Haskell
Functional Programming

http://igm.univ-mlv.fr/~vialette/7?section=teaching

Stéphane Vialette
LIGM, Université Gustave Eiffel

September 25, 2020

1
1

»

http://igm.univ-mlv.fr/~vialette/?section=teaching

Everybody's talking about functional programming

Lisp

Lisp (historically, LISP) is a family of computer programming
languages with a long history and a distinctive, fully parenthesized
prefix notation. Originally specified in 1958, Lisp is the
second-oldest high-level programming language in widespread use
today. (Only Fortran is older, by one year.)

»

Everybody's talking about functional programming

ERLANG

Erlang

Erlang (https://www.erlang.org/) is a general-purpose,
concurrent, functional programming language, as well as a
garbage-collected runtime system.

»

https://www.erlang.org/

Everybody's talking about functional programming

\‘ elixir

Elixir (https://elixir-lang.org/) is a functional, concurrent,
general-purpose programming language that runs on the Erlang
virtual machine (BEAM).

»

https://elixir-lang.org/

Everybody's talking about functional programming

Q

F#

F# (http://fsharp.org/ is a strongly typed, multi-paradigm
programming language that encompasses functional, imperative,
and object-oriented programming methods. It is being developed
at Microsoft Developer Division and is being distributed as a fully
supported language in the .NET framework.

u]
o)
|
i
it

http://fsharp.org/

Everybody's talking about functional programming

vadt OCaml

Ocaml

Ocaml (http://ocaml.org/ originally named Objective Caml, is
the main implementation of the programming language Caml.
OCaml’s toolset includes an interactive top-level interpreter, a
bytecode compiler, a reversible debugger, a package manager
(OPAM), and an optimizing native code compiler.

»

http://ocaml.org/

Everybody's talking about functional programming

Clojure

Clojure (https://clojure.org/) is a dialect of the Lisp
programming language. Clojure is a general-purpose programming
language with an emphasis on functional programming. It runs on
the Java virtual machine and the Common Language Runtime.

»

D¢

https://clojure.org/

Everybody's talking about functional programming

Racket

Racket (http://racket-lang.org/), formerly PLT Scheme, is a
general purpose, multi-paradigm programming language in the
Lisp-Scheme family. One of its design goals is to serve as a
platform for language creation, design, and implementation

»

http://racket-lang.org/

Everybody's talking about functional programming

b elm

Elm

Elm (http://elm-lang.org/) is a domain-specific programming
language for declaratively creating web browser-based graphical
user interfaces. Elm is purely functional, and is developed with
emphasis on usability, performance, and robustness.

http://elm-lang.org/

Everybody's talking about functional programming

! Scala
Scala

Scala (https://www.scala-lang.org/) is a general-purpose
programming language providing support for functional
programming and a strong static type system. Designed to be
concise, many of Scala's design decisions aimed to address
criticisms of Java.

https://www.scala-lang.org/

Everybody's talking about functional programming

Haskell

Haskell (https://www.haskell.org/) is a standardized,
general-purpose purely functional programming language, with
non-strict semantics and strong static typing. The latest standard
of Haskell is Haskell 2010. As of May 2016, a group is working on
the next version, Haskell 2020.

u]
o)
|
i
it

https://www.haskell.org/

FP

Programming with pure functions.

The output of a function is solely determined by the input
(much like mathematical functions).

No side-effects.
No assigments.
Functions compose.

Expression-oriented programming.

Why FP matters?

1. FP offers concurrency/parallelism with tears.
2. FP has succint, concise and understandable syntax.
3. FP offers a different programming perspective.

4. FP is becoming more accessible.

FP is fun!

Functions everywhere

INPUT x
Y1
FUNCTION f:

)L

OUTPUT f(x)

»*

Design patterns

0O patterns

FP patterns

Single responsability
Open / Closed
Interface segregation
Factory

Strategy

Decoration

Visitor

Functions
Functions
Functions
Functions
Functions
Functions again
Resistance is futile !

Seriously, FP patterns are different.

FP has succint, concise and understandable syntax

The abstract nature of FP leads to considerably simpler programs.
It also supports a number of powerful new ways to structure and
reason about programs.

x = x+1; We understand this syntax because we often resort to
telling the computer what to do, but this equation really makes no
sense at all!

Ask, don't tell.

