
Haskell
Functional Programming

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Paris-Est Marne-la-Vallée

September 19, 2019

http://igm.univ-mlv.fr/~vialette/?section=teaching

Everybody’s talking about functional programming

Erlang

Erlang (https://www.erlang.org/) is a general-purpose,
concurrent, functional programming language, as well as a
garbage-collected runtime system.

https://www.erlang.org/

Everybody’s talking about functional programming

Elixir
Elixir (https://elixir-lang.org/) is a functional, concurrent,
general-purpose programming language that runs on the Erlang
virtual machine (BEAM).

https://elixir-lang.org/

Everybody’s talking about functional programming

F#

F# (http://fsharp.org/ is a strongly typed, multi-paradigm
programming language that encompasses functional, imperative,
and object-oriented programming methods. It is being developed
at Microsoft Developer Division and is being distributed as a fully
supported language in the .NET framework.

http://fsharp.org/

Everybody’s talking about functional programming

Ocaml
Ocaml (http://ocaml.org/ originally named Objective Caml, is
the main implementation of the programming language Caml.
OCaml’s toolset includes an interactive top-level interpreter, a
bytecode compiler, a reversible debugger, a package manager
(OPAM), and an optimizing native code compiler.

http://ocaml.org/

Everybody’s talking about functional programming

Lisp

Lisp (historically, LISP) is a family of computer programming
languages with a long history and a distinctive, fully parenthesized
prefix notation. Originally specified in 1958, Lisp is the
second-oldest high-level programming language in widespread use
today. (Only Fortran is older, by one year.)

Everybody’s talking about functional programming

Clojure

Clojure (https://clojure.org/) is a dialect of the Lisp
programming language. Clojure is a general-purpose programming
language with an emphasis on functional programming. It runs on
the Java virtual machine and the Common Language Runtime.

https://clojure.org/

Everybody’s talking about functional programming

Racket
Racket (http://racket-lang.org/), formerly PLT Scheme, is a
general purpose, multi-paradigm programming language in the
Lisp-Scheme family. One of its design goals is to serve as a
platform for language creation, design, and implementation

http://racket-lang.org/

Everybody’s talking about functional programming

Elm
Elm (http://elm-lang.org/) is a domain-specific programming
language for declaratively creating web browser-based graphical
user interfaces. Elm is purely functional, and is developed with
emphasis on usability, performance, and robustness.

http://elm-lang.org/

Everybody’s talking about functional programming

Scala
Scala (https://www.scala-lang.org/) is a general-purpose
programming language providing support for functional
programming and a strong static type system. Designed to be
concise, many of Scala’s design decisions aimed to address
criticisms of Java.

https://www.scala-lang.org/

Everybody’s talking about functional programming

Haskell
Haskell (https://www.haskell.org/) is a standardized,
general-purpose purely functional programming language, with
non-strict semantics and strong static typing. The latest standard
of Haskell is Haskell 2010. As of May 2016, a group is working on
the next version, Haskell 2020.

https://www.haskell.org/

Everybody’s talking about functional programming

Why functional programming matters:

1. FP offers concurrency/parallelism with tears.

2. FP has succint, concise and understandable syntax.

3. FP offers a different programming perspective.

4. FP is becoming more accessible.

FP is fun!

FP offers concurrency/parallelism with tears

Moore’s law has held up for years but it is starting to reach its
limits due to physical constraints. Chips aren’t getting much faster
but multi-core, hyper-threaded, etc machines are becoming far
more commonplace.

If you want to take advantages of your machine’s full processing
power, you can no longer rely on continuous chip advances alone.
You need to really start thinking about concurrency, parallelism
and multi-threaded if you wish to better performance and use all
available CPUs.

Of course, these are not easily implemented concepts so coders
need to start considering ways (like FP!) to make these approaches
more available and practical.

FP has succint, concise and understandable syntax

The abstract nature of FP leads to considerably simpler programs.
It also supports a number of powerful new ways to structure and
reason about programs.

x = x+1; We understand this syntax because we often resort to
telling the computer what to do, but this equation really makes no
sense at all!

Ask, don’t tell.

FP offers a different programming perspective

For me, the most important thing about FP isn’t that functional
languages have some particular useful language features, but that
it allows to think differently and simply about problems that you
encouter when designing and writing applications. This is much
more important than understanding any new technology or a
programming language.

