
Haskell
Types and Typeclasses

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Paris-Est Marne-la-Vallée

September 19, 2019

http://igm.univ-mlv.fr/~vialette/?section=teaching


Believe the type



Believe the type

One of Haskell’s greatest strenghts is its powerful type system.

In Haskell, every expression’s type is known at compile time, which
leads to safer code.

Haskell has type inference.



Explicit type declaration

Explicit types are always denoted with the first letter in capital case

ghci> :type True

True :: Bool

ghci> :type 'a'

'a' :: Char

ghci> :type "hello"

"hello" :: [Char]

ghci> :type (True, 'a', "hello")

(True, 'a', "hello") :: (Bool, Char, [Char])



Explicit type declaration

ghci> :type 1 == 2

1 == 2 :: Bool

ghci> :type 1

1 :: Num a => a

ghci> :type 1.0

1.0 :: Fractional a => a

ghci> :type (1/0)

(1/0) :: Fractional a => a

ghci>



Explicit type declaration

Functions have also types.

-- filter out lowercase letters

removeNonUpperCase :: [Char] -> [Char]

removeNonUpperCase s = [c | c <- s

, c `elem` ['A'..'Z']]

-- add three integers

addThree :: Int -> Int -> Int -> Int

addThree x y z = x + y + z



Common haskell types

Int stands for integers.

Int is bounded which means that it has a minimum value and a
maximum value.

Integer is also used to store integers, but it is not bounded.

factorial :: Integer -> Integer

factorial n = product [1..n]

ghci> :type product

product :: (Foldable t, Num a) => t a -> a

ghci> factorial 40

815915283247897734345611269596115894272000000000

ghci>



Common haskell types

Int stands for integers.

Int is bounded which means that it has a minimum value and a
maximum value.

Integer is also used to store integers, but it is not bounded.

factorial' :: Int -> Int

factorial' n = product [1..n]

ghci> factorial' 40

-70609262346240000

ghci>



Common haskell types

Int stands for integers.

Int is bounded which means that it has a minimum value and a
maximum value.

Integer is also used to store integers, but it is not bounded.

factorial'' n = product [1..n]

ghci> :type factorial''

factorial'' :: (Enum a, Num a) => a -> a

ghci> factorial'' 40

815915283247897734345611269596115894272000000000

ghci>



Common haskell types

Float is a real floating point with single precision.

circumference :: Float -> Float

circumference r = 2 * pi * r

ghci> circumference 4.0

25.132742

ghci>



Common haskell types

Double is a real floating point with double the precision!

circumference' :: Double -> Double

circumference' r = 2 * pi * r

ghci> circumference' 4.0

25.132741228718345

ghci>



Common haskell types

Type inference.

circumference'' r = 2 * pi * r

ghci> circumference'' :: Floating a => a -> a

ghci> circumference'' 4.0

25.132741228718345

ghci> :type circumference'' 4.0

circumference'' 4.0 :: Floating a => a



Type variables

ghci> :type head

head :: [a] -> a

ghci>

Because a is not in capital case it’s actually a type variable.

That means that a can be of any type.

This is much like generics in other languages, only in Haskell it’s
much more powerful because it allows us to easily write very general
functions if they don’t use any specific behavior of the types in them.

Functions that have type variables are called polymorphic func-
tions.



Type variables

ghci> :type head

head :: [a] -> a

ghci>

The type declaration of head states that it takes a list of any type
and returns one element of that type.



Type variables

ghci> :type fst

fst :: (a, b) -> a

ghci> :type snd

snd :: (a, b) -> b

ghci>

Note that just because a and b are different type variables, they
don’t have to be different types.

It just states that the first component’s type and the return value’s
type are the same.



Typeclasses 101



Typeclasses 101

A typeclass is a sort of interface that defines some behavior.

If a type is a part of a typeclass, that means that it supports and
implements the behavior the typeclass describes.

A lot of people coming from OOP get confused by typeclasses
because they think they are like classes in object oriented
languages. Well, they’re not. You can think of them kind of as
Java interfaces, only better.