FP offers a different programming perspective

For me, the most important thing about FP isn't that functional
languages have some particular useful language features, but that
it allows to think differently and simply about problems that you
encouter when designing and writing applications. This is much
more important than understanding any new technology or a
programming language.

Tomas Petricek
http://tomasp.net/blog/

http://tomasp.net/blog/

Quicksort

»

E 9DaAe

Quicksort

Erlang

- (quicksort).
- ([gsort/11).
gsort([1) -> [I;

gsort([X|Xs]) ->
gsort([Y || Y <- Xs, Y < X]) ++ [X] ++ gsort([Y || ¥ <- Xs, Y >= X]).

Quicksort

Elixir
defmodule Sort do
def gsort([]), do: []
def gsort([h | t]) do
{lesser, greater} = Enum.split_with(t, &(
gsort(lesser) ++ [h] ++ gsort(greater)
end
end

< h))

Quicksort

Ocaml

let rec gsort = function
hd :: t1 —>
let less, greater = List.partition ((>=) hd) tl
List.concat [gsort less; [hd]; gsort greater]

[- —> []

L\

Quicksort

Lisp

(defun gsort (list &aux (pivot (car list)))
(if (cdr 1list)
(nconc (gsort (remove-if-not #'(lambda (x) (< x pivot)) 1list))
(remove-if-not #'(lambda (x) (=

x pivot)) list)
(gsort (remove-if-not #'(lambda (x) (> x pivot)) list)))
list))

Quicksort

Clojure

(defn gsort [L]
(if (empty? L)
'O
(let [[pivot & L2] L]
(lazy-cat (gsort (for [y L2 :when (<
(1ist pivot)
(gsort (for [y L2 :when (>= y pivot)] y))))))

y pivot)] y))

»

Quicksort

Racket

#lang racket
(define (gsort < 1)
(match 1
'O 01
[(cons x xs)
(let-values ([(xs-gte xs-1t) (partition (curry < x) xs)])
(append (gsort < xs-1t)
(list x)
(gsort < xs-gte)))]1))

Quicksort

Scala

def gsort(xs: List[Int]): List[Int] = xs match {
case Nil => Nil
case head :: tail =>

val (less, notless) = tail.partition(_ < head)

gsort(less) ++ (head :: gsort(mnotless)) // Sort each half
}

u]
o)
|

i
it

Quicksort

Haskell
gsort [1 = []
gsort (x:xs) = gsort [y | y <- xs, y < x] ++

[x] ++
gsort [y | y <- xs, y >= x]

»

Quicksort

Haskell

import Data.List (partition)

gsort' :: Ord a => [a] -> [a]
gsort' [1 = []
gsort' (x:xs) = gsort' ys ++ x : gsort' zs
where
(ys, zs) = partition (< x) xs

FP is becoming more accessible

More language options.

Tooling, IDEs.

Supports.

Books.

Blogs, podcasts and screencasts.

Conferences and user groups.

Haskell is becoming more accessible
IntelliJ IDEA

' ' ._ P Mainhs 1
¥\ HaskellTest (~/Document! module Main where

» [.buildwrapper

> i main :: I0 ()
O.idea main = putStrln "Hello World!"

3d-graphics-examples

> [Cldist “4Blocks
» Clsrc AC-Angle
% HaskellTest.cabal AC-Boolean

AC-BuildPlatform
AC-Calour
AC-EasyRaster-GTK
AC-Halfinteger
AC-MiniTest
AC-PPM
AC-Random
AC-Terminal
AC-VanillaArray
AC-Vector
AC-Vector-Fancy
ADPfusion
AERN-Basics
AERN-Net
AERN-Real

Il HaskellTest.iml
B §lExternal Libraries

"""""'""""7‘;

Haskell is becoming more accessible
Atom

ahs - c\Users\user\ atom\packages\haskell-grammar - Atom
File Edt View Selection Find Packages Help

1 B haskeltgrammar untitied naskellgrammar.cson % haskell-grammar-spec.. x READMEmd gramns haskell-grammar-view... x

> M grammars
> I settings
> I snippets
> I spec

B CHANGELOGmd

factorial n - product [1.

