
Haskell
Syntax in Functions

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Gustave Eiffel

September 22, 2020

http://igm.univ-mlv.fr/~vialette/?section=teaching

Syntax in Functions

Pattern Matching

Pattern Matching

Pattern matching consists of specifying patterns to which some
data should conform and then checking to see if it does and
deconstructing the data according to those patterns.

When defining functions, you can define separate function bodies
for different patterns.

This leads to really neat code that’s simple and readable.

You can pattern match on any data type: numbers, characters,
lists, tuples, etc.

Pattern Matching

lucky :: (Integral a) => a -> String

lucky 7 = "LUCKY NUMBER SEVEN!"

lucky x = "Sorry, you're out of luck, pal!"

>>> lucky 7

"LUCKY NUMBER SEVEN!"

>>> lucky 1

"Sorry, you're out of luck, pal!"

>>> lucky 2

"Sorry, you're out of luck, pal!"

>>>

Pattern Matching

sayMe :: (Integral a) => a -> String

sayMe 1 = "One!"

sayMe 2 = "Two!"

sayMe 3 = "Three!"

sayMe x = "Not between 1 and 3"

>>> sayMe 1

"One!"

>>> sayMe 2

"Two!"

>>> sayMe 3

"Three!"

>>> sayMe 4

"Not between 1 and 3"

>>>

Syntax in Functions

Pattern Matching

sayMe' :: (Integral a) => a -> String

sayMe' x = "Not between 1 and 3"

sayMe' 1 = "One!"

sayMe' 2 = "Two!"

sayMe' 3 = "Three!"

>>> sayMe' 1

"Not between 1 and 3"

>>> sayMe' 2

"Not between 1 and 3"

>>> sayMe' 3

"Not between 1 and 3"

>>> sayMe' 4

"Not between 1 and 3"

>>>

Pattern Matching

sayMe' :: (Integral a) => a -> String

sayMe' x = "Not between 1 and 3"

sayMe' 1 = "One!"

sayMe' 2 = "Two!"

sayMe' 3 = "Three!"

>>> :l "sayme"

[1 of 1] Compiling Main (sayme.hs, interpreted)

sayme.hs:8:1: Warning:

Pattern match(es) are overlapped

In an equation for 'sayMe'':

sayMe' 1 = ...

sayMe' 2 = ...

sayMe' 3 = ...

Ok, modules loaded: Main.

>>>

Pattern Matching
Defining factorial recursively

factorial :: (Integral a) => a -> a

factorial 0 = 1

factorial n = n * factorial (n - 1)

Pattern Matching

Pattern Matching
Failed!

charName :: Char -> String

charName 'a' = "Albert"

charName 'b' = "Broseph"

charName 'c' = "Cecil"

>>> charName 'a'

"Albert"

>>> charName 'b'

"Broseph"

>>> charName 'c'

"Cecil"

>>> charName 'd'

"*** Exception: charName.hs:(2,1)-(4,22):

Non-exhaustive patterns in function charName

>>>

Pattern Matching
Tuples

addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors a b = (fst a + fst b, snd a + snd b)

addVectors' :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors' (x1, y1) (x2, y2) = (x1 + x2, y1 + y2)

The type of addVectors (in both cases) is

addVectors :: (Num a) => (a, a) -> (a, a) - > (a, a)

so we are guaranteed to get two pairs as parameters.

Pattern Matching
Tuples

addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors a b = (fst a + fst b, snd a + snd b)

addVectors' :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors' (x1, y1) (x2, y2) = (x1 + x2, y1 + y2)

>>> addVectors (1,2) (3,4)

(4,6)

>>> addVectors' (1,2) (3,4)

(4,6)

>>> addVectors' (1,2)

<interactive>:49:1:

No instance for (Show ((a0, a0) -> (a0, a0)))

arising from a use of 'print'

In a stmt of an interactive GHCi command: print it

Pattern Matching
One, two, . . .

fst and snd extract the components of pairs. But what about
triples? Well, there are no provided functions that do that but we
can make our own.

