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Preamble

Computational biology

o Computational biology involves the development and application
of data-analytical and theoretical methods, mathematical
modeling and computational simulation techniques to the study
of biological, behavioral, and social systems.

The field is broadly defined and includes foundations in computer
science, applied mathematics, animation, statistics, biochemistry,
chemistry, biophysics, molecular biology, genetics, genomics,
ecology, evolution, anatomy, neuroscience, and visualization.

o Computational biology is different from biological computation,
which is a subfield of computer science and computer engineering
using bioengineering and biology to build computers, but is
similar to bioinformatics, which is an interdisciplinary science
using computers to store and process biological data.
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Preamble

Computational biology — Subfields

o Computational biomodeling

o Computational genomics (Computational genetics)
o Computational neuroscience

o Computational pharmacology

o Computational evolutionary biology

o Cancer computational biology

Qo ...
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Preamble

Computational biology — Major conferences

Workshop on Algorithms in Bioinformatics (WABI)

Asia Pacific Bioinformatics Conference (APBC)

Intelligent Systems for Molecular Biology (ISMB)
European Conference on Computational Biology (ECCB)
Research in Computational Molecular Biology (RECOMB)

© 06 06 o o
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Preamble

Computational biology — RECOMB satellites

o RECOMB Satellite Workshop on Massively Parallel Sequencing
(RECOMB-SEQ)

o RECOMB Satellite Conference on Bioinformatics Education
(RECOMB-BE)

o RECOMB Satellite Workshop on Computational Cancer Biology
(RECOMB-CCB)

o RECOMB Satellite Workshop on Computational Methods in
Genetics (RECOMB-Genetics)

o RECOMB Satellite Workshop on Comparative Genomics
(RECOMB-CG)

o RECOMB Satellite Conference on Open Problems in Algorithmic
Biology
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Preamble

Computational biology — Main journals

There are numerous journals dedicated to computational biology:

o Journal of Computational Biology
o PLOS Computational Biology
o Bionformatics

o IEEE/ACM Transactions on Computational Biology and
Bioinformatics

BMC Bioinformatics

Journal of Bioinformatics and Computational Biology

©
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Preamble

Société Francaise de Bioinformatique (SFBI)
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Preamble

Association des Jeunes Bioinformaticiens de France
(JeBiF)
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Preamble
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Preamble

GdR de Bioinformatique Moléculaire (GdR BIM —
INS2I CNRS)

Appel a animation de

septembre 2016

Appels a animations de
mai 2016

Touzet
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Preamble

Carrieres académiques

©

Maitre de Conférences / Professeur des Universités

CNRS : Section 06, Section 07 et CID 51 (Modélisation, et analyse
des données et des systemes biologiques : approches
informatiques, mathématiques et physiques)

o INRIA
o INRA
o CEA
°
°

©

Institut Pasteur

Institut Curie
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Preamble

: Home

AlgoB :: Algorithmics for Bioinformatics

S. Vialette (CNRS & LIGM)

Home

U s da

Home > Welcome

@ Welcome

Welcome to the webpage of the AlgoB group of the Laboratoire d'Informatique Gaspard-
Mange, itself part of the Institut Gaspard-Mange of Université Paris-Est Marne-la-Valie, in
France.

AlgoB stands for Aigorithmics for Bioinformatics. The group is composed of approximately 10
researchers (including 6 permanent researchers) and is part of a bigger team called Models
and algorithms.

Here you will find information about:

Qur members
Our publications and talks

The research projects, events and software di we're involved in

How to contact us
The L d
The Institut Gaspard-Monge
The University of Paris-Est Marne-la-Vallée

Gaspard-Monge (UMR 8049)

- 2006-2015 ABIigoo -

® Welcome

Qur weltome message to our dear
visitors. Read it

@ Members

The composition of the AlgoB group
Read if

(@ Contact us
Our coordinates : mail address,

telephone number, fax number and e-
mail address. More details

@I6M

The Gaspard-Monge institute of
electronics and computer science at
Marne-La-Vallée Learn more

@® UPEM

The University of Paris-Est Marne-La-
Vallée. Learn more @0
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Introduction

Central dogma of molecular biology

replication

(DNA -> DNA)
DNA Polymerase

DOTWPWA DN

transcription
(DNA -> RNA)
RNA Polymerase
W Th gl

translation

(RNA -> Protein)
Ribosome

O-O-0-0-0-0-0 Protein
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Introduction

Central dogma of molecular biology

o The central dogma of molecular biology deals with the detailed
residue-by-residue transfer of sequential information. It states
that such information cannot be transferred back from protein to
either protein or nucleic acid.

o This has also been described as DNA makes RNA makes protein.
However, this simplification does not make it clear that the central
dogma as stated by Crick does not preclude the reverse flow of
information
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Introduction

Transcription

o Transcription is the process by which the information contained
in a section of DNA is transferred to a newly assembled piece of
messenger RNA (mRNA).

o Itis facilitated by RNA polymerase and transcription factors.

o In eukaryotic cells the primary transcript (pre-mRNA) must be
processed further in order to ensure translation.

o This normally includes a 5’ cap, a poly-A tail and splicing.

o Alternative splicing can also occur, which contributes to the
diversity of proteins any single mRNA can produce.
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Introduction

Translation

o Eventually, the mature mRNA finds its way to a ribosome, where
it is translated.

o In prokaryotic cells, which have no nuclear compartment, the
process of transcription and translation may be linked together. In
eukaryotic cells, the site of transcription (the cell nucleus) is
usually separated from in the site of translation (the cytoplasm),
so the mRNA must be transported out of the nucleus into the
cytoplasm, where it can be bound by ribosomes

o The mRNA is read by the ribosome as triplet codons, usually
beginning with an AUG (adenine—uracil—guanine), or initiator
methionine codon downstream of the ribosome binding site.

o Translation ends with a UAA, UGA, or UAG stop codon.
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Introduction

Simultaneous translation and transcription

ribosomes

transcription start vE A
RNA b
1 : fh i

| ~ - \ ‘;
DNA ok : y :t l‘ -
0.5 um
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Introduction
Base pairing

o In molecular biology, two nucleotides on opposite complementary
DNA or RNA strands that are connected via hydrogen bonds are
called a base pair (often abbreviated bp).

o In the canonical Watson-Crick base pairing, adenine (A) forms a
base pair with thymine (T), and guanine (G) forms one with
cytosine (C) in DNA.

o In RNA, thymine is replaced by uracil (U).

o Alternate hydrogen bonding patterns, such as the wobble base
pair and Hoogsteen base pair, also occur—particularly in
RNA—giving rise to complex and functional tertiary structures.

o Importantly, pairing is the mechanism by which codons on
messenger RNA molecules are recognized by anticodons on
transfer RNA during protein translation
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Introduction

Base pairing

H
H N O-----H-N
N N—-H----- @] = y )
‘e
72 ) \ N / N-H----- N A
R/N JN _____ H_N R N_ />_N
N= 7N N-H-----0 R
O R H
Adenine Thymine Guanine Cytosine

Left, an AT base pair demonstrating two intermolecular hydrogen
bonds; Right, a GC base pair demonstrating three intermolecular
hydrogen bonds.
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Introduction

Structural conformations of biomolecules

o Primary Structure: sequence of monomeres (ATCGAGATC...)

