Haskell
Starting Out

http://igm.univ-mlv.fr/~vialette/7section=teaching

Stéphane Vialette
LIGM, Université Paris-Est Marne-la-Vallée

December 16, 2014

-
1

»

http://igm.univ-mlv.fr/~vialette/?section=teaching

Ready, set, go!

AND THIS IS HOW
WE WRITE HELLO WORLD

~__ ghci>

&Y

Ready, set, go!

ghc’s interactive mode

barbalala: vialette: ghci

GHCi, version 7.8.3: http://www.haskell.org/ghc/
:? for help

Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude> :set prompt "ghci> "

ghci> 1 + 2

3

ghci> 3 * 4

12

ghci> 5 - 6

=il

ghci> 7 / 8

0.875

Ready, set, go!

ghc's interactive mode

ghci> True && True

True

ghci> False || True
True

ghci> not False

True

ghci> not (True && True)
False

ghci>
True

ghci>
False
ghci>
True

ghci>
False
ghci>
False

L=
1 ==

1 /=2

1 /=1
&& True)

Ready, set, go!

ghc's interactive mode

Ready, set, go!

ghc’s interactive mode

ghci> 1 == True

<interactive>:17:1:
No instance for (Num Bool) arising from the literal '1'
In the first argument of '(==)', namely '1'

In the expression: 1 == True
In an equation for 'it': it = 1 == True
ghci>

»

Functions

ghc’s interactive mode

* is a function that takes two numbers and multiplies them.

As you've seen, we call it by sandwiching it between them. This is
what we call an infix function.

Most functions that aren’t used with numbers are prefix functions.

»

ghci>

ghci>
succ

ghci>
ghci>

ghci>

min °:

ghci>
ghci>

ghci>

max ::

ghci>

Functions

ghc’s interactive mode

succ 1

:t succ

:: Enum a => a -> a

min 2 1

:t min
Ord a => a > a -> a

max 2 1

:t max
Ord a => a > a —> a

»

Functions

ghc’s interactive mode

Function application has the highest precedence of them all. What
that means for us is that these two statements are equivalent.

ghci> succ 9 + max 5 4 + 1
16

ghci> (succ 9) + (max 5 4) + 1
16

ghci>

Baby's first functions

barbalala:src vialette: cat baby.hs

doubleMe x = x + x

barbalala:src vialette: ghci

GHCi, version 7.8.3: http://www.haskell.org/ghc/
:? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Prelude> :1 "baby"

[1 of 1] Compiling Main (baby.hs, interpreted)

Ok, modules loaded: Main.
*Main> doubleMe 5

10

*Main> doubleMe 100.0
200.0

*Main>

Baby's first functions
doubleUs x y = 2*x + 2%y

*Main> doubleUs 4 9

26

*Main> doubleUs 2.3 34.2

73.0

*Main> doubleUs 28 88 + doubleMe 123
478

*Main> doubleUs doubleMe 2 doubleMe 10
<interactive>:11:1:
No instance for (Num ((a0 -> a0) -> a0 -> a0))
arising from a use of 'it'
In a stmt of an interactive GHCi command: print it
*Main> doubleUs (doubleMe 2) (doubleMe 10)
48

& *Main>

Baby's first functions

doubleMe x = x + x
doubleUs x y = doubleMe x + doubleMe y

This is a very simple example of a common pattern you will see
throughout Haskell. Making basic functions that are obviously
correct and then combining them into more complex functions

Baby's first functions

Write a function that multiplies a number by 2 but only if that
number is smaller than or equal to 100 because numbers bigger
than 100 are big enough as it is!

doubleSmallNumber x = if x > 100
then x
else 2x*x

The difference between Haskell's if statement and if statements in
imperative languages is that the else part is mandatory in Haskell.

Baby's first functions

Another thing about the if statement in Haskell is that it is an
expression.

An expression is basically a piece of code that returns a value.

5 is an expression because it returns 5, 1+2 is an expression, x+y is
an expression because it returns the sum of x and y.

Because the else is mandatory, an if statement will always return
something and that’s why it's an expression.

If we wanted to add one to every number that's produced in our
previous function, we could have written its body like this:

doubleSmallNumber' x = (if x > 100 then x else 2%x) + 1

»

Baby's first functions

Note the ' at the end of the function name.

