
Haskell
Functional Programming

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Paris-Est Marne-la-Vallée

November 11, 2016

http://igm.univ-mlv.fr/~vialette/?section=teaching

Everybody’s talking about functional programming

Recently, functional programming (FP) has getting a lot of
attention.

• F# is being developed at Microsoft Developer Division and is
being distributed as a fully supported language in the .NET
framework.

• Clojure, which runs on the JVM, was introduced in 2007.

• Haskell, Erlang and Sclala have recently gained much
popularity.

• Elixir is the new kid on the block.

Everybody’s talking about functional programming

There are 4 primary reasons for FP’s newly established popularity:

1. FP offers concurrency/parallelism with tears.

2. FP has succint, concise and understandable syntax.

3. FP offers a different programming perspective.

4. FP is becoming more accessible.

FP is fun!

FP offers concurrency/parallelism with tears

Moore’s law has held up for years but it is starting to reach its
limits due to physical constraints. Chips aren’t getting much faster
but multi-core, hyper-threaded, etc machines are becoming far
more commonplace.

If you want to take advantages of your machine’s full processing
power, you can no longer rely on continuous chip advances alone.
You need to really start thinking about concurrency, parallelism
and multi-threaded if you wish to better performance and use all
available CPUs.

Of course, these are not easily implemented concepts so coders
need to start considering ways (like FP!) to make these approaches
more available and practical.

FP has succint, concise and understandable syntax

The abstract nature of FP leads to considerably simpler programs.
It also supports a number of powerful new ways to structure and
reason about programs.

x = x+1; We understand this syntax because we often resort to
telling the computer what to do, but this equation really makes no
sense at all!

Ask, don’t tell.

FP offers a different programming perspective

For me, the most important thing about FP isn’t that functional
languages have some particular useful language features, but that
it allows to think differently and simply about problems that you
encouter when designing and writing applications. This is much
more important than understanding any new technology or a
programming language.

Tomas Petricek
http://tomasp.net/blog/

http://tomasp.net/blog/

FP is becoming more accessible

More language options.

Tooling, IDEs.

Supports.

Books.

Blogs, podcasts and screencasts.

Conferences and user groups.

FP is becoming more accessible

Key FP concepts

High order functions, map, filter reduce (i.e., fold).

Recursion.

Pattern matching.

Currying.

Lazy/eager evaluation.

Strict/non-strict semantics.

Type inference.

Monads.

Continuations.

Closures.

Haskell

Haskell

Haskell is a standardized, general-purpose purely functional
programming language, with non-strict semantics and strong static
typing.

It is named after logician Haskell Curry.

Haskell

What can Haskell offer the programmer?

Purity: Unlike some other functional programming languages
Haskell is pure. It doesn’t allow any side-effects. This is probably
the most important feature of Haskell.

Laziness: Haskell is lazy (technically speaking, it’s ”non-strict”).
This means that nothing is evaluated until it has to be evaluated.

Strong typing: Haskell is strongly typed, this means just what it
sounds like. It’s impossible to inadvertently convert a Double to
an Int, or follow a null pointer. Unlike other strongly typed
languages types in Haskell are automatically inferred.

Elegance: Another property of Haskell that is very important to
the programmer, even though it doesn’t mean as much in terms of
stability or performance, is the elegance of Haskell. To put it
simply: stuff just works like you’d expect it to.

Haskell and bugs

Pure. There are no side effects.

Strongly typed. There can be no dubious use of types. And No
Core Dumps!

Concise. Programs are shorter which make it easier to look at a
function and ”take it all in” at once, convincing yourself that it’s
correct.

High level. Haskell programs most often reads out almost exactly
like the algorithm description. Which makes it easier to verify that
the function does what the algorithm states.

Memory managed. There’s no worrying about dangling pointers,
the Garbage Collector takes care of all that.

Modular. Haskell offers stronger and more ”glue” to compose
your program from already developed modules.

Reference book

Hello, World!

module Main where

main :: IO ()

main = putStrLn "Hello, World!"

Hello, World!: Compile to native code

barbalala: ghc -o Hello Hello.hs

[1 of 1] Compiling Main (Hello.hs, Hello.o)

Linking Hello ...

barbalala: ./Hello

Hello, World!

barbalala:

Hello, World!: Interpreter

barbalala: ghci

GHCi, version 7.8.3: http://www.haskell.org/ghc/

:? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Prelude> :load "Hello"

[1 of 1] Compiling Main (Hello.hs, interpreted)

Ok, modules loaded: Main.

*Main> main

Hello, World!