o Secondary Structure: 2D-fold, defined by hydrogen bonds

o Tertiary Structure: 3D-fold

o Quarternary Structure: complex arrangement of multiple folded
moleculesRNA tertiary structure
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Introduction

RNA seconday structure

&0y, & 0@,
T
Anticodon %@%’

The major role of tRNA is to translate mRNA sequence into amino
acid sequence. A tRNA molecule consists of 70 — 80 nucleotides.
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RNA tertiary structure

A hairpin loop from a pre-mRNA. Highlighted are the nucleobases
(green) and the ribose-phosphate backbone (blue). Note that this is a
single strand of RNA that folds back upon itself.
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Introduction

RNA tertiary structure

S. Vialette (CNRS & LIGM)

Three-dimensional representation of the 50S ribosomal subunit. RNA
is in ochre, protein in blue. The active site is in the middle (red).

o
RNA Secondary Structures
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Introduction

Prediction of secondary structure: FASTA format

o FASTA format is a text-based format for representing either
nucleotide sequences or peptide sequences, in which nucleotides
or amino acids are represented using single-letter codes.

o The format also allows for sequence names and comments to
precede the sequences.

o The format originates from the FASTA software package, but has
now become a standard in the field of bioinformatics.

o The simplicity of FASTA format makes it easy to manipulate and
parse sequences using text-processing tools and scripting
languages like Python, Ruby, and Perl.

>MAMseq000312 Euarctos americanus mitochondrial transfer RNA-Pro and transfer RNA-Thr, 3’ ends.
aagactcaaggaagaagcaacagccccactattaacacccaaagctaatgttctatttaaactattcectg

>MAMseq000315 Nasua narica mitochondrial transfer RNA-Pro and transfer RNA-Thr, 3° ends.
aagacttcaaggaagaagcaacagccacaccatcagcacccaaaactgatattctaactaaactattccttg

>MAMseq000316 Procyon lotor mitochondrial transfer RNA-Pro and transfer RNA-Thr, 3’ ends.
aagacttcaaggaagagacaacccatctcgccatcagcacccaaagctgatattctaactaaactactceccttyg

>MAMseq000318 Potos flavus mitochondrial transfer RNA-Pro and transfer RNA-Thr, 3° ends.
aagacttcagggaagaagcaatagctccgccatcagtacccaaaactgacattcttactaaactatccecctg
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Introduction

Digression: BioXXX projects

©

BioPython: http://biopython.org/wiki/Main_Page

©

BioPerl: http://www.bioperl.org/wiki/Main_Page

©

BioJava: http://biojava.org/wiki/Main_Page

©

BioRuby: http://bioruby.org

(]

Bio (Haskell): http://biohaskell.org/Libraries/Bio

(]

BioCaml: http://biocaml.org
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Introduction

Digression: BioPython

o The Biopython Project is an international association of
developers of non-commercial Python tools for computational
molecular biology, as well as bioinformatics.

o BioPython is one of a number of Bio* projects designed to reduce
code duplication.

0 http://biopython.org/wiki/Main_Page
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Introduction

Digression: BioPython

The main function is Bio.SeqIO.parse () which takes a file handle
and format name, and returns a SeqRecord iterator.

from Bio import SeqIO

handle = open("example.fasta", "ru")

for record in SeqIO.parse (handle, "fasta")
print record.id

handle.close ()
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Introduction

Digression: BioPython

from Bio import SeqIO

handle = open ("example.fasta", "rU")

records = list (SeqIO.parse (handle, "fasta"))
handle.close ()

print records[0].id #first record

print records[-1].id #last record

from Bio import SeqIO

handle = open("example.fasta", "rU")

record_dict = SeqlO.to_dict (SeqlO.parse (handle, "fasta"))
handle.close ()

print record_dict["gi:12345678"] #use any record ID
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Introduction
Prediction of secondary structure: RNAfold

barbibul:rna-data$ RNAfold < trna.fa

>AF041468
GGGGGUAUAGCUCAGUUGGUAGAGCGCUGCCUUUGCACGGCAGAUGUCAGGGGUUCGAGUCCCCUUACCUCCA

COCOCCCe o 0000 eeennn )))) OO et ))))) et (CCCCaeennnn )))))))))))) -
barbibul:rna-data$

L
i
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Introduction

Prediction of secondary structure: RNAfold

barbibul:rna-data$ RNAfold < trna.fa
>AF041468

GGGGGUAUAGCUCAGUUGGUAGAGCGCUGCCUUUGCACGGCAGAUGUCAGGGGUUCGAGUCCCCUUACCUCCA
[ T O G G I 1)) 00

------- ))))) e (e e e e a2))))))))))))
barbibul:rna-data$

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 39 /138



Prediction of secondary structure: RNAfold

RNAfold \WebServer

[HomelNew jobiHelp]
Results for minimum free energy prediction

The opumal
fcolor

o e free energy of is given below.
ity | color by positional entropy | no coloring]

You

Results for thermodynamic ensemble prediction

Is given below.

You

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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Introduction

Graphical output

Prediction of secondary structure: RNAfold

ase instll the Adobe SVG plugin. A note on base-pairing probabilites: Tn

ucture below is colored by base-pairing probabiles.

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgil
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RNA secondary structure prediction

RNA secondary structure prediction

o Many plausible secondary structures can be drawn from a
sequence.

o The number increases exponentially with sequence length.

o An RNA only 200 bases long has over 10°" possible base-paired
structures.

o We must distinguish the biologically correct structure from all the
incorrect.structures
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RNA secondary structure prediction

Base pair maximisation: the Nussinov folding
algorithm

o One (naive) approach is to find the structure with the most base
pairs.

o Nussinov introduced an efficient dynamic programming
algorithm for this problem.

o Although the criterion is too simplistic to give accurate structure
predictions, the algorithm is instructive because the mechanics of
the Nussinov folding algorithm are the same as those in the more
sophisticated energy minimisation folding algorithms (and of
probabilistic SCFG-based algorithms).
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RNA secondary structure prediction

RNA secondary structure

Definition

Letu € {A,C,G,U}* be a sequence. An RNA-structure over u is a set
of pairs

P ={(i,j) :i <j,uli] and u[j] form a a WC or non-standard pair}

with the property that the associated graph has degree at most 1 (i.e.,
every base can have at most one bond).

Remark

V@i,j),  (ij) €P = Vi, ({,j) ¢P
VGij), () eP =Y, (ij)¢P
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RNA secondary structure
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RNA secondary structure prediction

The Nussinov folding algorithm

o Idea (biological): Stacked base pairs of helical regions are
considered to stabilize an RNA molecule.

Therefore, the goal is to maximize the number of base pairs.

o Idea (algorithmic): The optimal structure S[i, j] on a subsequence
u[i, j] can only be formed by two distinct ways from a shorter
subsequence u[i + 1,j]:

@ Base iis unpaired, followed by an arbitrary shorter structure.

