4a to 4¢), in 8-connected neighbour-
hood (Figures 4 to 4] and with several convexity
threshold values (K= 34.5.6and 7).

The lowest threshold Ky = 3 produces branches
fromeach irrcgularicy of the contour

The highest threshold K, = 7 involves the 1otal
erosion of branches which have free ends. Only cir-
cular structures may be saved.

According to the authors, skeletons usually en-
countered in literature look like those obtained for
threshold values 4, 5 or 6.

4. Multi-level skeletonization

In this section, a multi-level {gray scale) image
will be treated like a reliel in which each pixel is rep-
resenting one altifude value,

MNaotations

Owr method follows from binary skeletomization.
Morions are substituted in this way:

binary image -+ multi-level image.
neighbour belonging —  neighbour located
Lo background lower than center,
neighbour belonging  —  neighbour located
Lo ehject higher than
cenler,
connection point — ol (or saddle
point |,
skeleton - ndge line:

Nevertheless, the ohject and back ground notions
{and thus the object contour notion) are meaning-
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Frpune 5. Multi-level image resulimg [rom smoothings in the bi-
nary mmuee showing the letter A"

less in terms of multi-level images. Because of this
important difference; the algorithm has to be modi-
fied: whereas. in binary images, only contour pixels
are processed, in multi-level images, all image pixels
have to be processed in cach iteration.

We define the center difference function A which
transforms the & neighbours by,,.... 0, into the val-
Hes ..., 8t

+1 ifh=za

0 otherwise.

'g"r'=n‘1”‘? d{b:]zﬂll':{

To these new neighbours {(d;), the defimtions of the
last seetion are applhied:

Py = E dys
I=0.2.4.8

Pg = E I.In.-
=0, )

Ta= E h‘ With hl =]
k=014, 6

i (dy = 1) and ((d, ., = D) or (dy . ; = 0)),

Yg= ¥ Iy withh =]
A=0,3,46

it (dy = 0) and ((d, .y = Vor{dy ., = 1)),

In multi-level skeletonization, erosion 15 per-
formed replacing the paxel with the mimimum of is

4 nearest neighbours (b, ba, by or b ).

In each itcration, we have to take care not to
erode cof pixels or pixels whose convexity is greater
than the piven threshold K.

Usually (Riazanoff et al, 1988) a col or saddle
point is “a point P which displays in its neighbour-
hood at least two groups of contiguous points lo-
cated lower than itsell. as well as two groups locat-
ed higher than i1sell™. This defimition may be

el
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refined wsing the crossing number: a ¢ol 15 & point Example;
whnse crossing number (74 in 4-connected neigh-
bourhood or py in S-conpected neighbourhood) is 351720 1
|
greater than |. 141315 2, 111
1300 8 0o
Example I convexity: K =2.
836761 100 Kot
5.
;g ;[]} ;; = :]{Il : Two images are pmcess.ed by the algorithm. One
R corresponds (o the result in the preceding iteration
-eonnected Reonnecied : :
i a3 (kmaff, f)). the other Lo the current image (Ima'(l,f)).
L B
Fa=2 te=2 4-connected skeletonization
l. Preceding and current images are imitialized to
Exarnple 2 eriginal image valucs
2. Repeat
20000 7 100 3. Foreach pixel (i, /) do
151617 1_ 0l 4. 1f the pixel is not & local minimum (w, = 1)
161518 101 .07 the convexily is fesy than the threshold
d-connected B-connected (K < K5)
iy = | it =4 B If the pixel is nol a eel 10 preceding image
=1 =3 (ra=1)
7. 10 the pixel is not a col in current image
The point of example 2 is a col in 8-connected (e =1)

neighbourhood bul not in d-connected neighbour-
hood.

As in the previous section, convexity is roughly
estimated by the maximum number of contiguous
points lower than the central point.

8. Then erode this pixel (Ima'(i,f) — Min
(B s, by b
endifl
endil
endil

convexity = 4

convexity = §

convexity = &

4-connected

8-connected

Figure & Multi-level skeleten {from Figure 51 achieved in dconnected neighbourhood (o.be) and n f-connected neighbeurhood (ded)
aned for several values of the threshald Ky =4, 5and 6
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endif
enddo
O, Current imnge becomes precedmg  (mape
(Tra s T’}
Untll any one pixel might be modified in current
iteraton.

The &-connected algorithm is achieved by replac-
inp they, and 4% tests of statements 6 and 7 by v
and 7y lests.

In comparison to the bipary skeletonization,
multi-level skeletonication Is more lime consuming
hecause all the pixels have to be processed in each
tteration. Given an image whose sige is L1, theo-
retically up to (L 1) fterations may be necessary
belore invarance 15 reached, This corresponds 1o
the step number required 1o propagate the local
minimum effects along the gréatest size of the imnge
{i.e. the 4-comnected diagonal length),

Rosulrs

Bench mark (Figure 5) results from 3 convolu-
tions on the binary image "A" processed m the pre-
vious section. The smoothing filter used 1s:

121
242
121

Multldevel skeletonization was performed in
d-connected neighbourhood (Figures fia, 6k and 6c)
and m fconnected neighbourhood (Figures 6d, be
and 0. In bath, the Ky convexity threshoeld was set
tovalues 4, 5 and 6.

Similarities between these resulis and those ob-
tained through binary skeletonization (Figures 4hb,
4cand 44 in 4-connecled neighbourhood and 4g, 4h
and 41 in B-conmected neighbourhood ) must be em-
phasized. In spite of distortion introduced by the
smoothing, a classical thresholding of those images
produces skeletons very close lo the latter ones
shown in Figlre 4.

N.B. Edge effects are due (0 an image edge imifia-
lization (set to maximal value) in order to keep the
ridges possibly connected to the image edge.
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5. Conclusions

The rationale about the curvature skeleton for-
malizes and extends other work of the authors. Im-
proving the convexity ¢stimator, it may be passible
lo determine some essential skeleton features from
the first object contour examination,

Using some aspects of this new mationale, we con-
cerved a parametrisable: skeletonization procedure
for binary and multi-level images,

This new method allows the user to eontrol hetter
the skeletonization provess in order o obtain pat-
lerns hest suited (o his needs.

Multi-level skeletonization may be a very inter-
esting tool. For instance, applied to the Digital Ele-
vation Maodel, it gives a new salution to the ridge
and valley lines extraction problem. By controlling
the iteration number, this process allows us o en-
hanee the shorpness of fdge lines and 10 erode mas-
sive ‘patterns’ while safeguarding their ‘connecti-
vity'
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