Tomas Petricek
http://tomasp.net/blog/

http://tomasp.net/blog/

Quicksort

Pseuso-code

1. Pick an element, called a pivot, from the array.

2. Partitioning: reorder the array so that all elements with values
less than the pivot come before the pivot, while all elements
with values greater than the pivot come after it (equal values
can go either way). After this partitioning, the pivot is in its
final position. This is called the partition operation.

3. Recursively apply the above steps to the sub-array of elements
with smaller values and separately to the sub-array of
elements with greater values.

Quicksort

Erlang

-module(quicksort).

-export([qsort/1]).

qsort([]) -> [];

qsort([X|Xs]) ->

qsort([Y || Y <- Xs, Y < X]) ++ [X] ++ qsort([Y || Y <- Xs, Y >= X]).

Quicksort

Elixir

defmodule Sort do

def qsort([]), do: []

def qsort([h | t]) do

{lesser, greater} = Enum.split_with(t, &(&1 < h))

qsort(lesser) ++ [h] ++ qsort(greater)

end

end

Quicksort

F#

let rec qsort = function

hd :: tl ->

let less, greater = List.partition ((>=) hd) tl

List.concat [qsort less; [hd]; qsort greater]

| _ -> []

Quicksort

OCaml

let rec quicksort gt = function

| [] -> []

| x::xs ->

let ys, zs = List.partition (gt x) xs in

(quicksort gt ys) @ (x :: (quicksort gt zs))

Quicksort

Lisp

(defun quicksort (list &aux (pivot (car list)))

(if (cdr list)

(nconc (quicksort (remove-if-not #'(lambda (x) (< x pivot)) list))

(remove-if-not #'(lambda (x) (= x pivot)) list)

(quicksort (remove-if-not #'(lambda (x) (> x pivot)) list)))

list))

Quicksort

Clojure

(defn qsort [L]

(if (empty? L)

'()

(let [[pivot & L2] L]

(lazy-cat (qsort (for [y L2 :when (< y pivot)] y))

(list pivot)

(qsort (for [y L2 :when (>= y pivot)] y))))))

Quicksort

Racket

#lang racket

(define (quicksort < l)

(match l

['() '()]

[(cons x xs)

(let-values ([(xs-gte xs-lt) (partition (curry < x) xs)])

(append (quicksort < xs-lt)

(list x)

(quicksort < xs-gte)))]))

Quicksort

Scala

def sort(xs: List[Int]): List[Int] = xs match {

case Nil => Nil

case head :: tail =>

val (less, notLess) = tail.partition(_ < head)

sort(less) ++ (head :: sort(notLess)) // Sort each half

}

Quicksort

Haskell

qsort [] = []

qsort (x:xs) = qsort [y | y <- xs, y < x] ++

[x] ++

qsort [y | y <- xs, y >= x]

Quicksort

Haskell

import Data.List (partition)

qsort :: Ord a => [a] -> [a]

qsort [] = []

qsort (x:xs) = qsort ys ++ x : qsort zs

where

(ys, zs) = partition (< x) xs

FP is becoming more accessible

More language options.

Tooling, IDEs.

Supports.

Books.

Blogs, podcasts and screencasts.

Conferences and user groups.

Haskell is becoming more accessible
IntelliJ IDEA

Haskell is becoming more accessible
Atom

Haskell is becoming more accessible
Emacs

Haskell is becoming more accessible
Leksah

Key Haskell concepts

High order functions, map, filter reduce (i.e., fold).

Recursion.

Pattern matching.

Currying.

Lazy/eager evaluation.

Strict/non-strict semantics.

Type inference.

Monads.

Continuations.

Closures.

Haskell

Haskell

Haskell is a standardized, general-purpose purely functional
programming language, with non-strict semantics and strong static
typing.

It is named after logician Haskell Curry.

Haskell

What can Haskell offer the programmer?

Purity: Unlike some other functional programming languages
Haskell is pure. It doesn’t allow any side-effects. This is probably
the most important feature of Haskell.

Laziness: Haskell is lazy (technically speaking, it’s ”non-strict”).
This means that nothing is evaluated until it has to be evaluated.

Strong typing: Haskell is strongly typed, this means just what it
sounds like. It’s impossible to inadvertently convert a Double to
an Int, or follow a null pointer. Unlike other strongly typed
languages types in Haskell are automatically inferred.

Elegance: Another property of Haskell that is very important to
the programmer, even though it doesn’t mean as much in terms of
stability or performance, is the elegance of Haskell. To put it
simply: stuff just works like you’d expect it to.

Haskell and bugs

Pure. There are no side effects.

