
Haskell
High-Order Functions

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Paris-Est Marne-la-Vallée

November 21, 2018

http://igm.univ-mlv.fr/~vialette/?section=teaching

Curried functions

Every function in Haskell officially takes only one parameter.

A curried function is a function that, instead of taking several
parameters, always takes exactly one parameter.

When it is called with that parameter, it returns a function that
takes the next parameter, and so on.

Curried functions

ghci> 1 + 2

3

ghci> :t +

<interactive>:1:1: parse error on input '+'

ghci> (+) 1 2

3

ghci> :t (+)

(+) :: Num a => a -> a -> a

ghci>

Curried functions

ghci> let add = (+)

ghci> :t add

add :: Num a => a -> a -> a

ghci> add 1 2

3

ghci> (add 1) 2

3

ghci> let add1 = add 1

ghci> :t add 1

add 1 :: Num a => a -> a

ghci> add1 2

3

ghci>

Curried functions
Whenever we have a type signature that features the arrow ->,
that means it is a function that takes whatever is on the left side
of the arrow and returns a value whose type is indicated on the
right side of the arrow.

Curried functions

When we have something like a -> a -> a, we are dealing with a
function that takes a value of type a, and it returns a function that
also takes a value of type a and returns a value of type a.

In other words a -> a -> a reads as a -> (a -> a).

Curried functions

ghci> let multThree x y z = x * y * z

ghci> :t multThree

multThree :: Num a => a -> a -> a -> a

ghci> let multTwoWithNine = multThree 9

ghci> :t multTwoWithNine

multTwoWithNine :: Num a => a -> a -> a

ghci> multTwoWithNine 2 3

54

ghci> let multWithNineAndFive = multTwoWithNine 5

ghci> :t multWithNineAndFive

multWithNineAndFive :: Num a => a -> a

ghci> multWithNineAndFive 2

90

ghci> multThree 2 5 9

90

ghci>

Curried functions

ghci> :t compare

compare :: Ord a => a -> a -> Ordering

ghci> :t (compare 100)

(compare 100) :: (Ord a, Num a) => a -> Ordering

ghci> let compareWithHundred x = compare 100 x

ghci> compareWithHundred 99

GT

ghci> :t compareWithHundred

compareWithHundred :: (Ord a, Num a) => a -> Ordering

ghci> let compareWithHundred' = compare 100

ghci> :t compareWithHundred'

compareWithHundred' :: (Ord a, Num a) => a -> Ordering

ghci> compareWithHundred' 99

GT

ghci>

Curried functions

ghci> let divideByTen = (/10)

ghci> :t divideByTen

divideByTen :: Fractional a => a -> a

ghci> divideByTen 200

20.0

ghci> (/ 10) 200

20.0

ghci> let isUpperAlphanum = (`elem` ['A'..'Z'])

ghci> :t isUpperAlphanum

isUpperAlphanum :: Char -> Bool

ghci> isUpperAlphanum 'k'

False

ghci> isUpperAlphanum 'K'

True

ghci>

Some Higher-Orderism Is in Order

In Haskell, function can take other functions as parameter, and as
we have seen, they can also return functions as return value.

applyTwice :: (a -> a) -> a -> a

applyTwice f x = f (f x)

-> is naturally right-associative. Therefore, here parentheses are
mandatory as a -> a -> a -> a is interpreted by Haskell as
a -> (a -> (a -> a)).

