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Alsstract

Filting an elistic-grid ta contotr lnes {CLs) produces a surfoce with fighter mizrmediate contours thar the miisl ones; This
leaels o imtermed e contours fhat da not mateh the Inical ones lo tus paper, we propese o mcthod for correcting this defect, by
fitting the olastic grid w0 supplementory constraint lineshat eprespond aspproximately o (he temain murphn'l'ngl.-.' lieags {ricdees
and dorinagen). We extmit these lnes from o Deluanay aiangulation cansistem with the contour lines. We propose o colwerent
weighting system for the constraints mposed on the elastic grid. Fually, we show thata digital werein model (BTN anefict of
the type mentloned above eon be detectad by o 5|:n1!:|~1e entenon such as the conoor lengih, © 2003 Elsevier Boence BV All
plahis famerved.
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1. The intermediate contours prohlem

In the context of rekearch on the guality of digital
lermain models (DTMs), we have been led to recon-
sider the problem of interpolating regular gid models
from eomtenr tines (CLs), For this parpose, e have
already at our dispossl the elastic grid method (1" Au-
turae, 1978, which fits an elastie surface (0 flexible
plate) to o [inite sample of points. The fiest use of the
elasticity condition is to prevent, for any sample. the
Indeterminability of the problem; however, it also has
the advantage of prodlucing smoatl surlaces. The
elastic omd, which we teview in Section 2, is the
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diserete equivalent of the thin plate spline (Puchon,
[976), These methads are now widely vsed. notably
ifter (Girmson, 1981,

To 0t an elastic gud 10 o set of contour lines
(prlylines in faet), one must first obtain a finite pomt
sdmple for that data, Usually, these poidts are smapied
directly from the CLs, using a sufficiently small
sampling interval m order to make the sample repre-
septtive, Such o sample is satistving as long as the
check is limied at superposing the initial comours
with the eqrresponding comtours computed fram the
fitted surlace: the superposition is correct. The sample
is less satisfying if one drvws the intermediate con-
tours of the fied surface. In fact these contours are
straighter than the mitial ones, in the sense that they
do not follow the jmtial CLls; this phenomenon is
particulardy pereeptible at the ridee and drainage |nes.
Such intermediale contours are unaceeptable since
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their shape does sot follow the conteur line modelling
principle well known by careographers. according to
which oneshould alwnvs be able o consider that the
slope between two consecutivé or intermediate con-
turs Is regudar

Fiz, 1 illustrmes this problem for 2 syntheie sur-
fnce: Fig la-and b shows the mitgal comours and the
input sample. Fiz. 1o shows the fitted swrface con-
tours, with the intermediate conteurs too tizhe, Lastly,
in Fig, 1d, we show the intermediate: lmes following
the contour line modelling primeiple,

These Hows wre not specilic of elastic surfuces;
they. alsp occur-ot ndae and droinoge lines, when one
interpolates w surfoce wsing o tropgolation computed
ffom contour lines (Robinson, 194949,

An analysis of the positions where these flaws
peeur indicates that information constraining the sur-
foce fiting was missing at the ridpes ond dromages,
One i led to think that the comection of this problem
will mvolve ndding supplementary information to the
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interpolation method, We shall see in Seetion 3 that it
is possible 10 extract this additional miormation from
the contour lines, and to use it 0 construct @ cormrect
surface..

In sddition, n Seeton 4, we will show that the
presence of the above flaws may be easily detected,
by comparng the imtal and iwermediote contour
lengrihs.

2. Tmplementing the elastic orid
28 Deseription of the elgstic grid methid
An elastic grid fits a function HEXT), representing
the IN'TM, to o sef of sampling points
8= (X Va2l (4
The function H(AY) is assumed to be defined by

menns. of an interpolation fanction defined on o

i= Yot
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regulor square gnd In this paper, we assume il in be
piccewise bidubic. and given by:

¥y oM p _
mx.r:_L ~ t( ) (Fﬁr’)-.;l:zr

=1l =l

whare N, M are the numbers of columbps and rows
the grd. respectively, b s intecval, =, ) the heighis at
grid points (X0 F) ond L0 the piecewise polynomial
interpolation funetion

e =S+ I fi=]d] =1

)= L 300 =442 Wi o) <2 (3)

1} i [n)22

The clastic grid defings A as the funotion mimimiz-
ng:

) = FeamellH ) + Eiveatin ) (4
whers
Evpre(H) =3 willt(%, 1)) — 2 (5)
=1
angl
I S R .
Fayrmis () = i l Z = ST E AT SRR
=3 ]
N M
+ )_ Bty — Z2ar ¥ 2apst)
=1 =2
1 Nal M=l
= (o —F i
8 e=2 =2

H
— Eyp 1t I+:r+],l'|T]-]-

In Eg. (53 w; is o weight (w, = 0) associated to the
point (45120 oowhich we shall return in Section 2.3,
The intreduction of the torm Eyyuuee ensures the
existence of one single solution whatever the pomt
sample may be (see Section 2.4), whereas simply
minimizing Eompie leads @ an infinity of solutions
if ¥M=n (there are more grid points than sample
points),

The name “elastic grid” comes from the physical
interpretation that may be given to this methed. One
considers the mesh tp be matedalized by rgid bars
comecied o each other by elastic links. In absence of
extertinl forces, the burs are aligned 10 gach other and
this glastic surface models o plane, On the ather hand.,
the sampling points are atmeched 1o the imaginery
surface by vertical springs of rigidity w,. E(H) repre:

‘semts the energy of this strocture. Minimizing the

energy leads o the Miting surfhee: the struclure has
attained o position of equilibrium,

MNotice that the expressions (2, _ )y — 2=+
el Gar—1 — 2yt 2}z - iy
Ze o Wbl = Zebid— 1 Tes e )4, ure respective
ly, finite diffcrence approximations of the sccond
dervatives Hype (X)), Hyp (ALY ), Hee (XY ) In this
witty, Elpwnel ) 15 a Riemann sum approximeting
the ntegral

K(H) = ” 2, (X, Y) 22, (¥ ¥)

+ H (6, T)|dxdy. (6)

This integral chameterizes thin plate spline surfi-
s, sinee they are known o minimize the sxpression
E gt FT Y EKUH) (Duchon, 1976). An elastic grid
fitted. surface is thus a disorete approximation of o
thin plate spline surfave,

[t can be also shown that

HE (X,
=KX Y)+ K5 (7)

¥) 4 2 (X )+ Hpl X T

where Ky, Az wre the principal curvatures of the
surface H=H —T. This surface can be seen as the
difference between J and 8 mpgent plane ar (A4,
that s, Tev=EHE YRR 0 — X-Hely — ¥, where
Hy and Hy are the first derivatives of . This
means that K(f) 15 a measure of the “quadratic
mean™ curvature of surace 7. Smee T actually
contains all the curvature nformation of H=H+T
(the plane has no curvamre), one sees that K(H is
o measure of the curvature in #, This explains the
notation. E el for the quantity approximating
K(H),
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2.2, Differences with respect b the 1 dutwnre srethod

Compared to the method described in DXAutunie
(1978), we have miroduced three miodifications,
which will be discussed below.

2200 Revafion-invarian! cirviiure

In D" Aatme’s mathed, Eo et I did not con-
tain the term conesponding to My This means
B H)  approximated  the integral  [[Ha +
Hiy dXdY and not K{#N. Now, K{H)=] (K] +K37 dYdyY
seerns to be a mere accepiable measure, since K7 +K7
i 0 geometne property of the surfice, independent of
the conrdinate system used.

2.2.2. Pircewise hicubic mode!

[ Autume’s method also assumed the function
HUALY) to be precewise ilinear, Le. defined by means
of the lmear mterpolation function €4 f=sup(l,
| — i), mstead of the cuble interpolation finction
LA We prefier 1o define i by means of L' to obtain
a.L" surface (with continuous first derivatives), useful
for DTM applications that require slope computations,
On the other hand, there exists an mfinite family of
differentiable cubic mtcrpolation fimetions, indexed
by the parumeter a

230l = o3 1 i b= el =0
< 1] =2. (#)

i i |2

Fatd= % irfr| = Sul 1™ +8alt] i1

This parameier is nothing but the derivative {11
From this fomily, we choose the funeton U becanse
for any function flX) of class ¢ (with continuous
derivatives of order three), U=V _ s 18 the only
function that gives a O(A°) interpolation error; any
other 17, mives o €A} eror (see Appendix A),

o can be also shown that, {7 5 the only o for
which the mierpolation funchon g 15 exacl 1f 15 a8
pobynomial of degres 15 furthermore, it is also exact
for palynomials of degree 2 (Julien, 1994),

223 Inegualiny constraints on the grid peint eighs
At coch grid point, we impose the following
conditions on the surfice H:

Zile ) SH X, ¥r) = =00 o f) {9

wheie Z)(eN) Zafe) ure the heights ol the two Cls
swrounding the grid point (X, ¥

23 Weight assignuent

Assigming comect values for the weights w, is of
extreme importance for the elastic grid. In faet, since
the fittimg function HIXY) s defined by the property

A
E(H) =Y w[H(X, ¥) - Z[
=]

+ Foivare L) minimal, (10)

the weights w; repulate not only the mmportance
ghven to each point (0,2 with respect to the
others, but alse the importance of the swnpling
fitting eritetion £, with respect to the curvature

certerion B e To separate these twa toles, we

prefer to wiie

n
E(H)=2) " wlHiX, ¥ -2

—

=

"

+-Emn'nmm{H] with Iy = I. |__IH

=l

A regulates the importance of the Z‘ T
—Ze )" eriterion with respect 10 £ e the choice of
4 ia done manually by comparing the lengths of initial
contours with the mterpolated DTM contours (see
Section 4), However, the expedence shows that for
A=[107 10°). the elastic grid method gives acceptable
results (Goncalves, 1999, So from now we consider
its value to be fxed, and we worry about the relative
weights p,.

In the context of this paper, the set & is formed by
points sampled from the CLs (eventually enriched by
sdditional points, see Section 3), The most siralghtlor-
ward choite is o assign the same weight g o all
powts. This is however pot satisfving, sinee the
sample points distibution will be heterogencous,
due 0 the (rrepulor dismibution of the contours.
Asgsigning the smme weight 1o all prints woukl make
the fittime tunction & 1o deflect wwards the finely
sampled parts of the termin.

To avoid this inconvenience, the weights u, should
be smallerin regions where the sanple distobution is
dense, and higher in regions whére il is sperse. In
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other words, o weight g, must be amall when the point
pAL YY) 18 representntive of oosmall remon P and
high when il s represessative of 4 large one. This
leads vs o himk that g 85 a0 mereasing function of
arca A, of 1) g=14,) On the other hand, this fanction
ek o be additive, becauss iT we agpregate two
contiguons regions 1), V) into a single one 171 V), the
weight of this composed region must be the sum of
the weghts: 444 =4 =444, We thus
have j=ied,, and the normalization condition Liu=~1
implies w=1/34,

It remisins to define what the region ¥ represented
by pomnt gy is Itis nanaral w0 define it-as the set of
points peloser o p; than o uy other point gy, This set
i5 known 1o be a polyganal region ¥, and the family
[Fy i1 o.n | forms the “Voronol diagram™ associ-
pied to the point set,

To conclude, & coherent weight system wy can be
defined by:

A

#l
>4
=l

Wi=4

where A, is the area of polygon .
24 Minimizing the eriterion E7H)

Expanding Eg. (11) shows E0H) 10 be o quadmtic
functionnl M=) of =={oy g0 o Bne Do Smas -
Sy -y In matrix notation, this functional can
be written ay Jzh=' Az — 2b'z+d, where: A is a
positive, symmetrical. square and Sparse matris of

order NM, whose non-zero elements are computed
from the grid nodes coordinates sand from the weights
wy of the sample points; & 15 d vector whose NA
elements are computed from the grid nodes coordi-
nates of the sample points and rom Z, and the weights
w, of these poinis: o 15 a scalar computed from the
hiights 2, and from the weights w,

It can be shown that A 15 positive-definite if three
points exist in the sample that define o non-vertieal
plan (Gongalves, 1999, this condition is always
verifisd. A 15 thus ivernible, and the identiy =)=
(z=A "B Az~ A "bytd—b"A " 'b shows that
M=) reaches the minimal value d~8"A " 'h when
=— A 'B=0, or Az=b. We solve the equation A=—h
using the comjugate gradient method {Clarlet, 1944),

At this point, we check whether the constraints n
Eq. (%) are satisfied. For each zrid point (e.) whera
they ure not satisfied, we add o new sample point
(X YoZp) such that Z(c)= Zp=<Zaled), with a
weight wy sufficiently big to force the surfoce o go
through the point; we then sohve the new egquation
A==h., We repeat this operation untl the surfoce
satisfies all the ineguality constraints,