@ Base i is paired with some partner base k requiring the computation
of two independent substructures: the structure enclosed by the bp
and the remaining structure behind the pair.

i j i i+l j iivl k=1k k+1
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RNA secondary structure prediction

The Nussinov folding algorithm

o Initialisation

o Recursion

v(i+1,j)

v(i,j—1)
y(i+1j—1)+a)j)
maXi;<k<; {r(@ k) +y(k+1,j)}

v(i,j) = max

o O(n®) time and O(n?) space.
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RNA secondary structure prediction

The Nussinov folding algorithm

‘ % kil

I, pair i unpaired J unpaired bifurcation
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RNA secondary structure prediction

The Nussinov folding algorithm: Example

G G G A A AU C C

N N c > > > 0 0 0
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RNA secondary structure prediction

The Nussinov folding algorithm: Example

G G G A A AU C C
0
010

N N c > > > 0 0 0
o
o
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RNA secondary structure prediction

The Nussinov folding algorithm: Example

G G G A A AUCC
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(el el Bawly B

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 50 / 138



RNA secondary structure prediction

The Nussinov folding algorithm: Example

G G G A A A U C C
0jJ]0oj101]0
ojojoj1o01]o
ojojo01010O0
ololo]ol@®
610
0

N N c > > > 0 0 0

(el Nl el Bl B
(el el Bawly B
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RNA secondary structure prediction

The Nussinov folding algorithm: Example

G G c@Wh HVUcC ¢
glolo]o]o
gloloJofo]o
G oloJolofo
A ololo]o|@®
A 001
A olof1]1]1
U olofo]o
C olo]o
C olo
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RNA secondary structure prediction

The Nussinov folding algorithm: Example

0jJojo]o
0jJojo]o
0j01]0
010

0

(=} Nl Nl Nl Neol

(el Nl Nl Neoll New)

-[c[-|o®

(=N Nl Nl Bl RS

N N c > > > 0 0 0
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RNA secondary structure prediction

The Nussinov folding algorithm: Example

G GGAAAUTCC
GloJofoJo]o|lo]1]2|®
GloJofo]JoJoJo|1]2]3
G oJofofo]ol1f2]2
A ofofofo]1f1f1
A ojofof1]1]1
A olof1]1]1
U oJofofo
C olofo
C 0]0

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 50 / 138



RNA secondary structure prediction

The Nussinov folding algorithm

o The value (1, n) is the number of base pairs in the maximally
base-paired structure.

o There are often a number of alternatives structures with the same
number of base-pairs.

o To find one of these maximally base-paired structures, we trace
back through the values we calculated in the dynamic
programming matrix, beginning from (1, n).
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RNA secondary structure prediction

The Nussinov folding algorithm: Traceback stage

1
2
3
4
5
6
7

8

10
11
12

13
14
15
16
17
18

S <+ emptyStack
push(s, (1,n))
while S # @ do
(i,j) + pop(S)
ifi < jthen

if y(i+1,j) = v(i,j) then
| push(S,(i+1,7))
elseif y(i,j — 1) = v(i,j) then
| push(S,(i,j—1))
elseif y(i+1,j— 1)+ a(i,j) = v(i,j) then
record pair (i, )
| push(S, (i+1,j—1))
else
forj+1<k<j—1do
if y(i,k) + y(k+1,j) = 7(i,j) then
push(S, (k+1,j))
push(s, (i,k))
break
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RNA secondary structure prediction

The Nussinov folding algorithm: Traceback stage

G GGAAAUTCC
GloJoJofofo]o]1|2|®
(300000012@
G ofojofofo]1|®@]:2
A ofojolo|(W)1]1
A olo|@)]1]1]1
A ol@f1]1]1
U olofo]o
C olo]o
C 0olo
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RNA secondary structure prediction

The Nussinov folding algorithm: Traceback stage

o Linear time and space.

o In the canonical implementation of the traceback step, whenever
there are multiple structures that are equivalent in terms of
number of base-pairs the first structure that works is chosen
because the algorithm does not care about anything besides the
number of base-pairs, so any structure with the same number of
base pairs as the optimal one will do.

o However, this ignores important information that can lead it to
choose an unstable structure over a more stable one.
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RNA secondary structure prediction

The Nussinov folding algorithm: Traceback stage

Possible improvements:

o Incorporates the following assumptions:

» Longer stems (consecutive base pairs) are more stable than shorter
stems,

» A single loop or bulge is more stable than one split in two by a base
pair in the middle

o Report all optimal solutions.
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RNA secondary structure prediction

The Nussinov folding algorithm: Drawbacks

The Nussinov folding algorithm does not determine biological
relevant structures since:

o There are many (all!?) possibilities to form base pairs.
o Stackings of base pairs are not considered.

o The size of internals loops are not considered.
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RNA secondary structure prediction

An SCFG version of te Nussinov folding algorithm

o A single non-terminal S;

o 14 production rules with associated probability parameters.

S—aS|cS|gS|uS (i unpaired)
S —Sa|Sc|Sg|Su (j unpaired)
S —aSu | cSg|gSc|uSa  (iand j paired)
5 —SS (bifurcation)
S—e€ (termination)
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RNA secondary structure prediction

An SCFG version of te Nussinov folding algorithm

o Assume that the probabiliy parameters are known.

o The maximum probability parse of a sequence with this SCFG is
an assignment of sequence positions to productions.

o Because the productions correspond to secondary structure
elements (base pairs and single-stranded bases), the maximum
probability parse is equivalent to the maximum probability
secondary structure.

o If base pair productions have relatively high probability, the SCFG
will favour parses which tend to maximise the number of base
pairs in the structure.
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RNA secondary structure prediction

RNA structure prediction: MFE-folding

o More realistic: thermodynamics and statistical mechanics.

o Stability of an RNA secondary structure coincides with
thermodynamic stability.

o Quantified as the amount of free energy released /used by
forming base pairs.
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RNA secondary structure prediction

RNA structure prediction: MFE-folding

RNA molecules basically exist in a distribution of structures rather
than a single ground-state conformation.

o “Most likely” conformation: structure exhibiting minimum of free
energy (MFE).

o Energy contributions of different loop types have been measured.

o Since free energies are additive, a more sophisticated model, the
standard energy model for RNA secondary structures, can be
proposed.

o Based on loop decomposition, the total energy E of a structure S
can be computed as the sum over the energy contributions of each

constituent loop /:
E(S) =) E(0)
(es
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RNA secondary structure prediction

MEE folding: Example

4 nt loop +5.9<—|AUUA

— -1.1 terminal mismatch of hairpin

g : g — -2.9 stack
1 nt bulge +3.3<€¢— A — -2.9 stack (special case of 1 nt bulge)
GeC 18 stack
UshA__ o 09stack
é' g_> -18 stack
R ]
—> -2.1 stack
AU

5' dangle -0.3 <4——

unstructured single strand 0.0 <—AA

/

5!
overall AG = -4.6 kcal/mol

~

3!
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RNA secondary structure prediction

Structural elements: Formal definition

Definition

Secondary structure elements Let u be a fixed sequence. Further, let S
be an RNA secondary structure for u.

o A base pair (i,j) € S is a hairpin loop if

Vi<i<j<i ()¢S

o A base pair (i,j) € Sis called stacking if (i+1,j— 1) € P.
o Two base pairs (i,j) € Sand (7,j') € S form an internal loop
(i,7,7,7) if
i<i<j<j
(i" i)+ (j—j') > 2 (no stack)
there is no base pair (k, ) between (i,j) and (i',]")
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RNA secondary structure prediction

