
Haskell
Hello Recursion!

Stéphane Vialette

LIGM, Université Paris-Est Marne-la-Vallée

November 19, 2018

Hello Recursion!

Hello Recursion!

Recursion is a way of defining functions in which a function is
applied inside its own definition.

Recursion is important in Haskell because, unlike with imperative
languages, you do computation in Haskell by declaring what
something is rather than specifying how to compute it.

That’s why Haskell isn’t about issuing your computer a sequence
of setps to execute, but rather about directly defining what the
desired result, often in a recursive manner.

Maximum Awesome

maximum' :: (Ord a) => [a] -> a

maximum' [] = error "maximum of empty list"

maximum' [x] = x

maximum' (x:xs)

| x > maxTail = x

| otherwise = maxTail

where maxTail = maximum' xs

Maximum Awesome

ghci> maximum' [2,5,1]

5

ghci>

A Few More Recursive Functions

A Few More Recursive Functions
replicate

replicate takes an Int and a value, and returns a list that has
several repetitions of the same element.

replicate' :: (Num i, Ord i) => i -> a -> [a]

replicate' n x

| n <= 0 = []

| otherwise = x : replicate' (n-1) x

ghci> replicate' 0 5

[]

ghci> replicate' 1 5

[5]

ghci> replicate' 10 5

[5,5,5,5,5,5,5,5,5,5]

In Passing

Num is not a subclass of Ord.

That means that what constitutes for a number doesn’t really have
to adhere to an ordering.

So that’s why we have to specify both the Num and Ord class
constraints when doing addition or subtraction and also
comparison.

A Few More Recursive Functions
take

take returns a specified number of elements from a specified list.

take' :: (Num i, Ord i) => i -> [a] -> [a]

take' _ [] = []

take' n (x : xs) = x : take' (n-1) xs

ghci> take' 0 ['a'..'z']

""

ghci> take' 1 ['a'..'z']

"a"

ghci> take' 5 ['a'..'z']

"abcde"

ghci> take' 5 []

[]

A Few More Recursive Functions
reverse

reverse takes a list and return a list with the same elements, but
in the reverse order.

reverse' :: [a] -> [a]

reverse' [] = []

reverse' (x : xs) = reverse' xs ++ [x]

ghci> reverse' []

[]

ghci> reverse' [1..10]

[10,9,8,7,6,5,4,3,2,1]

ghci>

A Few More Recursive Functions
reverse

reverse takes a list and return a list with the same elements, but
in the reverse order.

reverse'' = aux []

where

aux rs [] = rs

aux rs (x : xs) = aux (x : rs) xs

ghci> reverse'' []

[]

ghci> reverse'' [1..10]

[10,9,8,7,6,5,4,3,2,1]

A Few More Recursive Functions
repeat

repeat takes an element and returns an infinite list composed of
that element.

repeat' :: a -> [a]

repeat' x = x : repeat' x

ghci> take 10 (repeat' 5)

[5,5,5,5,5,5,5,5,5,5]

A Few More Recursive Functions
zip

zip takes two lists and zips them together.

ghci> zip [1,2,3] [2,3]

[(1,2),(2,3)]

zip truncates the longer list to match the length of the shorter
one.

How about if we zip something with an empty list? Well, we get
an empty list back then.

zip' :: [a] -> [b] -> [(a,b)]

zip' _ [] = []

zip' [] _ = []

zip' (x : xs) (y : ys) = (x,y) : zip' xs ys

A Few More Recursive Functions
elem

elem takes an element and a list and sees if that element is in the
list.

The edge condition, as is most of the times with lists, is the empty
list. We know that an empty list contains no elements, so it
certainly doesn’t have the droids we’re looking for.

elem' :: (Eq a) => a -> [a] -> Bool

elem' a [] = False

elem' a (x : xs)

| a == x = True

| otherwise = a `elem'` xs

Quick, Sort!

There are many approaches to recursively sorting lists.

The quicksort algorithm works like this: You select the first
element (called the pivot), put all the other list elements that are
less than or equal to the first element on its left side, and put all
the other list elements that are greater than the first element to its
right side.

Now we recursively sort all the elements that are on the left and
right sides of the pivot by calling the same function on them.

Quick, Sort!

Quick, Sort!

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

let smallerSorted = quicksort [a | a <- xs, a <= x]

biggerSorted = quicksort [a | a <- xs, a > x]

in smallerSorted ++ [x] ++ biggerSorted

Quick, Sort!

ghci> :t quicksort

quicksort :: Ord a => [a] -> [a]

ghci> quicksort []

[]

ghci> quicksort [1]

[1]

ghci> quicksort [1,5,9,8,2,6,4,7,3]

[1,2,3,4,5,6,7,8,9]

ghci> quicksort "to be or not to be"

" bbeenoooorttt"

ghci> quicksort [(5,6),(1,2),(3,4)]

[(1,2),(3,4),(5,6)]

Thinking recursively

Thinking recursively
Pattern

Start by defining a base case: simple non-recursive solution that
holds when the input is trivial.

Then, break your problem down into one or many subproblems and
recursively solve those by applying the same function to them.

Build up your final solution from those solved subproblems.