Typeclasses 101

What’s the type signature of the == function?

ghci> :type (==)

(==) :: Eq a => a -> a -> Bool

ghci>

Everything before the => symbol is called a class constraint.

We can read the previous type declaration like this:

The equality function takes any two values that are of the same type
and returns a Bool. The type of those two values must be a member
of the Eq class (this was the class constraint).



Typeclasses 101

What’s the type signature of the == function?

ghci> :type (==)

(==) :: Eq a => a -> a -> Bool

ghci>

Everything before the => symbol is called a class constraint.

The Eq typeclass provides an interface for testing for equality.

Any type where it makes sense to test for equality between two
values of that type should be a member of the Eq class.

All standard Haskell types except for IO (the type for dealing with
input and output) and functions are a part of the Eq typeclass.



Typeclasses 101

What’s the type signature of the == function?

ghci> :type (==)

(==) :: Eq a => a -> a -> Bool

ghci>

Everything before the => symbol is called a class constraint.

The elem function has a type of (Eq a) => a -> [a] -> Bool

because it uses == over a list to check whether some value we’re
looking for is in it.



Typeclasses 101



Typeclasses 101
Basic typeclasses

Eq is used for types that support equality testing.

The functions its members implement are == and /=.

So if there’s an Eq class constraint for a type variable in a function,
it uses == or /= somewhere inside its definition.

All the types we mentioned previously except for functions are part
of Eq, so they can be tested for equality.



Typeclasses 101
Basic typeclasses

Eq is used for types that support equality testing.

ghci> 7 == 7

True

ghci> 7 /= 7

False

ghci> 'a' == 'a'

True

ghci> "Hello" == "Hello"

True

ghci> 3.432 == 3.432

True

ghci>



Typeclasses 101
Basic typeclasses

Ord is for types that have an ordering.

ghci> :type (>)

(>) :: Ord a => a -> a -> Bool

ghci>

All the types we covered so far except for functions are part of Ord.

Ord covers all the standard comparing functions such as >, <, >=
and <=.

The compare function takes two Ord members of the same type
and returns an ordering.

Ordering is a type that can be GT, LT or EQ, meaning greater than,
lesser than and equal, respectively.



Typeclasses 101
Basic typeclasses

Ord is for types that have an ordering.

ghci> "Abrakadabra" < "Zebra"

True

ghci> "Abrakadabra" `compare` "Zebra"

LT

ghci> 5 >= 2

True

ghci> 5 `compare` 3

GT

ghci> :type compare

compare :: Ord a => a -> a -> Ordering

ghci>



Typeclasses 101
Basic typeclasses

Members of Show can be presented as strings.

All types covered so far except for functions are a part of Show.

The most used function that deals with the Show typeclass is show.
It takes a value whose type is a member of Show and presents it to
us as a string.



Typeclasses 101
Basic typeclasses

Members of Show can be presented as strings.

ghci> :type show

show :: Show a => a -> String

ghci> show 5

"5"

ghci> show 'a'

"'a'"

ghci> show "toto"

"\"toto\""

ghci> show True

"True"

ghci>



Typeclasses 101
Basic typeclasses

Read is sort of the opposite typeclass of Show.

The read function takes a string and returns a type which is a
member of Read.

ghci> read "True" || True

True

ghci> read "1" + 2

3

ghci> read "1.2" * 3.4

4.08

ghci> read "[1,2,3,4]" ++ [5]

[1,2,3,4,5]

ghci>



Typeclasses 101
Basic typeclasses

Read is sort of the opposite typeclass of Show.

The read function takes a string and returns a type which is a
member of Read.

ghci> read "True"

*** Exception: ghci.read: no parse

ghci> read "1"

*** Exception: ghci.read: no parse

ghci> read "1.2"

*** Exception: ghci.read: no parse

ghci> read "[1,2,3,4]"

*** Exception: ghci.read: no parse

ghci>



Typeclasses 101
Basic typeclasses

Read is sort of the opposite typeclass of Show.