Structural elements: Formal definition

Definition
Secondary structure elements (ctd)
o Aninternal loop (i,],i,]) is called left (resp. right) bulge, if
j=j +1(resp. i =i+1).

o A k-multiloop consists of k base pairs (i1,/1), (i2,72),- -, (ix, jx) € S
and a closing base pair (7,j) € S with the property that
i <iy <j1<i2<j2<...<ik<jk<j
i+1,...,011 —1,j1+1,...,i2—1,...,
jk—14+1,...,i—1,jx+1,...,j — 1 are unpaired in S
(i1,j1), (i2,j2), - - -, (ix, jix) close the inner base pairs of the multiloop.
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RNA secondary structure prediction

Structural elements: Formal definition

»

kol

"
-~

wan| o Iuiu
=

{d) Internal {e) Multiple

{a) Stack

u]

|
I
1

i
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RNA secondary structure prediction

Structural elements: k-multiloop

Remarks
o Usually hairpin loops have minimal loop size of m = 3 (i.e., for all
(i,j) € S,i<j—3).
o Each secondary structure element is defined uniquely by its
closing basepair.

o For any basepair (i, j) we denote the corresponding secondary
structure element with sec(i, ).

inner base pairs
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RNA secondary structure prediction

Energy of secondary structural elements

Definition (Energy contribution of loops)

Energy contributions of the various structure elements:

hairpin loop (i,j) : eH(i,j)
stacking (i, ) : eS(i,j)
internal loop (i,],1,j') : eL(i,j,1,])

multiloop (i,],11,f2,- - - ik k) = €M(i,f, i1, j2, - - -, ik, k)

Remarks

o General multi loop contribution will be too expensive in
prediction: exponential explosion!

o Use a simplified contribution scheme.
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RNA secondary structure prediction

Energy of secondary structural elements

Definition (Simplified energy contribution of multiloops)

eM(i,j, k, k') = a + bk + ck’
where

o a,b and c are weights (a is the energy contribution for closing of
loop),
o kis the number of inner base pairs, and

o k' is the number of unpaired bases within loop.
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RNA secondary structure prediction

MEE folding

o The complexity of the dynamic programming algorithm is O(n*)
time and O(n?) space.

o Using a trick, the time complexity can be reduced to O(n%).

o We assume traceback is done analogously to Nussinov-Traceback.
Same reduced complexity. Only extension: trace through three
matrices, (i.e., keep track of matrix).
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Pseudoknot prediction and alternate models

RNA pseudoknots

o A pseudoknot is a nucleic acid secondary structure containing at
least two stem-loop structures in which half of one stem is
intercalated between the two halves of another stem.

o The pseudoknot was first recognized in the turnip yellow mosaic
virus in 1982.

o Pseudoknots fold into knot-shaped three-dimensional
conformations but are not true topological knots.
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Pseudoknot prediction and alternate models

RNA pseudoknots
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Pseudoknot prediction and alternate models

RNA pseudoknots: Prediction and identification

Qo

The structural configuration of pseudoknots does not lend itself
well to bio-computational detection due to its context-sensitivity
or "overlapping” nature.

The presence of pseudoknots in RNA sequences is more difficult
to predict by the standard method of dynamic programming,
which use a recursive scoring system to identify paired stems and
consequently, most cannot detect non-nested base pairs.

Popular secondary structure prediction methods do not predict
pseudoknot structures present in a query sequence.

It is possible to identify a limited class of pseudoknots using
dynamic programming, but these methods are not exhaustive and
scale worse as a function of sequence length than
non-pseudoknotted algorithms.

The general problem of predicting lowest free energy structures
with pseudoknots has been shown to be NP-complete.
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Pseudoknot prediction and alternate models

RNA pseudoknots: Biological significance

o Several important biological processes rely on RNA molecules
that form pseudoknots, which are often RNAs with extensive
tertiary structure.

o For example, the pseudoknot region of RNase P is one of the most
conserved elements in all of evolution.

o The telomerase RNA component contains a pseudoknot that is
critical for activity.

o Several viruses use a pseudoknot structure to form a tRNA-like
motif to infiltrate the host cell.
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Pseudoknot prediction and alternate models

RNA pseudoknot type

o Kissing hairpin

<.

SO\

‘/\
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Pseudoknot prediction and alternate models

RNA pseudoknot type

o Three-knot
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Pseudoknot prediction and alternate models

RNA pseudoknot predition

R&G A/U L&P D&P CCJ] R&E

Time O(n*) O(n*)/O0(n°) O(°) O(°) Om>) O(nd)
Space O(n?) O®®)/0(n®) O®@®) O(n*) On*) O(n?)
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Pseudoknot prediction and alternate models

Nearest Neighbor Energy Model

For a secondary structure S

o the number of base pairs stackings is

BPS(S) = |{(i,j) € S: (i+1,j—1) € S}]

o the number of stacking base pairs is

SBP(S) = |{(i,j) €S: (i+1,j—1)€Sor (i—1,j+1) € S}|
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Pseudoknot prediction and alternate models

Without pseudoknots

o Maximizing the number of base pairs is O(n?) time and O(n?)
space:

v(i+1,5)

v(i,j—1)
y(i+1,j—1)+a(i,j)
max;<k<j {7, k) +v(k+1,j)}

7(i,j) = max

o To maximize BPS or SBP, dynamic programming can be extended.
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Pseudoknot prediction and alternate models

With arbitrary pseudoknots

o Maximizing the number of base pairs is O(1n?/°) time.

The problem reduces to finding a maximum matching in a graph
(solvable in O(m+/n) time)

o To maximize BPS or SBP, matching becomes inadequate, and
dynamic programming cannot be extended.
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Pseudoknot prediction and alternate models

Complexity BPS(S)

Theorem

Given a sequence u and a positive integer K, it is NP-complete to decide
whether there exists a structure S that is legal under the canonical RNA
folding model and with BPS(S) > k.
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Pseudoknot prediction and alternate models

BIN PACKING

Definition (The BIN PACKING problem)

o Input: k items of sizes a1, 4y, . . ., a; and B bins each with capacity

C.
o Question: Decide whether the items fit into the bins.

Remarks
o Strongly NP-complete.

o A straightforward greedy algorithm achieves an approximation
factor of 2.

o Does not have a polynomial-time approximation scheme (PTAS)
unless P = NP.

o forany 0 < e < 1, it is possible to find a solution using at most
(1+ €)opt + 1 bins in polynomial time (asymptotic PTAS).
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Pseudoknot prediction and alternate models

Strongly NP-complete
Definition

A problem is said to be strongly NP-complete (or NP-complete in the
strong sense), if it remains so even when all of its numerical
parameters are bounded by a polynomial in the length of the input.

o Normally numerical parameters to a problem are given in binary
notation, so a problem of input size n might contain parameters
whose size is exponential in 7.

o If we redefine the problem to have the parameters given in unary
notation, then the parameters must be bounded by the input size.

o Thus strong NP-completeness or NP-hardness may also be
defined as the NP-completeness or NP-hardness of this unary
version of the problem.
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Pseudoknot prediction and alternate models

Strongly NP-complete
Definition

A problem is said to be strongly NP-complete (or NP-complete in the
strong sense), if it remains so even when all of its numerical
parameters are bounded by a polynomial in the length of the input.

o BIN PACKING is strongly NP-complete while the 0 — 1 KNAPSACK
problem is only weakly NP-complete.