Some Higher-Orderism Is in Order

ghci> applyTwice (+3) 10

16

ghci> (+3) ((+3) 10)

16

ghci> applyTwice (++ " HAHA") "HEY"

"HEY HAHA HAHA"

ghci> applyTwice ("HAHA " ++) "HEY"

"HAHA HAHA HEY"

ghci> let multThree x y z = x * y * z

in applyTwice (multThree 2 2) 9

144

ghci> applyTwice (1:) [2]

[1,1,2]

ghci>

First-class and higher-order functions

Some Higher-Orderism Is in Order
Implementing zipWith

zipWith takes a function and two lists as parameters, and then
joins the two lists by applying the function between corresponding
elements (it’s in the standard library).

zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith' _ [] _ = []

zipWith' _ _ [] = []

zipWith' f (x:xs) (y:ys) = f x y : zipWith' f xs ys

Some Higher-Orderism Is in Order
Implementing zipWith

ghci> :t zipWith'

zipWith' :: (a -> b -> c) -> [a] -> [b] -> [c]

ghci> zipWith' (+) [1,2,3] [11,12,13]

[12,14,16]

ghci> zipWith' max [1,12,3] [11,2,13]

[11,12,13]

ghci> zipWith' (++) ["foo","bar"] ["fighther","hoppers"]

["foofighther","barhoppers"]

ghci> zipWith' (*) (replicate 5 2) [1..]

[2,4,6,8,10]

ghci> zipWith' (zipWith' (*)) [[1,2],[3,4]] [[5,6],[7,8]]

[[5,12],[21,32]]

ghci>

Some Higher-Orderism Is in Order
Implementing flip

flip takes a function and returns a function that is like our
original function, but with the first two arguments flipped (it’s in
the standard library).

flip' :: (a -> b -> c) -> b -> a -> c

flip' f = g

where

g x y = f y x

Recall that the arrow -> is right-associative, and hence
(a -> b -> c) -> b -> a -> c is the same as
(a -> b -> c) -> (b -> a -> c).

flip' :: (a -> b -> c) -> b -> a -> c

flip' f x y = f y x

Some Higher-Orderism Is in Order
Implementing flip

ghci> zip [1..5] "hello"

[(1,'h'),(2,'e'),(3,'l'),(4,'l'),(5,'o')]

ghci> flip' zip [1..5] "hello"

[('h',1),('e',2),('l',3),('l',4),('o',5)]

ghci> zipWith div [2,2..] [10,8,6,4,2]

[0,0,0,0,1]

ghci> zipWith (flip' div) [2,2..] [10,8,6,4,2]

[5,4,3,2,1]

ghci>

The functionnal Programmer’s Toolbox

The functionnal Programmer’s Toolbox
The map function

The map function takes a function and a list, and applies that
function to every element in the list, producing a new list.

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

map is a versatile higher-order function that can be used in many
different ways

The functionnal Programmer’s Toolbox
The map function

ghci> map (+1) [1,2,3,4,5]

[2,3,4,5,6]

ghci> map (++ "!") ["BIFF","BANG","POW"]

["BIFF!","BANG!","POW!"]

ghci> map (replicate 3) [1,2,3]

[[1,1,1],[2,2,2],[3,3,3]]

ghci> map (map (^2)) [[1,2],[3,4]]

[[1,4],[9,16]]

ghci> map fst [(1,2),(3,4),(5,6)]

[1,3,5]

ghci> map snd [(1,2),(3,4),(5,6)]

[2,4,6]

ghci>

The functionnal Programmer’s Toolbox
The filter function

The filter function takes a predicate and a list, and returns the
list of elements that satify the predicate

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filer p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

If p x evaluates to True, the element is included in the new list. If
it doesn’t evaluate to True, it isn’t included in the new list.

The functionnal Programmer’s Toolbox
The filter function

ghci> filter (> 3) [1,2,3,4,5,1,2,3,4,5]

[4,5,4,5]

ghci> filter (== 3) [1,2,3,4,5,1,2,3,4,5]

[3,3]

ghci> filter (< 3) [1,2,3,4,5,1,2,3,4,5]

[1,2,1,2]

ghci> filter even [1,2,3,4,5,1,2,3,4,5]

[2,4,2,4]

ghci> filter (`elem` ['a'..'z']) "I lOvE hAsKeLl"

"lvhsel"

ghci> filter (`elem` ['A'..'Z']) "I lOvE hAsKeLl"

"IOEAKL"

ghci>

The functionnal Programmer’s Toolbox
The filter function

The filter equivalent of applying several predicates in a list
comprehension is either filtering something several times or joining
predicates with the logical && function.

