Exercise sheet 2

Exercise 2.1. Recall that two graphs G and H are *isomorphic* if the vertices of G can be renamed so that G becomes identical to H. Let $\mathsf{Iso} = \{\langle G, H \rangle \mid \mathsf{The graph } G \mathsf{ is isomorphic to } H\}$. Show that $\mathsf{Iso} \in \mathsf{NP}$.

Exercise 2.2. Let Factoring = { $\langle n, m \rangle \mid n$ has a factor k such that $1 < k \leq m$ }, where n and m are encoded in binary.

(a) Show that $\mathsf{Factoring} \in \mathsf{NP}$.

Consider the following algorithm for Factoring:

```
for k = 2 to m do
    if k divides n then
        return 1
return 0
```

(b) Why does this algorithm **not** show that Factoring is in P?

Exercise 2.3. Suppose that $A, B \in NP$. Can we conclude that $A \cup B \in NP$? that $A \cap B \in NP$?

Exercise 2.4. Prove the "universality of CNF", i.e., for any Boolean function $f: \{0, 1\}^n \to \{0, 1\}$, there exists a CNF formula ϕ on n variables, and of size at most $n \cdot 2^n$, such that

 $\phi(x_1,\ldots,x_n)$ is true $\Leftrightarrow f(x_1,\ldots,x_n) = 1.$

Hint: First consider a single tuple $(a_1, \ldots, a_n) \in \{0, 1\}^n$ such that $f(a_1, \ldots, a_n) = 0$ and find a clause $C(x_1, \ldots, x_n)$ such that $C(x_1, \ldots, x_n)$ is false iff $x_i = a_i$ for $1 \le i \le n$.

Exercise 2.5. Show that SAT \leq_p 3SAT.

More problems Let G = (V, E) be an undirected graph.

- A clique in G is a subset $S \subseteq V$ such that for all $u, v \in S, u \neq v$, we have $\{u, v\} \in E$.
- A vertex cover in G is a subset $S \subseteq V$ such that every edge in E has at least one vertex in S. More formally, $|\{u, v\} \cap S| > 0$ for every $\{u, v\} \in E$.
- A dominating set in G is a subset $S \subseteq V$ such that every vertex $v \in V$ is either in S or has a neighbour in S.

We consider the following decision problems:

 $\mathsf{Clique} = \{ \langle G, k \rangle \mid \text{the graph } G \text{ has a clique of size} \ge k \}$

 $\mathsf{VertexCover} = \{ \langle G, k \rangle \mid \text{the graph } G \text{ has a vertex cover of size} \le k \}$

 $\mathsf{DomSet} = \{ \langle G, k \rangle \mid \text{the graph } G \text{ has a dominating set of size } \leq k \}$

Exercise 2.6. Show that Clique, VertexCover, DomSet \in NP.

Exercise 2.7. Prove that Clique is NP-hard.

Exercise 2.8. Prove that $Clique \leq_p VertexCover$.

Exercise 2.9. Prove that VertexCover \leq_p DomSet.

Exercise 2.10. (\bigstar) A k-colouring of a graph G = (V, E) is an assignment $c: V \to \{1, 2, \dots, k\}$ such that if $\{u, v\} \in E$, then $c(u) \neq c(v)$. Let k-Col = $\{\langle G \rangle \mid G \text{ has a } k\text{-colouring}\}$.

 \triangleright Prove that $3SAT \leq_p 3$ -Col.

Hint: The colours correspond to True, False, and Other.

- Introduce two special vertices v_f and v_o and add an edge between them to force them to take different colours. The colours of these two vertices will indicate False and Other, respectively.
- For each variable x of the 3-CNF formula, introduce two vertices v_x and v'_x and add an edge between them. Also add an edge from each of these two vertices to the vertex v_o . Then, v_x will either take the same colour as v_f , indicating that x should be set to False, or it will take the colour different from v_f and v_o , representing the value True.
- For each clause, introduce additional vertices and edges to force at least one literal to become true in each clause.

Figure 1: Example with two variables x and y and assigned colours. x is False and y is True.

Exercise 2.11. (\bigstar) Let Primes = { $\langle n \rangle \mid n$ is a prime}. The Agrawal–Kayal–Saxena (AKS) primality test algorithm was announced in 2002 and shows that Primes \in P. Without using this result, show that Primes \in NP.

Use the following fact from number theory: A number n is prime iff for every prime factor q of n-1, there exists a number $a \in \{2, 3, \ldots, n-1\}$ such that $a^{n-1} \equiv 1 \pmod{n}$ but $a^{(n-1)/q} \not\equiv 1 \pmod{n}$.