3. Solving the infermedinie contour problem:
constraints on ridges and drainages
A, Cherview!

In Section |, we have seen that a necessary con-

dition for solving the intermediate contour problem
was 10 constrain the surface by adding supplementary
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mformation. The most straightforward idea is to con-
strain the surface by adding new points to the initial
sumple in the tegions of the surface where the prob-
lert arises, that is, at sume morphologic lines (ridges
and drainages): the heights of these points must
maturlly verify the regular slope condition between
confour lines. Experience praves this idea to he well
founded, ne cun be seen in Fig. 2. where we use the
satme symthetic surface as o Fig | Fig 20 shows the
mitial contours with ridge and drainage lines added
and Fip. 2b shows the point sample; finally in Fig. 2,
we have the CLs computed on the Rted surluce, [t e
be gezn that the intermedinte lines are now coherent
with the: initinl ones, giving evidence that adding
sample points on ridee and drainage Tines s enongl
to oblain a corneet. surfaice,

Observe that supplementary information could be
addad to the £ pnee CHitER 0N, instead [ E—
such amempl is given in Bignone and Nonin (] 995),
where & e 18 enhanced o model the evosion of
natural lundforms. However, its mathematical stucy
becomes more comples.

We preler keeping the first jdea, given its efficctive-
ness {see Fig. 2) and the fact that it can immediatcly
be applicd witheut requiring any modifications o our
method. The remaining problem is of course how 1o
obtain the additiona] points on morphologic lines,
from the edntour lings only. This is however a prob-
lem for which solutions have already been proposed
in the literature {see helow).

3.2 Awioneaite extraction of vidge and draingge lines
frany conions

The ridges and drainages are implicitly contained
in the contour lines: they comespond approximately o
the stnps where the surfice has higher curvature than
elsewhere. In a topographic mup. these are imaginary
lines connecting points of maximal curvature. Among
the published automatie extroction methods, we may
distinguish three categories.

® Methods that eonncet poinls of mimamal curva:
b m consecutive contours (Brandli and Schneider,
19943 two consecutive contours may only be con-
nected by line segments, and thus connecting two
contours 15 only possible (without intersecting one of
thern) if the crest and valley are approximately straight:
these methods fuil fir curved crests and valleys.

s Methods based on-slope direction (uspect) esti-
mation. These use an auxiliary surface, defined by a
constramed  tiangulntion, to interpolate the uspeet

b

Fig 3. Properies of trmmgles moridge and driinags tegicng, (4) The
harizontal (iangle ABC s part of the Delonay triangulation; (b)
ABD s mot o poskible tiinele for the Delaunay tringalition
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between gontours. [n Aumann et al (1991), the skel-
eton lines {ndges and dramages) are buslt step by step
following an estinuted aspect; the dmwhback is that the
slope direction is difficult to interpolate in ndge and
drainage ragions where the triangles are horizontal.

o Medial axis-based methods, These use the notion
of a medial wxis to fnd the momhologie lmes in o
tagler contour line mmage (Tang, 1992); ndees and
dramages will comespond to the portions of the axis
located between the two parts of the smme contour;
this technique has the inconvenience thit #f requires o
higher resolution of the contour image © produde
aceeptable resulis,

320, Propesial of  new methad based on the nolion
af medial axis

Our approach olse mokes use of an auxiliary sur-
Faee, defined by o Delaunay tangulation bulll from a
particular set of poinis sempled from the ClLs, It 3
based on {und takes advantage of) the Gict that ridges

0 Sl

1000 m

and dradnages ane charsclerized by the presence of
homzontal trinngles. Indeed, we know this tnapgulation
to satisfy the empty circumeircle eriterion, Le., that the
cireumeirele of 4 tnangle containg mo other mangle
vertes. Let us then examine in Fig. 3 what tnkes place
on a ridge ordisinage, We see thal any trangele such as
ABD vonnecting two dilferent contours is impossible
since the circle 480 contains other pomis thon A, 8, 0,
AB¢C oo the otbier hand is b possible trinngle.

The above. meuments inplicitly assome that the
vertices of any (riangle are elther on the same c¢ontour,
or on two contours, bul never on three contowrs. This
is so if thig s a conforming trfangulation, that i, if {t
contains segments (and/or portions of these) of the
graph formed by the contours, A method for obtaining
such o tnangulation is given in Shewchuk (1996),

The basic principle of the method is then to find the
medial axis of each polyvgon resulting from mérging a
<et of contiguous horzental triengles. The medial axis
of a planar remion enclosed by n single polygonal chain

ﬂﬂ- 800 1000 m

Fie, 4 Awomate extection of constaint fnes from Cls: (0} detwl of the Delaynsy riangolition confiemm e CLa (h) detil of an estimsied
pedial axik (galid lel, und o oz sedial acis (dashed Tnel; (o OLs aod estimated medinl ases feanfting frons sar approoch; (d) initiad Gn held)

el dermnedime contours ol the wterpalated elastic geid DTHM,
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£ i the set of paints s interior to C that have more than
one ¢closest point among the points of € this axis 1 in
general 4 free line, Omee it has been computed, this
axis 15 adopted as a tidge or dminage lime.

