

20 years of oil routes

Serge RIAZANOFF

University of Marne-la-Vallée

serge.riazanoff@univ-mlv.fr
http://www-igm.univ-mlv.fr/~riazano/

VisioTerra

serge.riazanoff@visioterra.fr www.visioterra.fr

Table of contents

- Introduction
 - □ 20 years of Radar monitoring from ERS-1
 - ☐ Importance of oil pollutions
- > The "20 years of oil routes" project
 - ☐ Phases of the project
 - ☐ Preprocessing of scenes
 - □ Connex components determination
 - ☐ Connex components feature measurements
 - □ Classification
 - ☐ Thematic maps production
- Conclusions

esa Importance of oil pollutions

➤ Mexico Gulf - 20th April 2010

- Nigeria UNEP report August 2011
 - http://www.unep.org/dnc/CountryOperations/Nigeria/Environmental AssessmentofOgonilandreport/tabid/54419/Default.aspx

Observing the Earth with visible and radar

All black objects are not always oil!

Envisat / ASAR / WSM on 23/06/2008

VT-A003-SLD-014-E-01-00 - "20 years of oil routes" - Frascati, 8 December 2011

The "20 years of oil routes" project - Phases

- Algorithms development and qualification
 - ☐ Huge bibliography
 - ☐ Scene selection
 - ☐ Human photo-interpretation
 - Software development
 - Qualification
- Massive production
 - ☐ Agreement with ESA
 - ☐ Planned in 2012
- Cartography
 - Map production
 - □ Press releases

VT-A003-SLD-014-E-01-00 - "20 years of oil routes" - Frascati, 8 December 2011

Muman photo-interpretation

- Meteorological data and currents
 - ☐ Pressure (ECMWF)
 - ☐ Wind fields (ECMWF, KNMI, IFREMER)
 - ☐ Ocean currents (NOAA)

produced by VTEscape™ (VisioTerra)

Human photo-interpretation

Preprocessing of scenes

- Local stretching using local statistics
- Radar cross sections modeling
- > RMS equalization

The CMOD models (used for scaterrometers)

CMOD4

CMOD5 and CMOD5.N

$$\sigma_{CMOD5}^{0}(V, \phi, \theta) = b_0 (1 + b_1 \cos \phi + b_2 \cos 2\phi)^{1.6}$$

STITUTE Estimation minimizing the RMSE

Modeling the NRCS

$$E(S_k, M, A, V, \phi) = \sqrt{\frac{1}{\sum_{j=0}^{N-1} \delta(j)} \times \sum_{j=0}^{N-1} \delta(j) \times \left[\sigma_r(j) - A \times \sigma_M(V, \phi, m_{\theta}(j))\right]^2}$$

$$\Rightarrow A = \frac{\sum_{j=0}^{N-1} \delta(j) \times \sigma_r(j) \times \sigma_M(V, \phi, m_{\theta}(j))}{\sum_{j=0}^{N-1} \delta(j) \times \sigma_M(V, \phi, m_{\theta}(j))^2}$$

Retrieving A assuming a mean value V, ϕ

Solution with mean wind – proposed by Bertrand CHAPRON (IFREMER)

$$V = 7 \text{ m/s}$$

 $\phi = 45^{\circ}$

 \Rightarrow We retrieve $\vee x \cos(\phi)$

Retrieving A and V, ϕ

Exhaustive solution – proposed by VisioTerra

- Connex components determination
 - ☐ Hysteresis thresholding
 - ☐ Components aggregation
- Connex components measurements
 - ☐ Geometry features area, compacity, linearity, holes frequency...
 - ☐ Radiometry features mean, standard deviation, relative contrast...
 - ☐ Spatial frequency Occurrence image

- Classification
 - ☐ Three classes: -oil spill from boats, -oil spills from platforms
 - ☐ Training sets and confusion matrix
 - ☐ Cartographic production
- Occurrences and frequencies

- Collaboration VisioTerra University ESA
- > Development of new algorithms and softwares
 - □ wind direction and modulus
 - ☐ morphological (object oriented) classification
 - ☐ Occurrence and frequencies
- Dedicated to the environment
- Production of maps
 - □ oil routes (yearly since 1991)
 - ☐ oil spill pollutions from platforms (archive and real-time monitoring)

VTGeomorpho

☐ oil seeps frequencies (seeps DB)

Thank you