
Python
IPython

Stéphane Vialette

LIGM, Université Paris-Est Marne-la-Vallée

October 5, 2011

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 1 / 18



Outline

1 Introduction

2 IPython in action

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 2 / 18



Introduction

Outline

1 Introduction

2 IPython in action

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 3 / 18



Introduction

Functions

Description

The goal of IPython is to create a comprehensive environment for
interactive and exploratory computing. To support this goal, IPython has
two main components:

An enhanced interactive Python shell.

An architecture for interactive parallel computing.

All of IPython is open source (released under the revised BSD license).

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 4 / 18



Introduction

Highlights

Tab completion

TAB-completion, especially for attributes, is a convenient way to explore
the structure of any object youre dealing with. Simply type
object name.<TAB> and a list of the objects attributes will be printed.

Tab completion also works on file and directory names, which combined
with IPythons alias system allows you to do from within IPython many of
the things you normally would need the system shell for.

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 5 / 18



Introduction

Highlights

Explore your objects

Typing object name? will print all sorts of details about any object,
including docstrings, function definition lines (for call arguments) and
constructor details for classes.

The magic commands %pdoc, %pdef, %psource and %pfile will
respectively print the docstring, function definition line, full source code
and the complete file for any object (when they can be found). If
automagic is on (it is by default), you dont need to type the % explicitly.

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 6 / 18



Introduction

Highlights

The %run magic command

The %run magic command allows you to run any python script and load
all of its data directly into the interactive namespace.

Since the file is re-read from disk each time, changes you make to it are
reflected immediately (in contrast to the behavior of import).

%run also has special flags for timing the execution of your scripts (-t)
and for executing them under the control of either Pythons pdb debugger
(-d) or profiler (-p).

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 7 / 18



Introduction

Highlights

Use the output cache

All output results are automatically stored in a global dictionary named
Out and variables named 1, 2, etc. alias them.

For example, the result of input line 4 is available either as Out[4] or as
4.

Additionally, three variables named , and are always kept updated
with the for the last three results. This allows you to recall any previous
result and further use it for new calculations.

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 8 / 18



Introduction

Highlights

Input cache

A similar system exists for caching input.

All input is stored in a global list called In, so you can re-execute lines 22
through 28 plus line 34 by typing exec In[22:29]+In[34] (using
Python slicing notation).

If you need to execute the same set of lines often, you can assign them to
a macro with the %macro function.

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 9 / 18



IPython in action

Outline

1 Introduction

2 IPython in action

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 10 / 18



IPython in action

IPython in action

Running IPython

$ ipython

Python 2.6.5 (r265:79063, Apr 16 2010, 13:09:56)

Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.

%quickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ’object’. ?object also works, ?? prints more.

In [1]:

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 11 / 18



IPython in action

IPython in action

Exploring objects

In [1]: l?

Object ‘l‘ not found.

In [2]: l = [1, 2, 3]

In [3]: l?

list

Base Class:<type ’list’>

String Form:[1, 2, 3]

Namespace: Interactive

Length: 3

Docstring: list() -> new empty list

list(iterable) -> new list initialized from iterable’s items

In [4]:

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 12 / 18



IPython in action

IPython in action

In

In [1]: print ’statement 1’

statement 1

In [2]: print ’statement 2’

statement 2

In [3]: print ’statement 3’

statement 3

In [4]: print ’statement 4’

statement 4

In [5]: print In[0]

In [6]: print In[1]

print ’statement 1’

In [7]:

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 13 / 18



IPython in action

IPython in action

In

In [6]: exec In[1]

statement 1

In [7]: exec In[1] + In[3:5]

statement 1

statement 3

statement 4

In [8]: exec In[1:5]

statement 1

statement 2

statement 3

statement 4

In [9]: print In[6]

exec In[1]

In [10]: exec In[6]

statement 1

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 14 / 18



IPython in action

IPython in action

Store
In [1]: x = 1

In [2]: x+1

Out[2]: 2

In [3]: x+2

Out[3]: 3

In [4]: x+3

Out[4]: 4

In [5]: _, __, ___

Out[5]: (4, 3, 2)

In [6]: _, __, ___

Out[6]: ((4, 3, 2), 4, 3)

In [7]: _, __, ___

Out[7]: (((4, 3, 2), 4, 3), (4, 3, 2), 4)

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 15 / 18



IPython in action

IPython in action

Store
In [1]: x = 1

In [2]: _

Out[2]: ’’

In [3]: x+1

Out[3]: 2

In [4]: 1 + _

Out[4]: 3

In [5]: _ + __

Out[5]: 5

In [6]: _ + __ + ___

Out[6]: 10

In [7]: _, __, ___

Out[7]: (10, 5, 3)

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 16 / 18



IPython in action

IPython in action

Macro
In [1]: print ’statement 1’

statement 1

In [2]: print ’statement 2’

statement 2

In [3]: print ’statement 3’

statement 3

In [4]: %macro mymacro 1-3

Macro ‘mymacro‘ created. To execute, type its name (without quotes).

Macro contents:

print ’statement 1’

print ’statement 2’

print ’statement 3’

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 17 / 18



IPython in action

IPython in action

Macro
In [5]: mymacro

------> mymacro()

statement 1

statement 2

statement 3

In [9]: mysecondmacro = mymacro

In [10]: mysecondmacro

-------> mysecondmacro()

statement 1

statement 2

statement 3

In [14]: type(mymacro)

Out[14]: <type ’instance’>

In [15]:

Stéphane Vialette (LIGM UPEMLV) Python IPython October 5, 2011 18 / 18


	Introduction
	IPython in action