That apostrophe doesn't have any special meaning in Haskell's
syntax. It's a valid character to use in a function name.

We usually use ' to either denote a strict version of a function
(one that isn't lazy) or a slightly modified version of a function or
a variable.

Because ' is a valid character in functions, we can make a function
like this:

conan0'Brien = "It's a-me, Conan O'Brien!"

e

L\

An introduction to lists

Prelude> let lostNumbers = [4,8,15,16,23,42]
Prelude> lostNumbers

[4,8,15,16,23,42]

Prelude> :t lostNumbers

lostNumbers :: Num t => [t]

Prelude>

Prelude> [1,2,3,4] ++ [9,10,11,12]
[1,2,3,4,9,10,11,12]

Prelude> "hello" ++ " " ++ "world"
"hello world"

Prelude> ['w','0o'] ++ ['o','t"']
"woot"

Prelude>

An introduction to lists

When you put together two lists (even if you append a singleton
list to a list, for instance: [1,2,3] ++ [4]), internally, Haskell
has to walk through the whole list on the left side of ++.

That's not a problem when dealing with lists that aren't too big.

However, putting something at the beginning of a list using the :
operator (also called the cons operator) is instantaneous:

Prelude> 'A':" SMALL CAT"
"A SMALL CAT"

Prelude> 5:[1,2,3,4,5]
[5,1,2,3,4,5]

Prelude>

Notice how : takes a number and a list of numbers or a character
and a list of characters, whereas ++ takes two lists.

An introduction to lists

If you want to get an element out of a list by index, use !!. The
indices start at 0.

Prelude> [1,2,3,4,5] !! O

1

Prelude> "Hello" !! 1

lel

Prelude> [1,2,3,4,5] !! (-1)

*** Exception: Prelude.(!!): negative index
Prelude> [1,2,3,4,5] !! &5

x%* Exception: Prelude.(!!): index too large
Prelude>

»

An introduction to lists

Lists can also contain lists. They can also contain lists that
contain lists that contain lists ...

Prelude> let 1 = [[1,2,3],[4,5,6],[7,8,9]]
Prelude> 1
((1,2,31,104,5,6]1,[7,8,9]]
Prelude> :t 1

1 :: Num t => [[t]]

Prelude> 1 ++ [[6,6,6]]
((1,2,31,I[4,5,6]1,[7,8,9],[6,6,6]1]
Prelude> [0,0,0]:1
(fo,o0,01,I11,2,31,[4,5,6]1,[7,8,9]1]
Prelude> 1 !! 1

[4,5,6]

Prelude>

An introduction to lists

Lists can be compared if the stuff they contain can be compared.

When using <, <=, > and >= to compare lists, they are compared in
lexicographical order. First the heads are compared. If they are
equal then the second elements are compared, etc.

Prelude> [3,2,1] > [2,1,0]
True

Prelude> [3,2,1] > [2,10,100]
True

Prelude> [3,4,2] > [3,4]
True

Prelude> [3,4,2] > [2,4]

True

Prelude> [3,4,2] == [3,4,2]
True

= Prelude> \
o e

An introduction to lists

Some basic functions that operate on lists

head takes a list and returns its head. The head of a list is
basically its first element.

Prelude> head "Hello"

IHI

Prelude> head [1,2,3,4,5]
1

Prelude> head []

% Exception: Prelude.head: empty list
Prelude>

»

An introduction to lists

Some basic functions that operate on lists

tail takes a list and returns its tail. In other words, it chops off a
list’s head.

Prelude> tail "Hello"
"ello"

Prelude> tail [1,2,3,4,5]
[2,3,4,5]

Prelude> tail []

*** Exception: Prelude.tail: empty list
Prelude>

»

@

An introduction to lists

Some basic functions that operate on lists

last takes a list and returns its last element.

Prelude> last
Iol

Prelude> last
5

Prelude> last

**x* Exception:

Prelude>

"Hello"
[1,2,3,4,5]

(]
Prelude.last: empty list

»

An introduction to lists

Some basic functions that operate on lists

init takes a list and returns everything except its last element.