ghci> filter (< 15) (filter even [1..20])

[2,4,6,8,10,12,14]

ghci> let p x = x < 15 && even x in filter p [1..20]

[2,4,6,8,10,12,14]

ghci> filter (\x -> x < 15 && even x) [1..20]

[2,4,6,8,10,12,14]

ghci> [x | x <- [1..20], x < 15, even x]

[2,4,6,8,10,12,14]

ghci>

The functionnal Programmer’s Toolbox
The filter function

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) =

let smallerOrEqual = filter (<= x) xs

larger = filter (> x) xs

in quicksort smallerOrEqual ++ [x] ++ quicksort larger

The functionnal Programmer’s Toolbox
More examples of map and filter

Let’s find the largest number under 100 000 that is divisible by
3 829.

The functionnal Programmer’s Toolbox
More examples of map and filter

Let’s find the largest number under 100 000 that is divisible by
3 829.

largestDivisible :: Integer

largestDivisible = head (filter p [100000,99999..])

where p x = x `mod` 3829 == 0

The functionnal Programmer’s Toolbox
More examples of map and filter

Let’s find the sum of all odd squares that are smaller than 10 000.

The functionnal Programmer’s Toolbox
More examples of map and filter

Let’s find the sum of all odd squares that are smaller than 10 000.

ghci> sum (takeWhile (< 10000) (filter odd (map (^2) [1..])))

166650

ghci> sum (takeWhile (< 10000) [x | x <- [y^2 | y <- [1..]],

odd x])

166650

ghci>

The functionnal Programmer’s Toolbox
More examples of map and filter

A Collatz sequence is defined as follows:

• Start with any natural number.

• If the number is 1, stop.

• If the number is even, divide it by 2.

• If the number is odd, multiply it by 3 and add 1.

• Repeat the algorithm with the resulting number.

Mathematicians theorize that for all starting number, the chain will
finish at the number 1.

The functionnal Programmer’s Toolbox
More examples of map and filter

The functionnal Programmer’s Toolbox
More examples of map and filter

The functionnal Programmer’s Toolbox
More examples of map and filter

collatz :: Integer -> [Integer]

collatz 1 = [1]

collatz n

| even n = n : collatz (n `div` 2)

| odd n = n : collatz (n*3 + 1)

ghci> collatz 10

[10,5,16,8,4,2,1]

ghci> collatz 20

[20,10,5,16,8,4,2,1]

ghci> length $ collatz 100

26

ghci> length $ collatz 1000

112

ghci>

The functionnal Programmer’s Toolbox
Mapping functions with Multiple Parameters

ghci> let listOfFuns = map (*) [0..]

ghci> :t listOfFuns

listOfFuns :: (Num a, Enum a) => [a -> a]

ghci> (listOfFuns !! 0) 5

0

ghci> (listOfFuns !! 1) 5

5

ghci> (listOfFuns !! 2) 5

10

ghci> (listOfFuns !! 3) 5

15

ghci> (listOfFuns !! 4) 5

20

ghci>

Lambdas

Lambdas

Lambdas are anonymous fucntions that we use when we need a
function only once.

Normally, we make a lambda with the sole purpose of passing it to
a higer-order function.

To declare a lambda, we write \ (because it kind of looks like the
Greek letterlambda (λ) if you squint hard enough), and then we
write the function’s parameters, separated by spaces.

After that comes a ->, and then the function body.

If a lambda match fails in a lambda, a runtime error occurs,
so be careful!

Lambdas

ghci> map (+3) [1..5]

[4,5,6,7,8]

ghci> map (\x -> x + 3) [1..5]

[4,5,6,7,8]

ghci> zipWith (+) [1..5] [101..105]

[102,104,106,108,110]

ghci> zipWith (\x y -> x + y) [1..5] [101..105]

[102,104,106,108,110]

ghci> map (\(x,y) -> x + y) [(1,2),(3,4),(5,6)]

[3,7,11]

ghci>

Lambdas

Lambdas

The following functions are equivalent:

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z

addThree' :: Int -> Int -> Int -> Int

addThree' = \x -> \y -> \z -> x + y + z

In the second example, the lambdas are not surroounded with
parentheses. When you write a lambda without parentheses, it
assumes that everything to the right of the arrow -> belongs to it.