Use accumulators
Factorial

factorial :: (Eq a, Num a) => a -> a

factorial 0 = 1

factorial n = n * factorial (n - 1)

factorial' :: Integer -> Integer

factorial' = go 1

where

go acc n

| n <= 1 = acc

| otherwise = go (acc * n) (n - 1)

Lists

ghci> [1,2,3] ++ [4,5,6]

[1,2,3,4,5,6]

ghci> "Hello " ++ "world"

"Hello world"

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x : xs) ++ ys = x : xs ++ ys

Merge sort

Mergesort is a little more complicated to implement.

The algorithm as follows:

1. List is split into two parts.

2. Two parts are sorted by the algorithm

3. The sorted parts are merged by a special merging procedure
for sorted lists

Merge sort

Merge sort

Let’s first define how we split a list into two parts:

mergeSortSplitInHalf :: [a] -> ([a], [a])

mergeSortSplitInHalf xs = (take n xs, drop n xs)

where n = (length xs) `div` 2

ghci> mergeSortSplitInHalf []

([],[])

ghci> mergeSortSplitInHalf [1..5]

([1,2],[3,4,5])

ghci> mergeSortSplitInHalf [1..6]

([1,2,3],[4,5,6])

Merge sort

Let’s now define a function for merging two sorted arrays:

mergeSortMerge :: (Ord a) => [a] -> [a] -> [a]

mergeSortMerge [] xs = xs

mergeSortMerge xs [] = xs

mergeSortMerge (x:xs) (y:ys)

| (x < y) = x:mergeSortMerge xs (y:ys)

| otherwise = y:mergeSortMerge (x:xs) ys

ghci> mergeSortMerge [1..3] []

[1,2,3]

ghci> mergeSortMerge [] [1..3]

[1,2,3]

ghci> mergeSortMerge [1,3,4] [2,4,6]

[1,2,3,4,4,6]

Merge sort

mergeSort :: (Ord a) => [a] -> [a]

mergeSort xs = mergeSortMerge ls' rs'

where

(ls, rs) = mergeSortSplitInHalf xs

ls' = mergeSort ls

rs' = mergeSort rs

ghci> mergeSort []

[]

ghci> mergeSort [1]

[1]

ghci> mergeSort [1,3,4,2,5,7,6]

[1,2,3,4,5,6,7]

Bubble sort
Bubble sort is as follows:

procedure bubbleSort(A : list of sortable items)

n = length(A)

repeat

swapped = false

for i = 1 to n-1 inclusive do

/* if this pair is out of order */

if A[i-1] > A[i] then

/* swap them and remember something changed */

swap(A[i-1], A[i])

swapped = true

end if

end for

until not swapped

end procedure

Bubble sort

Bubble sort

Let’s first define the function that will go through all the elements
in a list and exchange pairs of elements when it sees that the
sorting order is wrong.

bubbleSortSwap :: (Ord a) => [a] -> [a]

bubbleSortSwap (x:y:xs)

| x > y = y : bubbleSortSwap (x : xs)

| otherwise = x : bubbleSortSwap (y : xs)

bubbleSortSwap (x) = (x)

ghci> bubbleSortSwap []

[]

ghci> bubbleSortSwap [1]

[1]

ghci> bubbleSortSwap [4,3,2,1]

[3,2,1,4]

ghci>

Bubble sort

Then we just need to apply this function n times – the length of
the list that should be sorted.

bubbleSort' :: (Ord a) => [a] -> Int -> [a]

bubbleSort' xs i

| i == (length xs) = xs

| otherwise = bubbleSort' (bubbleSortSwap xs) (i + 1)

bubbleSort :: (Ord a) => [a] -> [a]

bubbleSort xs = bubbleSort' xs 0

ghci> bubbleSort []

[]

ghci> bubbleSort [2,4,1,6,5,3]

[1,2,3,4,5,6]

ghci>

Thinking recursively

Don’t get TOO excited about recursion...

Prefer

sumEven :: Integral a => [a] -> a

sumEven = sum . filter even

to

sumEven' :: Integral a => [a] -> a

sumEven' [] = 0

sumEven' (x : xs)

| even x = x + sumEven' xs

| otherwise = sumEven' xs

Don’t get TOO excited about recursion...

Prefer

sumEven :: Integral a => [a] -> a

sumEven = sum . filter even

to

sumEven'' :: Integral a => [a] -> a

sumEven'' = go 0

where

go acc [] = acc

go acc (x : xs)

| even x = go (acc + x) xs

| otherwise = go acc xs

Don’t get TOO excited about recursion...

Prefer

sumEven :: Integral a => [a] -> a

sumEven = sum . filter even

to

sumEven''' :: Integral a => [a] -> a

sumEven''' xs = sum [x | x <- xs, even x]

Don’t get TOO excited about recursion...

Prefer

pairs' :: [a] -> [(a, a)]

pairs' xs = zip xs (tail xs)

to

pairs :: [a] -> [(a, a)]

pairs [] = []

pairs [_] = []

pairs (x : x' : xs) = (x, x') : pairs (x' : xs)

Don’t get TOO excited about recursion...
Prefer

average :: Fractional t => [t] -> [t] -> [t]

average = zipWith (\ x y -> (x + y) / 2.0)

or

average :: Fractional t => [t] -> [t] -> [t]

average = zipWith f

where

f x y = (x + y) / 2.0

to

average' :: Fractional t => [t] -> [t] -> [t]

average' [] _ = []

average' _ [] = []

average' (x : xs) (y : ys) = a : average' xs ys

where

a = (x + y) / 2.0