let abcd - "abed
let abcd 5]

nunTokord :: (Integral a) => a -> String
uceNsEma umTollord 1 = ~one™

B pacagelion

EB READMEmA

ter
numTollord x - "too-big-to-say”
let

let t -

print t == not £

a1

b1

addvectors1 (Num a) (a, a) -> (a, a) -> (a, a)
addVectorsi a b - (fst a + fst b, snd a + snd b)

adav m) 2> (o > 0, 0) 2> (0
sivecrors (x1e y3) o 335 - 0 y

C\Users\usenDesktop\haskell workspace\as 26,1 UTFS Haskell

Haskell is becoming more accessible

tId
tHashID
tDesc
tCreated
tDue
tPri
tProj

taskId taskDesc taskCreated taskDue taskPri taskProj
taskId taskHashID taskDesc taskCreated taskDue taskPri taskProj
taskHashID hashTask taskCreated taskDesc

Git-master (Haskell WS Ind Do
constrs [deriving]

Haskell is becoming more accessible
Leksah

@& Finder File Edit View Go Window Help O&b KT ORBM v D 3 T« 66%H Monitdz Q

0o 8 x & Q I @2 ERBA ¢« v

3¢ Mainns. X Dobug X Files X Hint
[T7=7 LANGUAGE cpp,
Welcome to Leksah. This is a q\uck sample package for you to O Package O Workspace @ Systom (O Backlst O Imports
try, Ehings out with. e hope It will'be useiul for those new e e
to Haskell or just new to Leksa —_— |
I£ you aze new to haskell then here are some great sites o visit
/learnyouahaskell. Aray
heco:/teunasset ord/ ~AsmCodeG
heep://book. realuorldhaskell.ora/ Jmcedeaen
Tobuild this package use e . Bag
ange while background build is activate
E sesroe
* Package -> Bui. Bcwly“
When you are ready to create your own workspace and package. Bitmap
+ Package -> New
* When ‘asked for a root folder for your package select a new folder g o1s
h the desired name of your package N
This is the "Main® module and it exports a "main" function BovleanFormula
sodule Main (Bre
4) whore Buite
5 R R BuidTyO!
Next we are importing some things from other modules. ByteCodoAs
Leksah can normally addd these imports for you, just "
press Ctrl+R (0S X Command+R) ByteCodeGen
inport Control.Monad (unless) ByteCodelnsi
import pata.Lide (strippretix) ByteCodeltbis
import System.Exit (exitFailure) BytoGodels
import Test.Quickcheck.All (quickCheckAll)
cE
Simple fanction to create a hello nessage. g ceror
hello s = "Hello I crorsn
QuickCheck is a great tool for writing tests.
The following tells QuickCheck that if you strip "Hello "
Tron che stagt of hello s you will be 152t With's (fof any s). Mo Xlog 3 Workspace
QuickCheck vill create the test data needsd to run this test. Fho e
na1Ta el s
e e | - i Y :]qwm o s K
Modules leksah leksah-welcome-0.1203 s n 1.Col 1

Key Haskell concepts

High order functions, map, filter reduce (i.e., fold).

Recursion.

Pattern matching.
Currying.

Lazy/eager evaluation.
Strict/non-strict semantics.
Type inference.

Monads.

Continuations.

Closures.

Haskell

»

£ 9Dae

Haskell

Haskell is a standardized, general-purpose purely functional
programming language, with non-strict semantics and strong static

typing.

It is named after logician Haskell Curry.

Haskell

»

What can Haskell offer the programmer?

Purity

¢ No side-effects.
e Keep the code involving state and 1/O to the minimum.
e The most important feature of Haskell.

»

What can Haskell offer the programmer?

Higher-order functions

e Functions that take other functions as their arguments.
o Useful for refactoring code.

e Reduce the amount of repetition.

quicksort :: (Ord a) => [a] —> [a]
quicksort [] =0
quicksort (x:xs) = smallerSorted ++ [x] ++ biggerSorted
where
smallerSorted = quicksort (filter (<=x) xs)
biggerSorted = quicksort (filter (>x) xs)

What can Haskell offer the programmer?

Immutable data

e Expressions in Haskell are immutable. They cannot change
after they are evaluated.

e Immutability makes refactoring super easy and code much
easier to reason about.

e To change an object, most data structures provide methods
taking the old object and creating a new copy.

>> let a = [1,2,3]
>> reverse a
[3,2,1]

>> a

[1,2,3]

What can Haskell offer the programmer?

Referential transparency
e Pure computations yield the same value each time they are
invoked.

e Side effects like (uncontrolled) imperative update break this
desirable property.

e Make it easier to reason about the behavior of programs.

Ify =f xandg = hy ytheng = h (f x) (f x).

What can Haskell offer the programmer?