Lambdas

The following functions are equivalent:

flip' :: (a -> b -> c) -> b -> a -> c

flip' f x y = f y x

flip'' :: (a -> b -> c) -> b -> a -> c

flip'' f = \x y -> f y x

In the second example, our new notation makes it obvious that this
will often be used for producing a new function.

I fold you so

I fold you so

• Folds can be used to implement any function where you
traverse a list once, element by element, and then return
something based on that.

• A fold takes a binary function (one that takes two parameters,
such as + or div), a starting value (often called the
accumulator), and a list to fold up.

• Lists can folded up from the left or from the right.

• The fold function calls the given binary function, using the
accumulator and the first (or last) element of the list as
parameters. The resulting value is the new accumulator.

• The accumulator value (and hence the result) of a fold can be
of any type.

Left fold with foldl

Lambdas

I fold you so
Left fold with foldl

sum' :: (Num a) => [a] -> a

sum' xs = foldl (\acc x -> acc + x) 0 xs

ghci> sum' []

0

ghci> sum' [3,5,2,1]

11

ghci>

I fold you so
Left fold with foldl

I fold you so
Left fold with foldl

The lambda function \acc x -> acc + x is the same as (+)

sum'' :: (Num a) => [a] -> a

sum'' = foldl (+) 0

ghci> sum'' []

0

ghci> sum'' [3,5,2,1]

11

ghci>

A quick parenthesis
η-reduction

• An eta conversion (also written η-conversion) is adding or
dropping of abstraction over a function.

• For example, the following two values are equivalent under
η-conversion: \x -> abs x and abs.

• Converting from the first to the second would constitute an
η-reduction, and moving from the second to the first would
be an η-abstraction.

• The term η-conversion can refer to the process in either
direction.

• Extensive use of η-reduction can lead to Pointfree
programming.

A quick parenthesis
η-reduction

Therefore

sum'' :: (Num a) => [a] -> a

sum'' xs = foldl (+) 0 xs

is usually rewritten as:

sum'' :: (Num a) => [a] -> a

sum'' = foldl (+) 0

I fold you so
Left fold with foldl

elem' :: (Eq a) => a -> [a] -> Bool

elem' y ys = foldl (\acc x -> if x == y then True else acc)

False ys

Prelude> elem' 'a' ['a'..'l']

True

Prelude> elem' 'm' ['a'..'l']

False

Prelude> elem' (3, 9) [(i, i^2) | i <- [1..100]]

True

Prelude> elem' (4, 17) [(i, i^2) | i <- [1..100]]

False

Prelude>

I fold you so
Right fold with foldr

• The right fold function foldr is similar to the left fold, except
that the accumulator eats up the values from the right.

• Also, the order of the parameters in the right fold’s binary
function is reversed: The current list value is the right
parameter and the accumulator is the second.

Right fold with foldr

I fold you so
Right fold with foldr

map' :: (a -> b) -> [a] -> [b]

map' f xs = foldr (\x acc -> f x : acc) [] xs

ghci> map' (+ 10) []

[]

ghci> map' (+ 10) [1..5]

[11,12,13,14,15]

ghci>

I fold you so
Right fold with foldr

map' :: (a -> b) -> [a] -> [b]

map' f = foldr (\x acc -> f x : acc) []

map'' :: (a -> b) -> [a] -> [b]

map'' f = foldl (\acc x -> acc ++ [f x]) []

Notice that the ++ function is much slower than :, so we usually
use right fold when we are building up new lists from lists.