first :: (a, b, c) -> a

first (x, _, _) = x

second :: (a, b, c) -> b

second (_, y, _) = y

third :: (a, b, c) -> c

third (_, _, z) = z

Pattern Matching
Pattern Match in List Comprehensions

>>> let xs = [(1,2), (3,4), (5,6), (7,8)]

>>> [a+b | (a,b) <- xs]

[3,7,11,15]

>>> let xs = [(1,2,3), (4,5,6), (7,8,9)]

>>> [c-a+b | (a,b,c) <- xs]

[4,7,10]

>>> let xs = [(1,(2,3)),(4,(5,6)),(7,(8,9))]

>>> [(a,b+c) | (a,(b,c)) <- xs]

[(1,5),(4,11),(7,17)]

>>> let xs = [((1,2),(3,4)),((5,6),(7,8))]

>>> [(a+b,c+d) | ((a,b),(c,d)) <- xs]

[(3,7),(11,15)]

Pattern Matching
Pattern Match in List Comprehensions

Should a pattern match fail, it will just move on to the next
element.

>>> let xs = [(1,'a'),(2,'b'),(1,'c'),(3,'d'),(1,'e')]

>>> [y | (1, y) <- xs]

"ace"

Pattern Matching
Pattern Match in Lists

Pattern Matching
Pattern Match in Lists

Lists themselves can also be used in pattern matching.

You can match with the empty list [] or any pattern that involves
: and the empty list.

But since [1,2,3] is just syntactic sugar for 1:2:3:[], you can
also use the former pattern.

A pattern like x:xs will bind the head of the list to x and the rest
of it to xs, even if there’s only one element so xs ends up being an
empty list.

If you want to bind, say, the first three elements to variables and
the rest of the list to another variable, you can use something like
x:y:z:zs. It will only match against lists that have three elements
or more.

Pattern Matching
Pattern Match in Lists

head' :: [a] -> a

head' [] = error "Can't call head on an empty list."

head' (x : _) = x

>>> head' []

*** Exception: Can't call head on an empty list, dummy!

>>> head' [1]

1

>>> head' [1,2]

1

>>> head' [1,2,3]

1

>>> head' "Hello!"

'H'

Pattern Matching
Pattern Match in Lists

tell :: (Show a) => [a] -> String

tell [] = "The list is empty"

tell (x : []) = "The list has one element: " ++

show x

tell (x : y : []) = "The list has two elements: " ++

show x ++

" and " ++

show y

tell (x : y :_) = "This list is long. " ++

"The first two elements are: " ++

show x ++

" and " ++

show y

Pattern Matching
Pattern Match in Lists

Note that (x:[]) and (x:y:[]) could be rewriten as [x] and
[x,y] (because its syntatic sugar, we don’t need the parentheses).

We can’t rewrite (x:y:_) with square brackets because it matches
any list of length 2 or more.

Pattern Matching
Pattern Match in Lists

Pattern matching with a little recursion.

length' :: (Num b) => [a] -> b

length' [] = 0

length' (_ : xs) = 1 + length' xs

sum' :: (Num a) => [a] -> a

sum' [] = 0

sum' (x : xs) = x + sum' xs

Pattern Matching
As-patterns

Patterns are a handy way of breaking something up according to a
pattern and binding it to names whilst still keeping a reference to
the whole thing.

You do that by putting a name and an @ in front of a pattern.

For instance, the pattern xs@(x:y:ys).

This pattern will match exactly the same thing as x:y:ys but you
can easily get the whole list via xs instead of repeating yourself by
typing out x:y:ys in the function body again.

Pattern Matching
As-patterns

capital :: String -> String

capital "" = "Empty string, whoops!"

capital all@(x : xs) = "The first letter of " ++ all ++

" is " ++ [x]

>>> capital "Haskell rocks!"

"The first letter of Haskell rocks! is H"

Pattern Matching

you can’t use ++ in pattern matches.

If you tried to pattern match against xs ++ ys, what would be in
the first and what would be in the second list? It doesn’t make
much sense.

It would make sense to match stuff against (xs ++ [x,y,z]) or
just (xs ++ [x]), but because of the nature of lists, you can’t do
that.