Prelude> init "Hello"

"Hell"

Prelude> init [1,2,3,4,5]

[1,2,3,4]

Prelude> init []

*%% Exception: Prelude.init: empty list
Prelude>

»

An introduction to lists

»

length takes a list and returns its length, obviously.

Prelude>
5
Prelude>
5
Prelude>
0
Prelude>

An introduction to lists

Some basic functions that operate on lists

length "Hello"
length [1,2,3,4,5]

length []

»

An introduction to lists

Some basic functions that operate on lists

null checks if a list is empty. If it is, it returns True, otherwise it
returns False.

Use this function instead of xs == [] (if you have a list called xs)

Prelude> null "hello"
False

Prelude> null [1,2,3,4,5]
False

Prelude> null []

True

Prelude>

»

An introduction to lists

Some basic functions that operate on lists

reverse reverses a list.

Prelude> reverse "hello"
"olleh"

Prelude> reverse [1,2,3,4,5]
[5,4,3,2,1]

Prelude> reverse []

(]

Prelude>

e

L\

An introduction to lists

Some basic functions that operate on lists

take takes number and a list. It extracts that many elements from
the beginning of the list.

Prelude> take 0 [1,2]
(1
Prelude> take 1 [1,2]
[1]
Prelude> take 2 [1,2]
[1,2]
Prelude> take 3 [1,2]
[1,2]
Prelude> take 0 []
(]
Prelude> take 1 []
(1

{@ Prelude>

An introduction to lists

Some basic functions that operate on lists

drop works in a similar way, only it drops the number of elements
from the beginning of a list.

Prelude> drop 0 [1,2,3]
[1,2,3]

Prelude> drop 1 [1,2,3]
[2,3]

Prelude> drop 2 [1,2,3]
[3]

Prelude> drop 3 [1,2,3]
]

Prelude> drop 4 [1,2,3]
(]

Prelude>

»

An introduction to lists

Some basic functions that operate on lists

maximum takes a list of stuff that can be put in some kind of order
and returns the biggest element.

minimum returns the smallest.

Prelude> minimum [3,4,2,5,1,6,9,8,7]

1

Prelude> maximum [3,4,2,5,1,6,9,8,7]

9

Prelude> minimum []

*** Exception: Prelude.minimum: empty list
Prelude> maximum []

*** Exception: Prelude.maximum: empty list
Prelude>

»

An introduction to lists

Some basic functions that operate on lists

sum takes a list of numbers and returns their sum.

product takes a list of numbers and returns their product.

Prelude> sum []

0

Prelude> sum [1,2,3,4,5]

15

Prelude> product []

1

Prelude> product [1,2,3,4,5]
120

Prelude> let fact n = product [1..n]
Prelude> fact 5

120

. Prelude>

»

An introduction to lists

Some basic functions that operate on lists

elem takes a thing and a list of things and tells us if that thing is
an element of the list.

It's usually called as an infix function because it's easier to read
that way.

Prelude> 3 “elem™ [2,1,3,5,4]
True

Prelude> elem 3 [2,1,3,5,4]
True

Prelude> 6 “elem” [2,1,3,5,4]
False

Prelude> elem 6 [2,1,3,5,4]
False

Prelude>

»

Texas ranges

»

Texas ranges

Prelude> [1,2,3,4,5,6,7,8,9,10]
[1,2,3,4,5,6,7,8,9,10]

Prelude> [1..10]
[1,2,3,4,5,6,7,8,9,10]

Prelude> [10..1]

[]

Prelude> [1.0..10.0] -- don't do this!
(1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0]
Prelude> ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"
Prelude> ['A'..'Z']
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Prelude>

»

e

L\

Texas ranges

Ranges are cool because you can also specify a step.

Prelude> [10,13..20]

[10,13,16,19]

Prelude> ['a','e'..'z']

"aeimquy"

Prelude> [1,2,4,8,16..100] -- ezpecting the powers of 2 !
<interactive>:181:12: parse error on input '..''

Prelude> [20,18..5]

[20,18,16,14,12,10,8,6]

Prelude>

e

L\

Texas ranges

Ranges are cool because you can also specify a step.