For our purposes, we have no neéed to find the
exact medinl axis, [t is enough 1o approximate i by
the polygonal line connecting the midpoints in the
comimon sicles of two (rangles, This line 44 Aoished at
each extremity by the sepment that conneety 1l o the
opposed vertex in the triangle where the ling temii-
nales fsee Fig. 4b). Therefore, such 2 medial fine
nlwiays connects two contours, [Eremains 1o assign the
heteht of the pomis in the medial Hoe: we nterpolate
finearly by arc length. In the case where several
midial lines meet, we finst compute the heights in
the langest line (thal we take 1o be the main ling), and
then in the remntning branches:

Fig, 4 lllustrates the main steps in this procedure.
Fig. 4z shows a detnil of the conforming’ Delaumay
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trangulation; we compurte this tiangulation using the
method deseribed in Shewehuk (1996, Fig. 4b shows
a defnil of an estimated medial axiy (solid lne), und
the triue medial axis (dashed lme). Fig. 4e 35 o global
view of the OLs and the estimated mediol nxes; one
cim see that these axes are good approxmmations o the
ridge and drainage lines, Fig. 4d shows the CLs in the
iterpolated surface constrained by these lines, with
cotreet intermediale confours.

3.3 Experimennnd resulis for pedl tervain

In Fig. 3. we show the noplementation of the
prineiples given above, lor the cise of real teruin,
Fig. 5a shows the mitial contours with 8 S-m confour
Imterval oblained by photogrammetric survey, We
have extracted o representative sample from the con-
tovors, and fitted o surface to it using the elpstic grid
method. Fig. 5h represents the |-m contoor limes of

Fig, 5. Application i o rea] termmin (26000 by 2800 m - inszsed. (u) [ndbal CLs: (b DTM confvurs withoul constriing Fnes: [ initial CLs witl

eonslint lings; (d) PTM contours usng constmint [ings
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the fitted surface, with the intermediste contours too
tight (not matching the imitial contours); these mter-
mediate contours represent fmegular termain slopes
between the initial contours, [ailing 10 sutisly the
modelling contour Hne principle, Fig. 5S¢ shows the
“condmint Hnes™ obliined by o trlangulation con-
lrming lo the injtlal contours (some of these fines
approach te ridge and drainage Haes), On these lines,
wie have sompled an additional set of points, We have
then fMted & surface to the global sample by |he elastic
grid method, Fie. 5d shows the resulting contour
lines. The intermediate contours now perfectly match
the nitial contours g0 much that they become indis-
vermiible,

4. Fvaluation of the coherence belween indtial and
intermedizie contowrs

We now complement the visual evoluation of the
quality of Interméediate contours, by o nunmercl
evaluation. The et that the incomect mtenmediate
confours appenr o be tghler. thus shorter than the
imitial ones, syopeste thal crteria such a4 the “mean
curvatiore™ or the length of the contours should be
sble to detect thess artifacts.

This is confirmed hy Fig, 6, where we give tho
cantour length graphs. Fig. Ga corresponds to an
Ineorrect sorface; we see the length imepularty al
the initial contours compared to the inlermediate ones;
furthermore, the “U" shape between two initind ¢on-

tours shoves that the farther the mtermediate contours
are from the initial ones, the less their lenpths match.
Fig. 6b corresponds to o correcl surfice; lengths are
visibly more regulin, as expected, In the case of
perfectly hnear interpolation between contour lines,
WE LN even expect [ obliin s piecewise Hoear graph.
In thet, the terrain can be Joeally sssimilable to 4 cone
section where the length of the contours vanes line-
arly with height, Notice however that the interpolator
is nol linear, sinee the elastic gnd performs a smoother
imerpolation between contours. We will thus oblain a
smeother eraph than a plecewise lincar one.