I fold you so
Right fold with foldr

The elem function checks chether a value is part of a list.

elem' :: (Eq a) => a -> [a] -> Bool

elem' x = foldr (\y acc -> if x==y then True else acc)

False

ghci> :t elem'

elem' :: Eq a => a -> [a] -> Bool

ghci> 5 `elem` [10..20]

False

ghci> 15 `elem` [10..20]

True

ghci>

I fold you so
The foldl1 and foldr1 functions

• The foldl1 and foldr1 functions work much like foldl and
foldr, except that you don’t need to provide them with an
explicit starting accumulator.

• The foldl1 and foldr1 functions assume the first (or last)
element of the list to be the starting accumulator, and then
start the fold with the next element next to it.

I fold you so
The foldl1 and foldr1 functions

ghci> :t foldl1

foldl1 :: (a -> a -> a) -> [a] -> a

ghci> :t foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

ghci>

I fold you so
The foldl1 and foldr1 functions

minimum' :: (Ord a) => [a] -> a

minimum' = foldl1 min

maximum' :: (Ord a) => [a] -> a

maximum' = foldl1 max

ghci> :t minimum'

minimum' :: Ord a => [a] -> a

ghci> minimum' []

*** Exception: Prelude.foldl1: empty list

ghci> minimum' [1]

1

ghci> minimum' $ [10..20] ++ [1..10]

1

ghci>

I fold you so
Some fold examples

reverse' :: [a] -> [a]

reverse' = foldl (\acc x -> x : acc) []

reverse'' :: [a] -> [a]

reverse'' = foldl (flip (:)) []

Main> reverse' []

[]

ghci> reverse' [1..5]

[5,4,3,2,1]

ghci> reverse'' []

[]

ghci> reverse'' [1..5]

[5,4,3,2,1]

ghci>

I fold you so
Some fold examples

filter' :: (a -> Bool) -> [a] -> [a]

filter' p = foldr (\x acc -> if p x then x : acc else acc)

[]

last' :: [a] -> a

last' = foldl1 (_ x -> x)

length' :: Num b => [a] -> b

length' = foldr (_ -> (+1)) 0

I fold you so
Folding infinite lists

and' :: [Bool] -> Bool

and' = foldr (&&) True

ghci> and' (repeat False)

False

ghci>

foldl versus foldr behavior with infinite lists

How folds differ seems to be a frequent source of confusion, so
here’s a more general overview:

Consider folding a list of n values [x1, x2, x3, x4 ... xn]

with some function f and seed z.

foldl versus foldr behavior with infinite lists

How folds differ seems to be a frequent source of confusion, so
here’s a more general overview:

Consider folding a list of n values [x1, x2, x3, x4 ... xn]

with some function f and seed z.

foldl is:

• Left associative:
f (... (f (f (f (f z x1) x2) x3) x4) ...) xn.

• Tail recursive: It iterates through the list, producing the
value afterwards.

• Lazy: Nothing is evaluated until the result is needed.

• Backwards: foldl (flip (:)) [] reverses a list.

foldl versus foldr behavior with infinite lists

How folds differ seems to be a frequent source of confusion, so
here’s a more general overview:

Consider folding a list of n values [x1, x2, x3, x4 ... xn]

with some function f and seed z.

foldr is:

• Right associative:
f x1 (f x2 (f x3 (f x4 ...(f xn z) ...))).

• Recursive into an argument: Each iteration applies f to the
next value and the result of folding the rest of the list.

• Lazy: Nothing is evaluated until the result is needed.

• Forwards: foldr (:) [] returns a list unchanged.

I fold you so
Scans

• The scanl and scanr functions are like foldl and foldr,
except they report all the intermediate accumulator states in
the form of a list.

• The scanl1 and scanr1 functions are analogous to foldl1

and foldr1.