Thus the version of BIN PACKING where the object and bin sizes are
integers bounded by a polynomial remains NP-complete, while the
corresponding version of the KNAPSACK problem can be solved in
polynomial time by dynamic programming.

o Any strongly NP-hard optimization problem with a polynomially
bounded objective function cannot have an FPTAS unless P = NP.
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Pseudoknot prediction and alternate models
Complexity BPS(S)

Theorem

Given a sequence u and a positive integer K, it is NP-complete to decide
whether there exists a structure S that is legal under the canonical RNA
folding model and with BPS(S) > k.

Proof.
Construction:

u=C1AC"A ... AC*AA(AGE)E

K= Z ai—k

1<i<k

As A’s can only form base pairs with U’s in the canonical folding model,
all base pairs in a legal structure for u wil be G - C.

O
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Pseudoknot prediction and alternate models
Complexity BPS(S)
Theorem

Given a sequence u and a positive integer K, it is NP-complete to decide
whether there exists a structure S that is legal under the canonical RNA
folding model and with BPS(S) > k.

Proof.
o |u| = Yy<i<xai+BC+B+k+1.

o Since the BIN PACKING problem is strongly NP-complete we can

assume that the B,C,ay,ay, . .., a; are all polynomially bounded by
the size of the originally BIN PACKING instance.

O
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Pseudoknot prediction and alternate models

Complexity BPS(S)

Theorem

Given a sequence u € {0,1}* and a positive integer K, it is NP-complete to
decide whether there exists a structure S that is legal under the general RNA
folding model with B = {(0,1), (1,0) } with BPS(S) > k.

Proof.

o Reduction from BIN PACKING:

3<g;<Cforl<i<k and
2<B<k

o u=0m110%211...110%(01%)5.

O
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Pseudoknot prediction and alternate models

Complexity SBP(S)
Theorem

Given an alphabet ¥, a set of legal base pairs B C X X X, a sequence u € >.*
and a positive integer K, it is NP-complete to decide whether there exists a

structure S that is legal under the general RNA folding model with
SBP(S) > k.

Proof.

o Reduction from RESTRICTED SATISFIABILITY:
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Pseudoknot prediction and alternate models

2-intervals

Definition (2-intervals)

o A 2-interval D = (I,]) consists of two disjoint (closed) intervals I
and ] such that I < J (i.e., I is completely on the left of ]).

o Two 2-intervals D1 = (I1,]1) and D, = (I, ],) are disjoint if the
four intervals Iy, [1, I and |, are pairwise disjoint.

Definition (Relations between disjoint 2-intervals)

Let D; = (I1,]1) and Dy = (I, ]2) be two disjoint 2-intervals. We have
the following relations:

o Di<Dyif[ <1 <D <Jp.
oDiCDyifb < Iy < <>
Q DlgDzif11<12<]1 < .
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Pseudoknot prediction and alternate models

2-intervals: Models

Definition (Models)
o A model is a non-empty subset of {<,, (}.

o A set of 2-intervals D is R-structured if any two distinct
2-intervals in D is R-comparable for some R € R.

Key idea: Model R = { <, C} denotes pseudoknot-free structures.
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Pseudoknot prediction and alternate models

2-intervals: Structured subsets

Definition (The 2-INTERVAL PATTERN problem)

o Input: A set of 2-intervals D, a model R and a positive integer K.

o Question: Decide whether there exists a R-structured subset
D’ C D of size K.

If each 2-interval D € D is associated with a non-negative weight
w(D), we are left with the WEIGHTED 2-INTERVAL PATTERN problem

(i.e., decide whether there exist a R-structured subset D’ C D of total
weight at least K).
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Pseudoknot prediction and alternate models

2-intervals: Support and restriction

Definition (Support)

The support of a set of 2-intervals D is the set of intervals

{I,]: (L,]) € D}.

Definition (Restriction)
Support restrictions:
o Unlimited: no restriction.

o Balanced: every 2-intervals consists of two intervals of equal
length.

o Unit: every 2-intervals consists of two intervals of unit length.

o Point: the intervals in the support are pairwise disjoint.
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Pseudoknot prediction and alternate models

2-intervals: State-of-the-art

Model  Unlimited Balanced Unit Point
{<,C,0} APX-hard O(ny/n)
{C,0} APX-hard O(nlog(n) + L)
{<,0} NP-complete

{<C} O(nlog(n) 4 dn)

{0} O(nlog(n) +
{<} O(nlog(n))
{c} O(nlog(n))

L)
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Pseudoknot prediction and alternate models

2-intervals: Approximation ratios

Model  Unlimited Balanced Unit Point
{<,C, 0} 4 4 24+€ N/A
{c, 0} 4 4 24+ N/A
{<, 0} PTAS
S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<,, ()}

Theorem

The 2-INTERVAL PATTERN problem for unlimited (resp. unit) 2-intervals
and model R = {<,C, (} is approximable within ratio 4 (resp. 3.).

Remarks

o The approximation algorithm for unit 2-intervals is O(nlog(n))
time, where 7 is the number of input 2-intervals.

o The approximation algorithm for unlimited 2-interval uses linear
programming techniques, which in practice are very often too
time costly.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<,, ()}

Theorem

The 2-INTERVAL PATTERN problem for balanced 2-intervals and model
R = {<,C,(} is approximable within ratio 4 (O(n?) time algorithm).

Proof.

Data: A set of balanced 2-intervals D

Result: A {<, C, ( }-structured subset of D

Dso) = @

while D # @ do
Let Dpin be the smallest 2-interval left in D
Dso1 <= Do U {Dmin}
D+ D\{D €D :DNDpin # D}

6 return D,

@R W N =
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Pseudoknot prediction and alternate models

2-intervals: Covering intervals

Definition

Let D = (I,]) be a 2-interval. The covering interval of D, denoted
c(D), is the smallest interval that covers D (i.e., ¢(D) = [I(I),7(])],
where [(i) (resp. r(])) is the left (resp. right) endpoint of I (resp. ).

Observation

Let D be a set of 2-intervals. For any {C, (j }-structured subset D’ C D,
the associated covering intervals ¢(D’) are pairwise intersecting.
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Pseudoknot prediction and alternate models
Interval graphs
Definition (Interval graph)

An interval graph is the intersection graph of a multiset of intervals on
the real line. It has one vertex for each interval in the set, and an edge
between every pair of vertices corresponding to intervals that intersect.

D
A
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Pseudoknot prediction and alternate models

Interval graphs

Remarks

o Determining whether a given graph G = (V,E) is an interval
graph can be done in O(|V| + |E|) time by seeking an ordering of
the maximal cliques of G that is consecutive with respect to vertex
inclusion.

o A graph is an interval graph if and only if it is chordal and its
complement is a comparability graph.

o The number of maximal cliques in a chordal graph is linear in the
size of the graph.
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Pseudoknot prediction and alternate models
Chordal graphs
Definition (Chordal graph)
A graph is chordal if each of its cycles of four or more vertices has a

chord, which is an edge that is not part of the cycle but connects two
vertices of the cycle.
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Pseudoknot prediction and alternate models

Comarability graphs

Definition (Comparability graph)

A comparability graph is a graph that has a transitive orientation, an
assignment of directions to the edges of the graph (i.e., an orientation
of the graph) such that the adjacency relation of the resulting directed
graph is transitive: whenever there exist directed edges (x,y) and
(y,z), there must exist an edge (x, z).
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Pseudoknot prediction and alternate models
2-intervals: R = {, ()}

Theorem

The 2-INTERVAL PATTERN problem for unlimited (resp. unit) 2-intervals
and model R = {C, (} is approximable within ratio 4 (resp. 3). (The
algorithm is O(n?log(n)) time for unit 2-intervals.)