Guards, Guards!

Guards, Guards!

Whereas patterns are a way of making sure a value conforms to
some form and deconstructing it, guards are a way of testing
whether some property of a value (or several of them) are true or
false.

That sounds a lot like an if statement and it’s very similar.

The thing is that guards are a lot more readable when you have
several conditions and they play really nicely with patterns.

Guards, Guards!

bmiTell :: (RealFloat a) => a -> String

bmiTell bmi

| bmi <= 18.5 = "You're underweight, you emo, you!"

| bmi <= 25.0 = "You're supposedly normal. " ++

"Pffft, I bet you're ugly!"

| bmi <= 30.0 = "You're fat! Lose some weight, fatty!"

| otherwise = "You're a whale, congratulations!"

Guards, Guards!

Guards are indicated by pipes that follow a function’s name and its
parameters.

Usually, they’re indented a bit to the right and lined up.

A guard is basically a boolean expression. If it evaluates to True,
then the corresponding function body is used. If it evaluates to
False, checking drops through to the next guard and so on.

If we call this function with 24.3, it will first check if that’s smaller
than or equal to 18.5. Because it isn’t, it falls through to the next
guard. The check is carried out with the second guard and because
24.3 is less than 25.0, the second string is returned.

Guards, Guards!

Many times, the last guard is otherwise.

otherwise is defined simply as otherwise = True and catches
everything.

This is very similar to patterns, only they check if the input
satisfies a pattern but guards check for boolean conditions.

If all the guards of a function evaluate to False(and we haven’t
provided an otherwise catch-all guard), evaluation falls through
to the next pattern.

That’s how patterns and guards play nicely together. If no suitable
guards or patterns are found, an error is thrown.

Guards, Guards!

Of course we can use guards with functions that take as many
parameters as we want.

bmiTell' :: (RealFloat a) => a -> a -> String

bmiTell' weight height

| weight / height^2 <= 18.5 = "You're underweight, " ++

"you emo, you!"

| weight / height^2 <= 25.0 = "You're supposedly normal." ++

"Pffft, I bet you're ugly!"

| weight / height^2 <= 30.0 = "You're fat! Lose some " ++

"weight, fatty!"

| otherwise = "You're a whale, " ++

"congratulations!"

Guards, Guards!

Of course we can use guards with functions that take as many
parameters as we want.

bmiTell'' :: (RealFloat a) => a -> a -> String

bmiTell'' weight height

| bmi <= 18.5 = "You're underweight, " ++

"you emo, you!"

| bmi <= 25.0 = "You're supposedly normal." ++

"Pffft, I bet you're ugly!"

| bmi <= 30.0 = "You're fat! Lose some " ++

"weight, fatty!"

| otherwise = "You're a whale, " ++

"congratulations!"

where

bmi = weight / height^2

Guards, Guards!

max' :: (Ord a) => a -> a -> a

max' a b

| a > b = a

| otherwise = b

Guards can also be written inline, although I’d advise against that
because it’s less readable, even for very short functions.

max' :: (Ord a) => a -> a -> a

max' a b | a > b = a | otherwise = b

Guards, Guards!

myCompare :: (Ord a) => a -> a -> Ordering

x `myCompare` y

| x > y = GT

| x == y = EQ

| otherwise = LT

>>> 2 `myCompare` 3

LT

>>> 3 `myCompare` 3

EQ

>>> 3 `myCompare` 2

GT

>>>

Where!?

bmiTell'' :: (RealFloat a) => a -> a -> String

bmiTell'' weight height

| bmi <= skinny = "You're underweight, " ++

"you emo, you!"

| bmi <= normal = "You're supposedly normal." ++

"Pffft, I bet you're ugly!"

| bmi <= fat = "You're fat! Lose some " ++

"weight, fatty!"

| otherwise = "You're a whale, " ++

"congratulations!"

where

bmi = weight / height^2

skinny = 18.5

normal = 25.0

fat = 30.0

Where!?