Prelude> [10,13..20]

[10,13,16,19]

Prelude> ['a','e'..'z']

"aeimquy"

Prelude> [1,2,4,8,16..100] -- ezpecting the powers of 2 !
<interactive>:181:12: parse error on input '..''

Prelude> [20,18..5]

[20,18,16,14,12,10,8,6]

Prelude>

Texas ranges

Do not use floating point numbers in ranges!

Prelude> [0.1, 0.3 .. 1]

[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]
Prelude> [1, 0.8 .. 0]
[1.0,0.8,0.6000000000000001,0.40000000000000013,

0.20000000000000018,2.220446049250313e-16]
Prelude>

»

Texas ranges

You can also use ranges to make infinite lists by just not specifying
an upper limit.

Because Haskell is lazy, it won’t try to evaluate the infinite list
immediately.

Prelude> let 1 = [1..]

Prelude> :t 1

1 :: (Num t, Enum t) => [t]

Prelude> take 10 1

[1,2,3,4,5,6,7,8,9,10]

Prelude> 1 -- don't do thts
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,
21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,
38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,59,60,61,62,63, ...

»

I'm a list comprehension

I'm a list comprehension

A basic comprehension for a set that contains the first ten even
natural numbers is

{2x | x e N, x < 10}

In Hashell

Prelude> [2*x | x <- [1..10]]
[2,4,6,8,10,12,14,16,18,20]
Prelude>

»

g:>

I'm a list comprehension

Prelude> [x*2 | x <- [1..10], x*2 >= 12]

[12,14,16,18,20]

Prelude> [x | x <- [50..100], x “mod" == 3]
[52,59,66,73,80,87,94]

Prelude> :{ -- starts multiline-input mode
Prelude| let ab xs = [if x<10 then "a" else "b" |
Prelude| x <- xs, odd x]

Prelude| :} -- terminates multiline-input mode

Prelude> ab [7..13]

["a","a","b","b"]

Prelude> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20]

Prelude>

N

I'm a list comprehension

Prelude> [x+y | x <- [1,2,3], y <- [100,200,300]]
[101,201,301,102,202,302,103,203,303]

Prelude> :{

Prelude| [x+y | x <- [1,2,3], y <- [100,200,300],
Prelude| x+y > 200]

Prelude| :}

[201,301,202,302,203,303]

Prelude> :{

Prelude| [x+y | x <- [1,2,3], y <- [100,200,300],
Prelude| x+y > 200, x+y < 300]

Prelude| :}

[201,202,203]

Prelude>

I'm a list comprehension

Prelude> let length' xs = sum [1 | _ <- xs]
Prelude> length' []

0

Prelude> length' [1..100]

100

Prelude> :{

Prelude| let removeNonUppercase s = [c |
Prelude| c <- st,
Prelude| c “elem’
Prelude| :}

Prelude> removeNonUppercase "Hahaha! Ahahaha!"
IIHAII

Prelude> removeNonUppercase "IdontLIKEFROGS"
"ILIKEFROGS"

Prelude>

[rar..'Z']]

»

I'm a list comprehension

Nested list comprehensions are also possible if you're operating on
lists that contain lists.

Prelude> let xxs = [[1,2,3],[4,5],[6,7,8,9,10]]
Prelude> [[x | x <- xs, even x] | xs <- xxs]

21, [4]1,[6,8,10]]

Prelude> [[x | x <- xs, even x] | xs <- xxs, length' xs > 2]
(21, [6,8,1011]

Prelude>

»

Tuples

»

=) = = z 9ac

Tuples

In some ways, tuples are like lists — they are a way to store several
values into a single value.

However, there are a few fundamental differences. A list of
numbers is a list of numbers. That's its type and it doesn’t matter
if it has only one number in it or an infinite amount of numbers.
Tuples, however, are used when you know exactly how many values
you want to combine and its type depends on how many
components it has and the types of the components.

They are denoted with parentheses and their components are
separated by commas.

Another key difference is that they don’'t have to be homogenous.
Unlike a list, a tuple can contain a combination of several types.