Proof.

Data: A set of 2-intervals D
Result: A {C, () }-structured subset of D
c(D) < {c(D) : D € D}
K < all maximal cliques of Q(c(D))
foreach maximal clique K € KC do
Dk <+ {D € D:¢(D) € K}
L Dy + (Approximate) pairwise disjoint subset of Dx

@R W N =

6 return the largest Dy found

O]

v
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Pseudoknot prediction and alternate models

Trapezoid graphs

Definition (Trapezoid)

Consider two intervals I and | defined over two distinct horizontal

lines. The trapezoid T = (I,]) is the convex set of points bounded by I
and J, and the two arcs connecting the right and left endpoints of I and
J. The interval [ and | are the top interval and the bottom interval of T.

A family of trapezoids is a finite set of trapezoids which are all
defined over the same two horizontal lines.

Definition (Trapezoid graph)
A trapezoid graph is the intersection graph of a family of trapezoids.
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Pseudoknot prediction and alternate models

Trapezoid graphs

1234567 89101112131415161

7181920212223 24
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Pseudoknot prediction and alternate models

Turning 2-intervals to trapezoids
Definition (Corresponding trapezoid family)

Let D be a set of 2-intervals and let « and f be two distinct horizontal
lines such that « is below B. The corresponding trapezoid family of D,
denoted 7 (D), is defined as the family containing a single trapezoid

T = (I',]') for each 2-interval D = (I,]) € D, where I is defined over
a, ]’ is defined over B,and I' = and J' =J.

i |
D B

(ol
h

D’ [
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Observation

Any two disjoint 2-intervals in D are { <, ( }-comparable if and only
their corresponding trapezoids in 7 (D) are disjoint.

Remarks

o Felsner et al. gave a O(nlog(n)) time algorithm for finding a
maximum disjoint subset in a family of trapezoids.

o But there may be disjoint trapezoids in 7 (D) that correspond to
non-disjoint 2-intervals in D.

o {C }-comparable 2-intervals in D correspond to intersecting
trapezoids in 7 (D).
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Pseudoknot prediction and alternate models
Turning 2-intervals to trapezoids

. 5 i ]2

I8 I
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Pseudoknot prediction and alternate models
Turning 2-intervals to trapezoids
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Pseudoknot prediction and alternate models

Turning 2-intervals to trapezoids
Definition (Clashing intervals)

Letl; = [I(I;),r(I;)] and I = [I(I2),7(I2)] be two distinct intervals
defined over two distinct horizontal lines such that I(I;) < I(I2). The
two intervals I; and I, clash if either

o I(I) <I(I) <r(lp) <r(l),or

Qo l(Il) S l(lz) S 1’(11) S T(Iz).

() Ip r(I) L) I, r(k)
p—mm— p —
o — o — .

L) I r(h) (L) Iy r(h)
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Pseudoknot prediction and alternate models

Turning 2-intervals to trapezoids
Definition (Clashing trapezoids)

Let Ty = (I1,]1) and Tz = (I, J2) be two distinct trapezoids in a family
of trapezoids. The two trapezoids T; and T clash if either

o [; and J; clash, or
o I and J; clash.

J2 J5

I L
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Pseudoknot prediction and alternate models

Turning 2-intervals to trapezoids

Observation

Any two distinct 2-intervals in D are { <, () }-comparable if and only
their corresponding trapezoids in 7 (D) are disjoint and do not clash.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for unit (resp. point) 2-intervals and

model R = {<, ()} is approximable within ratio 3 (resp. 2). (The algorithm is
O(n?) time for unit 2-intervals.)
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for unit (resp. point) 2-intervals and
model R = {<, ()} is approximable within ratio 3 (resp. 2). (The algorithm is
O(n?) time for unit 2-intervals.)

Proof.

Data: A set of 2-intervals D

Result: A {<, (}-structured subset of D

Construct the corresponding trapezoid family 7 (D)

Compute 7’ C 7 (D): the maximum pairwise disjoint subset of 7 (D)
7;01 — 0

while 77 # @ do

L Let Ty be the leftmost trapezoid in 7"

N U R W N R

Tsol < Tsol U {TO}
Omit Ty and all trapezoids clashing with Ty in 7"

8 return the 2-intervals corresponding to trapezoids in Ty

D 4
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for unit (resp. point) 2-intervals and

model R = {<, ()} is approximable within ratio 3 (resp. 2). (The algorithm is
O(n?) time for unit 2-intervals.)

Proof.

o Let Ty be the leftmost trapezoid T’ and let Dy be its corresponding
2-interval in D.

o By our definition of a 2-interval and of 7 (D), any trapezoid in

T (D) has a bottom interval which is completely to the left of its
top interval.

o Thus, Ty can only clash with trapezoids on its right in 7.

O]
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for unit (resp. point) 2-intervals and

model R = {<, ()} is approximable within ratio 3 (resp. 2). (The algorithm is
O(n?) time for unit 2-intervals.)

Proof.

o if D is a point 2-interval set, then all 2-intervals with left intervals
intersecting the right interval of Dy have the same left interval,
and as 7 is pairwise disjoint, at most one of these has a
corresponding trapezoid in 7.

O]
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for unit (resp. point) 2-intervals and

model R = {<, ()} is approximable within ratio 3 (resp. 2). (The algorithm is
O(n?) time for unit 2-intervals.)

Proof.

o if D is a unit 2-interval set, intersecting intervals involved in D
must overlap.

o Thus, any trapezoid in 7" clashing with T, corresponds to a
2-interval with a left interval which contains either endpoints, but
not both, of the right interval of Dy.

o Since T is pairwise disjoint, there can be at most two such
trapezoids in 7.

O
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for balanced 2-intervals and model
R = {<,(j} is approximable within ratio 5. (The algorithm is O(n?) time.)

Proof.

N U R W N e

Data: A set of balanced 2-intervals D
Result: A {<, () }-structured subset of D
Construct the corresponding trapezoid family 7 (D)
Compute 7’ C 7 (D): the maximum pairwise disjoint subset of 7 (D)
7;ol S
while 77 # @ do
Let T be the smallest trapezoid in 7"
L 7;ol — 7;01 U {TO}
Omit Ty and all trapezoids clashing with Ty in 7"

return the 2-intervals corresponding to trapezoids in T,

O]
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Definition (Proper trapezoid family)

A family of trapezoids 7T is proper if for any two distinct trapezoids
Ti=(h,i)and To = (I, o) in T, hNL =Qand i N ], = @.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Definition (Strongly proper trapezoid family)

A proper family of trapezoids 7T is strongly proper if for any two
distinct trapezoids Ty = (I1,J1) and Ty = (Ip, J2) in T, if J; and I, clash
then I(I,) <1(J1) < r(J1) < r(Iy), where I(J1),7(J1) and I(I2),r(I2) are
the left and right endpoints of J; and I, respectively.