The read function takes a string and returns a type which is a
member of Read.

ghci> :type read

read :: Read a => String -> a

It returns a type that’s part of Read but if we don’t try to use it in
some way later, it has no way of knowing which type. That’s why
we can use explicit type annotations.

Type annotations are a way of explicitly saying what the type of an
expression should be. We do that by adding :: at the end of the
expression and then specifying a type.



Typeclasses 101
Basic typeclasses

Read is sort of the opposite typeclass of Show.

The read function takes a string and returns a type which is a
member of Read.

ghci> read "True"::Bool

True

ghci> read "1"::Int

1

ghci> read "1.2"::Float

1.2

ghci> read "[1,2,3,4]"::[Int]

[1,2,3,4]

ghci>



Typeclasses 101
Basic typeclasses

Enum members are sequentially ordered types – they can be
enumerated.

The main advantage of the Enum typeclass is that we can use its
types in list ranges.

They also have defined successors and predecesors, which you can
get with the succ and pred functions.

Types in this class: (), Bool, Char, Ordering, Int, Integer,
Float and Double.



Typeclasses 101
Basic typeclasses

Enum members are sequentially ordered types – they can be
enumerated.

ghci> ['a'..'e']

"abcde"

ghci> [LT .. GT]

[LT,EQ,GT]

ghci> [3 .. 5]

[3,4,5]

ghci> succ 'a'

'b'

ghci> succ LT

EQ

ghci> succ 1

2

ghci>



Typeclasses 101
Basic typeclasses

Bounded members have an upper and a lower bound.

minBound and maxBound are interesting because they have a type
of (Bounded a) => a. In a sense they are polymorphic constants.

All tuples are also part of Bounded if the components are also in it.



Typeclasses 101
Basic typeclasses

Bounded members have an upper and a lower bound.

ghci> maxBound :: Char

'\1114111'

ghci> maxBound :: Bool

True

ghci> minBound :: Bool

False

ghci> maxBound :: (Bool, Int, Char)

(True,9223372036854775807,'\1114111')

ghci>



Typeclasses 101
Basic typeclasses

Num is a numeric typeclass. Its members have the property of being
able to act like numbers.

Whole numbers are also polymorphic constants. They can act like
any type that’s a member of the Num typeclass.
ghci> :type 5

5 :: Num a => a

ghci>



Typeclasses 101
Basic typeclasses

Num is a numeric typeclass. Its members have the property of being
able to act like numbers.

ghci> 20 :: Int

20

ghci> 20 :: Integer

20

ghci> 20 :: Float

20.0

ghci> 20 :: Double

20.0

ghci>



Typeclasses 101
Basic typeclasses

Num is a numeric typeclass. Its members have the property of being
able to act like numbers.

ghci> :type (*)

(*) :: Num a => a -> a -> a

ghci>

It takes two numbers of the same type and returns a number of that
type. That’s why (5 :: Int) * (6 :: Integer) will result in
a type error whereas 5 * (6 :: Integer) will work just fine and
produce an Integer because 5 can act like an Integer or an Int.

To join Num, a type must already be friends with Show and Eq.



Typeclasses 101
Basic typeclasses

Integral is also a numeric typeclass.

Num includes all numbers, including real numbers and integral
numbers, Integral includes only integral (whole) numbers. In
this typeclass are Int and Integer.



Typeclasses 101
Basic typeclasses

A very useful function for dealing with numbers is fromIntegral.

It has a type declaration of

fromIntegral :: (Num b, Integral a) => a -> b.

From its type signature we see that it takes an integral number and
turns it into a more general number.

That’s useful when you want integral and floating point types to
work together nicely.



Typeclasses 101
Basic typeclasses

A very useful function for dealing with numbers is fromIntegral.

For instance, the length function has a type declaration of
length :: [a] -> Int instead of having a more general type of
(Num b) => length :: [a] -> b. I think that’s there for histor-
ical reasons or something, although in my opinion, it’s pretty stupid.

Anyway, if we try to get a length of a list and then add it to
3.2, we’ll get an error because we tried to add together an Int

and a floating point number. So to get around this, we do
fromIntegral (length [1,2,3,4]) + 3.2 and it all works out.