Referential transparency

random :: Int
random = 4 -- chosen by fair dice rool, guaranted to be random.

today :: String
today = "Mon 21 Sep 2020" -- guaranted at the time of writing.

getInputChar:: Char
getInputChar = 'a' -- The user did type 'a', so what!?

e

L\

u]

o)
|
i

it

What can Haskell offer the programmer?

Lazy evaluation

e Defer the computation of values until they are needed (since
pure computations are referentially transparent they can be
performed at any time and still yield the same result).

e Lazy evaluation avoids unnecessary computations.

o Allow, for example, infinite data structures to be defined and
used.

Consider the function £ x y = x+1.

In a strict language, evaluating £ 5 (297°35792) will first
completely evaluate 5 (already done) and 29735792 (which is a lot
of work) before passing the results to f.

»

What can Haskell offer the programmer?

Lazy evaluation

>>> 1 “div™ 0

#%* Exception: divide by zero

>>> (1 == 2-1) [| (1 “div> 0 == 1)
True

>>> (1 /= 2-1) && (1 ~div> 0 == 1)
False

>>> head [1, 2 “div™ 0, 3]

1

>>> last (tail [1, 2 “div" 0, 3])
3

What can Haskell offer the programmer?

Elegance

o Haskell code is elegant, concise and intuitive.

e Shorter programs are easier to maintain than longer ones and
have less bugs.

e But elegance is not an excuse for bad performance.

import qualified data.List as L

fibs :: [Integer]
fibs = 1 : 1 : L.zipWith (+) fibs (L.tail fibs)

Haskell and bugs

Pure. There are no side effects.

Strongly typed. There can be no dubious use of types. And No
Core Dumps!

Concise. Programs are shorter which make it easier to look at a
function and "take it all in” at once, convincing yourself that it's
correct.

High level. Haskell programs most often reads out almost exactly
like the algorithm description. Which makes it easier to verify that
the function does what the algorithm states.

Memory managed. There's no worrying about dangling pointers,
the Garbage Collector takes care of all that.

Modular. Haskell offers stronger and more " glue” to compose
zsyour program from already developed modules. Q
@y prog y p U’\)E

So what 1?

All possible programs

code
written
in
Haskell

»

Reference book

Learn You a
Haskell for
Great Good!

A Beginner's Guide

»

F = = E 9DaAe

Hello, World!

module Main where

main

2 I0 O
main =

putStrLn "Hello, World!"

Hello, World!: Compile to native code

barbalala: ghc -o Hello Hello.hs
[1 of 1] Compiling Main

Linking Hello ...

barbalala: ./Hello

Hello, World!

barbalala:

(Hello.hs, Hello.o)

Hello, World!: Interpreter

barbalala: ghci
GHCi, version 7.8.3: http://www.haskell.org/ghc/
:? for help

Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.

Prelude> :load "Hello"

[1 of 1] Compiling Main (Hello.hs, interpreted)
Ok, modules loaded: Main.

*Main> main

Hello, World!

*Main>

quicksort :: Ord
quicksort []
quicksort (p:xs)

where
lesser =
greater =

Quicksort in Haskell

a => [a] -> [a]

=[]

= quicksort lesser ++
[p] ++

quicksort greater

filter (< p) xs
filter (>= p) xs

fib ::
fib 0
fib
fib n

-
I

or
fib ::
fib n =
where
sgb
phi
or
fibs ::
fibs =

gior.“

The Fibonacci sequence

(Eq a, Num a, Num b) => a -> b

0
1
fib (n-1) + fib (n-2)

(Integral b, Integral a) => a -> b

round $ phi ** fromIntegral n / sqgb

sqrt 5 :: Double
(1 + sg5) / 2

Num a => [a]
1 : zipWith (+) fibs (tail fibs)

Implementations

The Glasgow Haskell Compiler (GHC) compiles to native code on a
number of different architectures. GHC has become the de facto
standard Haskell dialect. There are libraries (e.g. bindings to
OpenGL) that will work only with GHC. GHC is also distributed
along with the Haskell platform.

GHC

Glasgow Haskell Compiler

Abbreviations.com

»

The speed of Haskell

For most applications the difference in speed between C++ and
Haskell is so small that it's utterly irrelevant

— Ten tiny exanples - How nany tines slower?