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 115 / 138



Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Remarks

o Any pairwise disjoint family of trapezoids is proper (but the
converse is not true).

o Thus Step 2 of the preceding algorithm yields a proper family of
trapezoids 7.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Remarks

o Computing a strongly proper subset 7' C 7" can be done easily
by adjusting the loop step: Instead of omitting all trapezoids
clashing with the leftmost trapezoid in this iteration, we need
only to omit a small subset of these trapezoids.

More specifically, let To = (Io, Jo) be the leftmost trapezoid in 7.
We only omit trapezoids T = (I,]) with

1(1) < 1(ly) < r(1), or

I(I) <r(lo) < r(I).

o We obtain a strongly proper trapezoid family 7" C 7" if we
proceed in this fashion such that 3 |7"| > |T’|.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Definition (Clashing trapezoid graph)
Let 7 be a family of trapezoids. The clashing trapezoid graph of 7,
denoted G, is the graph such that each vertex in G correspond to a

distinct trapezoid in 7, and two vertices are connected by an edge if
and only if their corresponding trapezoid clash.
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2-intervals: Model R = {<, (j}

L
Let T be a family of trapezoids. If T is strongly proper then G is a forest. I
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}
Theorem

Let T be a family of trapezoids. If T is strongly proper then G is a forest.

Proof.

o Define G as the directed graph obtained by orienting the edges
of G7 according to the precedence relation in 7

V(Gr) = V(Gr)
E(Gr) = {(T1,T2) : {T1, T2} € E(G7) and T; < T}

o Since 7T is strongly proper, every trapezoid in 7 clashes with at

most one trapezoid on its left, and hence the in-degree of every
vertex T € V(Gr) is at most 1.

O
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem
Let T be a family of trapezoids. If T is strongly proper then G is a forest.

Proof.
o Hence any cycle (Ty,..., Ty, To) in G7 is a directed cycle in G7.

o Then we must have Ty < Ty < Ty by definition of (_§7—. This is a
contradiction.

o Then it follows that G7 is acyclic.

D 4
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Remarks

o A maximum independent set in any forest of size 7 is of size at
least 5. (This set can be found in linear time with respect to 7.)

o if T is a pairwise disjoint family of trapezoids, then any
independent set of G7 corresponds to a pairwise disjoint
non-clashing set of trapezoids, and hence corresponds to a
{<, ( }-comparable set of 2-intervals.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 6. (The algorithm is O(n?) time.)

Proof.

Data: A set of 2-intervals D

Result: A {<, () }-structured subset of D

Construct 7 (D), the corresponding trapezoid set of D

Compute 7, the maximum pairwise disjoint subset of 7 (D)

Compute 7", a strongly proper subset of 7, such that 3|7"| > |T”|
Compute Gy and the maximum independent set of G

return the 2-intervals corresponding to the maximum independent set of Grn

G W N R

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 121 /138



Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Definition (Precedence or crossing)

For two 2-intervals D1 = (I1,]1) and D, = (I, ]»), the precedence or
crossing relation 4 is defined by:

Dy g D, if and only if Dy < D; or Dy Q D

Remarks
o If Dy g D) thenl; < I, and J; < J5.

o The 4§ relation specifies a total order for any { <, () }-structured
2-interval set.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Let D be a { <, () }-structured 2-interval set and let D denotes D
ordered by the § relation (viewed as an ordered sequence).

o Dy|i] denotes the 2-interval with rank i in D.

o Dgli,j] denotes the subsequence Dgli], Dg i +1],..., Dglf].
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

o For eachindex 1 <i < |Dyg|, define next(i) as the smallest index j,
1 <j < |Dg| such that Dgi] < Dglj]. If such an index j does not
exist define next(i) = |Dg| + 1.

o Define the backbone indices of Dy as the sequence of indices
i1,13,..., i such that iy = 1, i; = next(i;_1) and
next(ix) = |Dg| + 1.

(For convenience, we define next(ix) = |Dg| + 1 and imagine a
2-interval Dy [ir11] such that Dy [i] < D |ik4q] for all
1<i<|Dgl)
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

next(1) =3 next(3) =6  next(6) =6+1
[ W M )
D, D3 Ds Deg 11
D, D, D,
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

o For each backbone index 1 < i; < k, define a stripe
T (is) = Dglis + 1,501 — 1].

o The stripe is odd if s is odd; it is even if s is even.

o For each 2-interval D € 7T (is), we observe that
Dglis] 0 D 4 Dglis + 1)

o Every stripe of Dy is {()}-structured.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

next(1) =3 next(3) =6  next(6) =6+1
[ W M )
D, D3 Ds Deg 11
D, D, Ds
() TG
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

o A {<,(}-structured sequence Dy is striped if either

» its odd stripes are all empty, or
> its even stripes are all empty.

o Although Dy is not always striped, it contains two striped
subsequences:
Dgli] T(ir) Dglia] Dglis] T (i3) Dyglia] -
Dglir] Dylia] T (i2) Dglis] Dy lia] T(ia) -
These two subsequences together cover the sequence Dy: the

2-intervals at the backbone indices are covered twice, each
remaining 2-interval is covered once.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

o A {<,(}-structured sequence Dy is striped if either

» its odd stripes are all empty, or
> its even stripes are all empty.

o Although Dy is not always striped, it contains two striped
subsequences:

Dgln] T(ir) Dglia] Dglis] T(is) Delia] -
Dglir] Dylia] T (i2) Dglis] Dy lia] T(ia) -
These two subsequences together cover the sequence Dy: the

2-intervals at the backbone indices are covered twice, each
remaining 2-interval is covered once.

One of the two subsequences has a length of at least |Dg|/2.
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 130 / 138



Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)

Proof.

o Step 1. Make a dummy 2-interval D, such that D,, < D,, for all
D, eD.

Set Dt = DU{D,}.

D,/
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)

Proof.

o Step 2. For each pair of 2-intervals D, and Dy in D*,D, < Dy,
find the subset of 2-intervals

D,y =1{Dy:D, € D" and D, | Dy § Dg}

Then compute C, g, a maximum size {{) }-structured subset of D" 5

O]
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)

Proof.

o Step 3.1. Process the 2-intervals in D, ; in an arbitrary order that
conforms to the partial order specified by the < relation. For each
2-interval Dg in DT, find the subset of 2-intervals

O]
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)

Proof.

o Step3.2.If Dy = @, Ag + {B} and Bg « {B}. Otherwise

Find D, € D;r such that | B, | is maximum and set Ag <+ Bg U {Dg},
Find D, € Dg‘ such that |Aq| + |Cy | is maximum and set
3/5 +— A, U C,X,ﬁ U {D/g}.

D,/
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)

Proof.
o Step 4. Let Dy, be either A, or B, such that | Dy| is maximum.

Return Dy, \ {w}.

D,/
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Pseudoknot prediction and alternate models

2-intervals: Model R = {<, (}

Theorem

The 2-INTERVAL PATTERN problem for model R = {<, ()} is approximable
within ratio 2. (The algorithm is O(n>log(n))) time.)