Strongly typed. There can be no dubious use of types. And No
Core Dumps!

Concise. Programs are shorter which make it easier to look at a
function and ”take it all in” at once, convincing yourself that it’s
correct.

High level. Haskell programs most often reads out almost exactly
like the algorithm description. Which makes it easier to verify that
the function does what the algorithm states.

Memory managed. There’s no worrying about dangling pointers,
the Garbage Collector takes care of all that.

Modular. Haskell offers stronger and more ”glue” to compose
your program from already developed modules.

So what !?

Reference book

Hello, World!

module Main where

main :: IO ()

main = putStrLn "Hello, World!"

Hello, World!: Compile to native code

barbalala: ghc -o Hello Hello.hs

[1 of 1] Compiling Main (Hello.hs, Hello.o)

Linking Hello ...

barbalala: ./Hello

Hello, World!

barbalala:

Hello, World!: Interpreter

barbalala: ghci

GHCi, version 7.8.3: http://www.haskell.org/ghc/

:? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Prelude> :load "Hello"

[1 of 1] Compiling Main (Hello.hs, interpreted)

Ok, modules loaded: Main.

*Main> main

Hello, World!

*Main>

Quicksort in Haskell

quicksort :: Ord a => [a] -> [a]

quicksort [] = []

quicksort (p:xs) = quicksort lesser ++

[p] ++

quicksort greater

where

lesser = filter (< p) xs

greater = filter (>= p) xs

The Fibonacci sequence

fib :: (Eq a, Num a, Num b) => a -> b

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

or

fib :: (Integral b, Integral a) => a -> b

fib n = round $ phi ** fromIntegral n / sq5

where

sq5 = sqrt 5 :: Double

phi = (1 + sq5) / 2

or

fibs :: Num a => [a]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

or . . .

Implementations

The Glasgow Haskell Compiler (GHC) compiles to native code on a
number of different architectures. GHC has become the de facto
standard Haskell dialect. There are libraries (e.g. bindings to
OpenGL) that will work only with GHC. GHC is also distributed
along with the Haskell platform.

The Utrecht Haskell Compiler (UHC) is a Haskell implementation
from Utrecht University. UHC supports almost all Haskell 98
features plus many experimental extensions.

Jhc is a Haskell compiler written by John Meacham emphasising
speed and efficiency of generated programs as well as exploration
of new program transformations.

Ajhc is a fork of Jhc.

The speed of Haskell

For most applications the difference in speed between C++ and
Haskell is so small that it’s utterly irrelevant

The speed of Haskell

There’s an old rule in computer programming called the ”80/20
rule”. It states that 80% of the time is spent in 20% of the code.
The consequence of this is that any given function in your system
will likely be of minimal importance when it comes to
optimizations for speed. There may be only a handful of functions
important enough to optimize.

Remember that algorithmic optimization can give much better
results than code optimization.

Last but not least, Haskell offers substantially increased
programmer productivity (Ericsson measured an improvement
factor of between 9 and 25 using Erlang, a functional programming
language similar to Haskell, in one set of experiments on telephony
software.)

Haskell in Industry

Why is Haskell not used in the software industry?
even though it is a popular functional programming language!

• Integration with the companies’ existing codebase.

• There are not enough people with Haskell experience.

• Colleges and universities do little to popularize Haskell.

• Clojure and Scala are not purely functional but have done a
lot to popularize functional programming.

Using these languages, the management and programmers can
claim to be trained in functional programming and yet know
of nothing more than map, reduce and fold.

Haskell in Industry

• https://wiki.haskell.org/Haskell_in_industry

• http://industry.haskell.org/

• https://www.fpcomplete.com/hubfs/

Haskell-User-Survey-Results.pdf

• https://github.com/erkmos/haskell-companies

• http://www.cs.tut.fi/~bitti/functional-seminar/

RoleofHaskellintheSoftwareIndustry.pdf

https://wiki.haskell.org/Haskell_in_industry
http://industry.haskell.org/
https://www.fpcomplete.com/hubfs/Haskell-User-Survey-Results.pdf
https://www.fpcomplete.com/hubfs/Haskell-User-Survey-Results.pdf
https://github.com/erkmos/haskell-companies
http://www.cs.tut.fi/~bitti/functional-seminar/RoleofHaskellintheSoftwareIndustry.pdf
http://www.cs.tut.fi/~bitti/functional-seminar/RoleofHaskellintheSoftwareIndustry.pdf

Functional programming languages