*Main>

Quicksort in Haskell

quicksort :: Ord a => [a] -> [a]

quicksort [] = []

quicksort (p:xs) = quicksort lesser ++ -- Sort the left part of the list

[p] ++ -- Insert pivot

quicksort greater -- Sort the right part of the list

where

lesser = filter (< p) xs

greater = filter (>= p) xs

Implementations

The Glasgow Haskell Compiler (GHC) compiles to native code on a
number of different architectures. GHC has become the de facto
standard Haskell dialect. There are libraries (e.g. bindings to
OpenGL) that will work only with GHC. GHC is also distributed
along with the Haskell platform.

The Utrecht Haskell Compiler (UHC) is a Haskell implementation
from Utrecht University. UHC supports almost all Haskell 98
features plus many experimental extensions.

Jhc is a Haskell compiler written by John Meacham emphasising
speed and efficiency of generated programs as well as exploration
of new program transformations.

Ajhc is a fork of Jhc.

The speed of Haskell

For most applications the difference in speed between C++ and
Haskell is so small that it’s utterly irrelevant

The speed of Haskell

There’s an old rule in computer programming called the ”80/20
rule”. It states that 80% of the time is spent in 20% of the code.
The consequence of this is that any given function in your system
will likely be of minimal importance when it comes to
optimizations for speed. There may be only a handful of functions
important enough to optimize.

Remember that algorithmic optimization can give much better
results than code optimization.

Last but not least, Haskell offers substantially increased
programmer productivity (Ericsson measured an improvement
factor of between 9 and 25 using Erlang, a functional programming
language similar to Haskell, in one set of experiments on telephony
software.)

Haskell in Industry

Haskell in Industry

ABN AMRO Amsterdam, The Netherlands

ABN AMRO is an international bank headquartered in Amsterdam.
For its investment banking activities it needs to measure the
counterparty risk on portfolios of financial derivatives.

Aetion Technologies LLC, Columbus, Ohio, USA

Aetion was a defense contractor in operation from 1999 to 2011,
whose applications use artificial intelligence.

Alcatel-Lucent

A consortium of groups, including Alcatel-Lucent, have used
Haskell to prototype narrowband software radio systems, running in
(soft) real-time.

Haskell in Industry
Soostone, New York, NY, USA

Soostone is an advanced analytics technology provider specializing
in algorithmic optimization opportunities in marketing, pricing,
advertising, sales and product management.

NRAO

NRAO has used Haskell to implement the core science algorithms
for the Robert C. Byrd Green Bank Telescope (GBT) Dynamic
Scheduling System (DSS).

IMVU, Inc

IMVU, Inc. is a social entertainment company connecting users
through 3D avatar-based experiences.

Functor AB, Stockholm, Sweden

Functor AB offers new tools for ground-breaking static analysis
with pre-test case generation of programs to eliminate defects and
bugs in software very early in development.

Functional programming languages

Functional programming languages
Clojure

General-purpose programming language with an emphasis on
functional programming.

It runs on the Java Virtual Machine, Common Language Runtime,
and JavaScript engines. Like other Lisps, Clojure treats code as
data and has a macro system.

Designed by Rich Hickey (2007).

Compojure, Ring, Incanter, Datmomic, . . .

Functional programming languages
Scala

Object-functional programming language for general software
applications. Scala has full support for functional programming
and a very strong static type system.

Scala source code is intended to be compiled to Java bytecode, so
that the resulting executable code runs on a Java virtual machine.
Java libraries may be used directly in Scala code, and vice versa.

Designed by Martin Odersky (EPFL).

Spark, Akka, . . .

Functional programming languages
Erlang

General-purpose concurrent, garbage-collected programming
language and runtime system

The Ericsson Erlang implementation loads virtual machine
bytecode which is converted to threaded code at load time.

Designed by Joe Armstrong, Robert Virding and Mike Williams at
Ericsson (1986) to support distributed, fault-tolerant,
soft-real-time, non-stop applications.Released as open source in
1998.

CouchDB, Couchbase Server, Riak, Chef, Wings 3D, RabbitMQ,
WhatsApp, Call of Duty server core, Goldman Sachs
(high-frequency trading programs), . . .

Functional programming languages
Elixir

Elixir is a dynamic, functional language designed for building
scalable and maintainable applications.

Elixir leverages the Erlang VM, known for running low-latency,
distributed and fault-tolerant systems, while also being successfully
used in web development and the embedded software domain.

Phoenix, Ecto, . . .

Functional programming languages
Ocaml

OCaml unifies functional, imperative, and object-oriented
programming under an ML-like type system.

OCaml’s toolset includes an interactive top level interpreter, a
bytecode compiler, and an optimizing native code compiler.

INRIA (1996).

Hack (Facebook), Unison, Frama-C, Coq, Mirage, . . .