The names we define in the where section of a function are only
visible to that function, so we don’t have to worry about them
polluting the namespace of other functions

Notice that all the names are aligned at a single column. If we
don’t align them nice and proper, Haskell gets confused because
then it doesn’t know they’re all part of the same block.

Where!?

initials :: String -> String -> String

initials firstname lastname = [f] ++ ". " ++ [l] ++ "."

where

(f:_) = firstname

(l:_) = lastname

calcBmis :: (RealFloat a) => [(a, a)] -> [a]

calcBmis xs = [bmi w h | (w, h) <- xs]

where

bmi weight height = weight / height ^ 2

Let It Be

Very similar to where bindings are let bindings.

where bindings are a syntactic construct that let you bind to
variables at the end of a function and the whole function can see
them, including all the guards.

let bindings let you bind to variables anywhere and are expressions
themselves, but are very local, so they don’t span across guards.

Just like any construct in Haskell that is used to bind values to
names, let bindings can be used for pattern matching.

Let It Be

cylinder :: (RealFloat a) => a -> a -> a

cylinder r h =

let sideArea = 2 * pi * r * h

topArea = pi * r^2

in sideArea + 2 * topArea

Let It Be

The difference between let and where bindings is that let
bindings are expressions themselves.

where bindings are just syntactic constructs.

Let It Be

>>> let i = 3 in i+1

4

>>> 10 + (let i = 3 in i+1)

14

>>> [let square x = x * x in (square 5, square 3, square 2)]

[(25,9,4)]

>>> (let (a,b,c) = (1,2,3) in a+b+c) * 100

600

Let It Be
let bindings inside list comprenhension

calcBmis' :: (RealFloat a) => [(a, a)] -> [a]

calcBmis' xs = [bmi | (w, h) <- xs, let bmi = w / h ^ 2]

Return only the BMIs of fat people:

calcBmis'' :: (RealFloat a) => [(a, a)] -> [a]

calcBmis'' xs = [bmi | (w, h) <- xs

, let bmi = w / h ^ 2

, bmi >= 25.0]

We can’t use the bmi name in the (w, h) <- xs part because it’s
defined prior to the let binding.

Case expressions

Case expressions

Many imperative languages (C, C++, Java, etc.) have case syntax
and if you’ve ever programmed in them, you probably know what
it’s about.

It’s about taking a variable and then executing blocks of code for
specific values of that variable and then maybe including a
catch-all block of code in case the variable has some value for
which we didn’t set up a case.

Case expressions

Haskell takes that concept and one-ups it.

Like the name implies, case expressions are, well, expressions,
much like if else expressions and let bindings.

Not only can we evaluate expressions based on the possible cases
of the value of a variable, we can also do pattern matching.

Hmmm, taking a variable, pattern matching it, evaluating pieces of
code based on its value, where have we heard this before?

Oh yeah, pattern matching on parameters in function definitions!
Well, that’s actually just syntactic sugar for case expressions.

Case expressions

These two pieces of code do the same thing and are
interchangeable:

head' :: [a] -> a

head' [] = error "No head for empty lists!"

head' (x : _) = x

head' :: [a] -> a

head' xs = case xs of

[] -> error "No head for empty lists!"

(x : _) -> x

Case expressions

The syntax for case expressions is pretty simple:

case expression of pattern -> result

pattern -> result

pattern -> result

...

expression is matched against the patterns.

The pattern matching action is the same as expected: the first
pattern that matches the expression is used.

If it falls through the whole case expression and no suitable pattern
is found, a runtime error occurs.

Case expressions

Whereas pattern matching on function parameters can only be
done when defining functions, case expressions can be used pretty
much anywhere.

For instance:

describeList :: [a] -> String

describeList xs = "list is " ++ case xs of

[] -> "empty."

[x] -> "a singleton."

xs -> "a long list."

Case expressions

They are useful for pattern matching against something in the
middle of an expression. Because pattern matching in function
definitions is syntactic sugar for case expressions, we could have
also defined this like so:

describeList :: [a] -> String

describeList xs = "The list is " ++ what xs

where

what [] = "empty."

what [x] = "a singleton list."

what xs = "a longer list."