Proof.
Notes
o In the algorithm we use Az and B to represent the two different

alternating patterns, with p as both the last element backbone
element.

o The 2-interval D, in steps 3.1 and 3.2 represents the second-to-last
backbone element in Az and Bj.

o The subset C, g represents the maximum size stripe between the

two backbone elements D, and Dyg.
O
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Pseudoknot prediction and alternate models
d-claw free graphs

Definition (d-claw, d-claw-free)

For an undirected graph G, a d-claw C is an induced subgraph K; ; that
consists of an independent set T, of d vertices (called talons) and a
center vertex z¢ that is connected to all the talons.

A graph is d-claw-free if it has no d-claws.

(A 3-claw is commonly called a claw so that a graph is claw-free if and
only if it does not contain the complete bipartite graph K; 3 (known as
the ”“claw graph”) as an induced subgraph.)
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Pseudoknot prediction and alternate models

d-claw free graphs

The regular icosahedron, a polyhedron whose vertices and edges form a
claw-free graph.
S. Vialette (CNRS & LIGM)
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Pseudoknot prediction and alternate models

d-claw free graphs

Definition (The MAXIMUM WEIGHT INDEPENDENT SET problem)
o Input: A graph G = (V,E) and a weight functionw : V. — IN.

o Solution: A set of independent vertices V' C V that maximises

ZZJEV/ w(v)'

Remarks
In d-claw-free graphs

o Arbitrary weight: (d/2 + €)-approximation

o Small weight: (d/2)-approximation

o Unit weight: ((d — 1)/2 + €)-approximation
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Pseudoknot prediction and alternate models

2-intervals and d-claw free graphs

Theorem

For a set of 2-intervals D with interval length {,a < ¢ < b, the 2-interval
graph G(D) is d-claw-free for

d:5+2(ba_2).

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 134 / 138



Pseudoknot prediction and alternate models

2-intervals and d-claw free graphs

Theorem

For a set of 2-intervals D with interval length {,a < ¢ < b, the 2-interval
graph G(D) is d-claw-free for

2(b—2
i=5+2=2
a
Proof.
o Let I be an interval and let Z be a set of disjoint intervals that
intersect I.

o All intervals in 7 are completely contained in I except possibly the
leftmost one and the rightmost one.

O]
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Pseudoknot prediction and alternate models

2-intervals and d-claw free graphs

Corollary
Let D be a set of 2-intervals.
o if all intervals have the same length (unit support), the associated
2-interval graph G(D) is 5-claw-free;

o if all intervals have length 2 or 3, the associated 2-interval graph G(D)
is 5-claw-free

Corollary

The (WEIGHTED) 2-INTERVAL PATTERN problem is approximable within
ratio 2.5 + € for arbitrary weights and 2 + € for unit weights.
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Pseudoknot prediction and alternate models

Nearest Neighbor Energy Model

For a secondary structure S

o the number of base pairs stackings is

BPS(S) = |{(i,j) € S: (i+1,j—1) € S}]

o the number of stacking base pairs is

SBP(S) = |{(i,j) €S: (i+1,j—1)€Sor (i—1,j+1) € S}|
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Pseudoknot prediction and alternate models

Nearest Neighbor Energy Model

Definition (The MAXIMUM BASE PAIRS STACKING (BPS)
problem)

o Input: A sequence u.

o Solution: A secondary structure S for u that maximises BPS(S).

Definition (The MAXIMUM STACKINGBASE PAIRS (SBP)
problem)

o Input: A sequence u.

o Solution: A secondary structure S for u that maximises SBP(S).
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

o Step 1. Repeatedly find the leftmost 5 consecutive stacking loops
(i.e., find the 2-interval ([x, x + 5], [y — 5,y]) where x is as small as
possible). Add these stacking loops to S.

o Step 2. Repeatedly find any 4 consecutive stacking loops. Add
these stacking loops to S.

o Step 3. Repeatedly find any 3 consecutive stacking loops. Add
these stacking loops to S.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
o Step 4.1. Construct a 2-interval set D by associating a 2-interval to
each 2 consecutive stacking loop.
o Step 4.2. Construct the 2-interval graph G(D) and assign each
vertex a weight: 1 for a single stacking loop and 2 for two
consecutive stacking loops.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

o Step 4.3. Find a maximum weight independent set D’ in G(D)
(5/2-approximation algorithm for 5-claw-free graphs).

o Step 4.4. For each 2-interval in D’, add the corresponding stacking
loop in S.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

o Let sy, 57,53 and s4, respectively, be the number of stacking loops
found by the first, second, third and fourth of our algorihm.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

o Let 5* be the set of stacking loops in an optimal secondary
structure.

o Let s}, s; and s3, respectively, be the number of stacking loops in
S* that intersect the stacking loops found by the first, second and
third step of our algorithm.

o Let s; be the number of remaining stacking loops in $* which are
represented by 2-intervals in D.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

|S| =51+ 52+ 53+ 54
|S*| =s] +5s5 +55 451
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

For each k consecutive stacking loops D found by the first three steps of
our algorithm, the number of stacking loops in S* that intersect them is
at most 2(k + 2) (i.e., k + 2 for each interval of the 2-interval D).

O

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 138 / 138



Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
Step 1.
o By always choosing the leftmost 5-consecutive stacking loop Ds,

we can guarantee that the left interval of the 2-interval D5
intersects at most 5 + 1 stacking loops in S*.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
Step 1.
o Suppose the contrary that the left interval of Ds intersects 7
stacking loops in S*.
o Then these 7 stacking loops must be consecutive, and the leftmost
5 of these stacking loops should have been choosen instead of Ds.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

Step 1.
1< 5+i+5+2 13 _ ..
S1 5 5
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
Step 2.

o With all 5 consecutive stacking loops found by the first step, we
can guarantee that each interval of a 2-interval D, (consisting of 4
consecutive stacking loops) found by the second step of our
algorithm intersects at most 4 4 1 stacking loops in §*.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
Step 2.
o Suppose the contrary that an interval of Ds intersects 6 stacking
loops in S*.
o Then these 6 stacking loops must be consecutive, and hence must
contain 5 consecutive stacking loops.

o This is a contradiction.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

Step 2.

*
o 4F144+1 10 .
S2 4 4
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

Step 3.
53 < M _ § ~ .67
S3 4 3

O

S. Vialette (CNRS & LIGM) RNA Secondary Structures 2016-2017 138 / 138



Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
Step 4.

o Each 2-interval in D is balanced and corresponds to either a single
stacking loop (with interval length 2) ot two consecutive stacking
loops (with interval length 3).

o Therefore the 2-interval graph G(D) is 5-claw-free.
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
Step 4.

o The MAXIMUM WEIGHT INDEPENDENT SET problem in 5-claw-free
graphs is approximable within ratio 5/2.

*
b1 o
Sq

=25

N O
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem

The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.

EN _ Z?:l S;

’ ‘ B 2?:151'

4 *
5

3
i=1 2—15;
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Pseudoknot prediction and alternate models

Approximating the MAXIMUM BASE PAIRS STACKING
problem

Theorem
The MAXIMUM BASE PAIRS STACKING problem is approximable within
ratio 8/3.

Proof.
|S*| 13 S 10 Sy 8 S3 5 S4
A G AR G AL G A G
Yj—15] Yj—15] Yi—15] Yi—15]
8 8 8 8
Y18 Yi—15j Yio1S; j=15j
8
3
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