I fold you so
Scans

ghci> scanl (+) 0 [1,2,3,4]

[0,1,3,6,10]

ghci> scanr (+) 0 [1,2,3,4]

[10,9,7,4,0]

ghci> scanl1 (\acc x -> if x > acc then x else acc) [1..5]

[1,2,3,4,5]

ghci> scanl1 max [1..5]

[1,2,3,4,5]

ghci> scanl (flip (:)) [] [3,2,1]

[[],[3],[2,3],[1,2,3]]

ghci>

I fold you so
Function application with $

The function application operator $ is defined as follows:

($) :: (a -> b) -> a -> b

f $ x = f x

I fold you so
Function application with $

I fold you so
Function application with $

What is this useless function? It is just function application! Well,
that is almost true, but not quite.

Whereas normal function application (putting a space between two
things) has a really high precedence, the $ function has the lowest
precedence.

Function application with a space is left-associative (so f a b c is
the same as (((f a) b) c)), while function application with $ is
right-associative.

I fold you so
Function application with $

ghci> sum (filter (> 10) (map (*2) [2..10]))

80

ghci> sum $ filter (> 10) (map (*2) [2..10])

80

ghci> sum $ filter (> 10) $ map (*2) [2..10]

80

ghci>

I fold you so
Function application with $

Apart of getting rid of parentheses, $ let us treat function
application like just another function.

ghci> :t (4+)

(4+) :: Num a => a -> a

ghci> :t (^2)

(^2) :: Num a => a -> a

ghci> :t sqrt

sqrt :: Floating a => a -> a

ghci> :t [(4+),(^2),sqrt]

[(4+),(^2),sqrt] :: Floating a => [a -> a]

ghci> map ($ 3) [(4+),(^2),sqrt]

[7.0,9.0,1.7320508075688772]

ghci>

Function composition

In mathematics, function composition is defined as follows:

(f ◦ g)(x) = f (g(x))

Function composition

In Haskell, function composition is pretty much the same thing.

We do function composition with the . function:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \x -> f (g x)

Function composition

ghci> :t negate

negate :: Num a => a -> a

ghci> :t abs

abs :: Num a => a -> a

ghci> map (\x -> negate(abs x)) [1,-2,3,-4,5,-6]

[-1,-2,-3,-4,-5,-6]

ghci> map (negate . abs) [1,-2,3,-4,5,-6]

[-1,-2,-3,-4,-5,-6]

ghci>

Function composition

ghci> map (\xs -> negate (sum (tail xs))) [[1..5],[3..6]]

[-14,-15]

ghci> map (negate . sum . tail) [[1..5],[3..6]]

[-14,-15]

ghci>

negate . sum . tail is a function that takes a list, applies the
tail function to it, then applies the sum function to the result,
and finally applies negate to the previous result.

Function composition
Function Composition with Multiple Parameters

But what about functions that take several parameters?

Well, if we want to use them in function composition, we usually
must partially apply them so that each function takes just one
parameter.

ghci> sum (replicate 5 (max 6.7 8.9))

44.5

ghci> (sum . replicate 5) (max 6.7 8.9)

44.5

ghci> sum . replicate 5 $ max 6.7 8.9

44.5

ghci> replicate 2 (product (map (*3) (zipWith max [1,2] [4,5])))

[180,180]

ghci> replicate 2 . product . map (*3) $ zipWith max [1,2] [4,5]

[180,180]

ghci>

Function composition
Point-Free Style

Another common use of function compisition is defining function in
the point-free style.

f :: (RealFrac a, Integral b, Floating a) => a -> b

f x = ceiling (negate (tan (cos (max 50 x))))

f' :: (RealFrac a, Integral b, Floating a) => a -> b

f' = ceiling . negate . tan . cos . max 50

Function composition
Point-Free Style

oddSquareSum :: Integer

oddSquareSum = sum (takeWhile (<10000) (filter odd (map (^2) [1..])))

oddSquareSum' :: Integer

oddSquareSum' = sum . takeWhile (<10000) . filter odd . map (^2) $ [1..]

oddSquareSum'' :: Integer

oddSquareSum'' =

let oddSquares = filter odd $ map (^2) [1..]

belowLimit = takeWhile (<10000) oddSquares

in sum belowLimit