»

Tuples

Prelude> :t (1,2)
(1,2) :: (Num t1, Num t) => (t, t1)
Prelude> :t (1,2,3)
(1,2,3) :: (Num t2, Num t1, Num t) => (t, t1, t2)
Prelude> [(1,2),(8,11),(4,5)]
[(1,2),(8,11),((4,5)]
Prelude> [(1,2),(8,11,5),(4,5)]
<interactive>:68:8:
Couldn't match expected type '(t, t3)'
with actual type '(t0, t1l, t2)'
Relevant bindings include
it :: [(t, t3)] (bound at <interactive>:68:1)
In the expression: (8, 11, 5)
In the expression: [(1, 2), (8, 11, 5), (4, 5)]

In an equation for 'it': it = [(1, 2), (8, 11, 5), (4, 5)]

Prelude>

»

Tuples

Prelude> :t ('a', 1, "hello")
(‘a', 1, "hello") :: Num t => (Char, t, [Char])
Prelude> (1, 2) < (3, 4)
True
Prelude> (1, 2) < (0, 1)
False
Prelude> (1, 2, 3) < (1, 2)
<interactive>:74:13:
Couldn't match expected type '(tO, til, t2)''
with actual type '(t3, t4)"''
In the second argument of '(<)', namely '(1, 2)'
In the expression: (1, 2, 3) < (1, 2)
In an equation for 'it': it = (1, 2, 3) < (1, 2)
Prelude>

»

Tuples

Two useful functions that operate on pairs

Prelude> fst ('a', 2)
lal
Prelude> snd ('a', 2)
2
Prelude> fst ('a', 2, "hello")
<interactive>:80:5:
Couldn't match expected type '(a, b0)'
with actual type '(Char, tO, [Char])'
Relevant bindings include it :: a (bound at <interactive>:8
In the first argument of 'fst', namely '('a', 2, "hello")'
In the expression: fst ('a', 2, "hello")
In an equation for 'it': it = fst ('a', 2, "hello")
Prelude>

»

Tuples

Two useful functions that operate on pairs

Prelude> fst ('a', 2)
lal
Prelude> snd ('a', 2)
2
Prelude> fst ('a', 2, "hello")
<interactive>:80:5:
Couldn't match expected type '(a, b0)'
with actual type '(Char, tO, [Char])'
Relevant bindings include it :: a (bound at <interactive>:8
In the first argument of 'fst', namely '('a', 2, "hello")'
In the expression: fst ('a', 2, "hello")
In an equation for 'it': it = fst ('a', 2, "hello")
Prelude>

»

Tuples

zip

N

Tuples

zip

Prelude> zip [1,2,3,4] ['a','b','c','d']
[(1,'a"),(2,'D'),(3,'c"),(4,'d")]

Prelude> zip [1,2,3,4,5] ['a','b','c','d"]
[(1,'a"),(2,'b"),(3,'c"),(4,'d")]

Prelude> zip [1,2,3,4] ['a','b','c','d','e']
[(1,'a"),(2,'p"),(3,'c"),(4,'d")]

Prelude> zip [1,2,3,4] ['a'..]
[(1,'a"),(2,'b"),(3,'c"),(4,'d")]

Prelude> zip [1..] ['a','b','c','d']
[(1,'a"),(2,'b"),(3,'c"),(4,'d")]

Prelude> zip [1..] ["apple", "orange", "cherry", "mango"]
[(1,"apple"),(2,"orange"), (3,"cherry"), (4, "mango")]
Prelude>

»

Right triangle

Which right triangle that has integers for all sides and all sides
equal to or smaller than 10 has a perimeter of 247

G

Right triangle

Prelude> :{

Prelude| let triangles = [(a,b,c) |

Prelude| a <- [1..10], b <- [1..10],
Prelude| c <- [1..10]]

Prelude| :}

Prelude> :{

Prelude| let rightTriangles = [(a,b,c) |

Prelude| (a,b,c) <- triangles,
Prelude| a"2 + b2 == c"2]
Prelude| :}

Prelude> :{

Prelude| let rightTriangles' = [(a,b,c) |

Prelude| (a,b,c) <- triangles,
Prelude| a2 + b2 == c"2,
Prelude| a+b+c == 24]

Prelude| :}

Prelude> rightTriangles'
i; [(6,8,10),(8,6,10)]

% Prelude>

»

Donel

ABSTRACTION
LAZY
STRONG-TYPED

ELEGANCE
]