1me

Ao

e}
peale]

100 ‘-

i}
30

a0

program time + faztest program t

[|

T;%éé%éé%

henchmarksgame zelected language implementations 28 Mow 2014 usdo

u]
o)
|
i
it

The speed of Haskell

There's an old rule in computer programming called the " 80/20
rule’ . It states that 80% of the time is spent in 20% of the code.
The consequence of this is that any given function in your system
will likely be of minimal importance when it comes to
optimizations for speed. There may be only a handful of functions
important enough to optimize.

Remember that algorithmic optimization can give much better
results than code optimization.

Last but not least, Haskell offers substantially increased

programmer productivity (Ericsson measured an improvement

factor of between 9 and 25 using Erlang, a functional programming

language similar to Haskell, in one set of experiments on telephony
software.)

»

Haskell in Industry

CODE WRITTEN IN HASKELL
15 GUARANTEED TO HAVE
NO SIDE EFFECTS.

... BECAUSE NO ONE
WILL EVER RUN IT?

3

»

Why is Haskell not used in the software industry?

even though it is a popular functional programming language!

o Integration with the companies’ existing codebase.

e There are not enough people with Haskell experience.

o Colleges and universities do little to popularize Haskell.

o Clojure and Scala are not purely functional but have done a

lot to popularize functional programming.

Using these languages, the management and programmers can
claim to be trained in functional programming and yet know
of nothing more than map, reduce and fold.

Why Isn't Functional Programming the Norm?

LM Why aren't FP languages the norm?

wr

redink

1. No sufficiently large “killer apps”

2. No exclusivity on large platforms

3. Can't be a quick upgrade if substantially different
4. No epic marketing budgets

. Slow & steady growth takes decades

o . ¢ pere
MFEIN futurice NITOR siili_

[cognitect il SOLITA

S LEQNHRAT —
TEe Ol

P> Ml o) 40147 46:08

https://wuw.youtube.com/watch?v=QyJZzq0v7Z4

https://www.youtube.com/watch?v=QyJZzq0v7Z4

Haskell is useless

| | 0 73:54/6:22

https://www.youtube.com/watch?v=iSmkqocnOoQ

https://www.youtube.com/watch?v=iSmkqocn0oQ

HASKELL

“INTRODUCTION "

P TOUT REGARDER

Haskell Tutorial : Learn you a
Haskell

15 vidéos + 121803 vues + Dernire modification le 27
janv. 2015

Haskell is a purely functional programming language. In
imperative languages you get things done by giving the
computer a sequence of tasks and then it executes
them

Haskell is lazy. That means that unless specifically told
otherwise, Haskell won't execute functions and calculate
things until its really forced to show you a result. That
goes well with referential transparency and it allows you

26 TUPLE 3.39

Tutorials

[T R Haskell 1 Introduction : About Haskell

Ram Krishna

“~INTRODUCT’

[TV IR Ml Haskell 2a : Haskell as a Calculator

I Rom ishna

“ CALCULAT 4:45

[TV C]7{=B Ml Haskell 2b : Functions, if, and let

“Functions (EEINERES

IF (), LET 3.7 Haskell 2b : Functions, if, and let

[ST-X={7(AWl Haskell 2c: Lists

2.c LIST: Ram Krishna

8:12

[T =Ml Haskell 2d List comprehensions

T Ram Krishna
Compreher

HASKELL Haskell 2e : Tuples

Ram Krishna

https://www.youtube.com/playlist?list=
PLwi01W12BuPZUxA2gISnWV32mp26gNq56

https://www.youtube.com/playlist?list=PLwiOlW12BuPZUxA2gISnWV32mp26gNq56
https://www.youtube.com/playlist?list=PLwiOlW12BuPZUxA2gISnWV32mp26gNq56

Why Is Haskell So Hard To Learn?
How To Deal With It?

data User - User "nsKEll
(030N userName u) L 10
(toISON © useremail u) » userEmail = String
(t0JSON © userDob u) , userDob - Day
(toJSON ' userInterests u) , userInterests [String]
} deriving (Eq, Show, Generic, TOJSON, FromJSON)

ey
“ instance ToJSON User where

t0JSON u - object
(toJSON © userName u)
(toJSON © userEmail u)
(toJSON * userDob u)
(toJSON © userInterests u)

Lire (k)

> >l o) 1928/49:44

https://www.youtube.com/watch?v=RvRVn8;jXoNY

»

https://www.youtube.com/watch?v=RvRVn8jXoNY

Functional programming languages

«O» «Fr « =

« =)

»

RN Ge