5. Conclusions

The resulis, which we find satistving, obtained for
teal termin, show that adding supplementary points
(samipled rom the morphologic lines) o the indtial set
of points (sampled fiom the CLs) is o possible
salution 1o the intermediate contours problem. Funher
improvements should refine the morphologic lime
extrmction procedure. For instance, in the case of
asymmetrical crests and valleys, the morphelogic line
is 1ot o medial axis; icis slightly deflected wwards the
steepest side. Furthermore, one might extract these
lines dircctly from a Yoronel dingram. where they are
particularty visible. However, this proposition dis-
sprees with the previous one,

In addition, the gontour length seéems to ke uan
appropriste crlénon w0 detect the slope-related arte-

8000 | ' a | sooof — T ™
7000 700 :
£000 i s000} i 1 -
E so00 B E
i i il = 5000 — L
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E:wm B4000 i
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g 2001 = 3000
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CLragthe(m | B irica oLs ] ormees CL helgths (m)
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faets in o OTM. We have also tested the mean curvature
eriterion. Our first experiments (Gongalves, (000}
showe thot this s 2 very fine criterion, revealing uriefiets
even {or the neceptable DTM of Fig Sd, This criterion
seems to be able 1o detect “higher-order™ artelacts in
DTMs, bul thig b5 beyond our cartographic needs,
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Appendix A, Error upper bond for the cubic
interpolation

Let fix) be o sampled function at equally spaced
interpolation nodes k. (e=1,.. .0, and Tet

gle) = i fixaba (=) (A1)
=1

#.
b the interpolation [nction. We want (o estimale an
upper boundd for the mierpolation emor
e=[lg—f1=sup Jglx) —f(x)]. (A:2)

e,

In a neighborhood of x,, we approximate [ by its
third-order Taylor expansion;

Fix) =fx) + 1 {x)sh + :t—,,r“’ (v )ith %_.r'"'i.t,.}s-‘;ﬁ
: = 1 L PR
S et} =F%ed =T (3 )l + E.I"' (e — gf (% M

FUesi) =) 77 e -;_f" AL

. LT
-"Efw{.'l,.}fl

[(Xea) =Flx) +7 (6 )2h + ‘;‘f“’ (x 2%

R (A:3)

where s=(x — x VO, and /7 ™ and /™ the firsi, second
and third derivatives, respectively.

Let ve=fxx.. ] then 0=s5= 1. Since V), is ero
except inside the inferval [ — 2, +2, Eg. (A.1) reduces
1o at maost four non-zero Lemms:
glx) =l ) Vals + 1)+ [ ) Vals)

e ) Vals — 1) Hf (v Fals — 2).
(A4

By substituting Faq. (A3 o the abeve relation-
ship and collecting powers of 4, it follows that:

glx) = £(x) = (xe][(2a+ 12 +35" — ]|
J -
J'_?""jf"ll—xrj'“ﬂ-f-lj{—-f* 1_,‘1”
+%EP{-‘--J{—{1GH+3].F
+ (1204 3)¢" — 2as].

(ALS)

In particular, this eguaton shows thal the inlerpo-
Intion error is 0 when g=— 12 aod £is a polynomial of
degree =2,

Since 0= x= |, the polynomials in Bq. (A.5) are
bounded, this we have:

lglx) —fix) | b (n)| |2a+1]S;
"‘% [/ (x| | Ha+2] 8
h.1
+ [ [ 081+ 120+-1]8) (A.6)
with

| =287 4 30% — | =8 | =5 47| 285
I e =

Further, iF % ™ /™ wre hounded ovier R=| — -,
+mo] then

R Fa=-—1/2
T (AT)

A fa=—-1/2
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where O={ |/ || (&) &,.
: i
A=/ |3n.+|]3-;—'._;|]f[| | dor+2]|
W .
+?llf LES: + |2a+ 1}S)

and | /]| denotes sup{|fis)]; x=R],
Since supyg 2" — 35 +s[=10643), and since Tor
small h, 4 = [2a+1| /" |5, then:

%5!{!:]
=

|2u+:|%%l;: if as—1/2

iMa=—1/2
(A8)

£

Note that, for a= — /2 the inequality (Eq. {A.E,‘r_!
cannot be improved (1., there i nocinequality « = 487
valid tor all functions ), since it Kx)=v. for example,
we have the equality ¢ = 1:‘“‘ L, '

Finally, Eg. (A8) shows that for o= 1/2, U=
V| gives an interpalation ermor that goes to zero al
least as fast ns A, that is oo O¢hY) eror or conves-
pence rofe g5 Keys (1981, any other V, gives an
W) erm,
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