
Haskell
Functional Programming

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Gustave Eiffel

October 19, 2021

http://igm.univ-mlv.fr/~vialette/?section=teaching

Programming paradigms

Programming paradigms are not distinct

Functional languages

Everybody’s talking about functional programming

Lisp

Lisp (historically, LISP) is a family of computer programming
languages with a long history and a distinctive, fully parenthesized
prefix notation. Originally specified in 1958, Lisp is the
second-oldest high-level programming language in widespread use
today. (Only Fortran is older, by one year.)

Everybody’s talking about functional programming

Erlang

Erlang (https://www.erlang.org/) is a general-purpose,
concurrent, functional programming language, as well as a
garbage-collected runtime system.

https://www.erlang.org/

Everybody’s talking about functional programming

Elixir
Elixir (https://elixir-lang.org/) is a functional, concurrent,
general-purpose programming language that runs on the Erlang
virtual machine (BEAM).

https://elixir-lang.org/

Everybody’s talking about functional programming

F#

F# (http://fsharp.org/ is a strongly typed, multi-paradigm
programming language that encompasses functional, imperative,
and object-oriented programming methods. It is being developed
at Microsoft Developer Division and is being distributed as a fully
supported language in the .NET framework.

http://fsharp.org/

Everybody’s talking about functional programming

Ocaml
Ocaml (http://ocaml.org/ originally named Objective Caml, is
the main implementation of the programming language Caml.
OCaml’s toolset includes an interactive top-level interpreter, a
bytecode compiler, a reversible debugger, a package manager
(OPAM), and an optimizing native code compiler.

http://ocaml.org/

Everybody’s talking about functional programming

Clojure

Clojure (https://clojure.org/) is a dialect of the Lisp
programming language. Clojure is a general-purpose programming
language with an emphasis on functional programming. It runs on
the Java virtual machine and the Common Language Runtime.

https://clojure.org/

Everybody’s talking about functional programming

Racket
Racket (http://racket-lang.org/), formerly PLT Scheme, is a
general purpose, multi-paradigm programming language in the
Lisp-Scheme family. One of its design goals is to serve as a
platform for language creation, design, and implementation

http://racket-lang.org/

Everybody’s talking about functional programming

Elm
Elm (http://elm-lang.org/) is a domain-specific programming
language for declaratively creating web browser-based graphical
user interfaces. Elm is purely functional, and is developed with
emphasis on usability, performance, and robustness.

http://elm-lang.org/

Everybody’s talking about functional programming

Scala
Scala (https://www.scala-lang.org/) is a general-purpose
programming language providing support for functional
programming and a strong static type system. Designed to be
concise, many of Scala’s design decisions aimed to address
criticisms of Java.

https://www.scala-lang.org/

Everybody’s talking about functional programming

Haskell
Haskell (https://www.haskell.org/) is a standardized,
general-purpose purely functional programming language, with
non-strict semantics and strong static typing. The latest standard
of Haskell is Haskell 2010. As of May 2016, a group is working on
the next version, Haskell 2020.

https://www.haskell.org/

Characteristics of functional programming

Functional programming

• Programming with pure functions.

• The output of a function is solely determined by the input
(much like mathematical functions).

• No side-effects.

• No assigments.

• Functions compose.

• Expression-oriented programming.

Why FP matters?

1. FP offers concurrency/parallelism with tears.

2. FP has succint, concise and understandable syntax.

3. FP offers a different programming perspective.

4. FP is becoming more accessible.

FP is fun!

Functions everywhere

Design patterns

OO patterns Functional programming patterns

Single responsability Functions
Open / Closed Functions
Interface segregation Functions
Factory Functions
Strategy Functions
Decoration Functions again
Visitor Resistance is futile !

Seriously, functional programming patterns are different.

FP has succint, concise and understandable syntax

The abstract nature of FP leads to considerably simpler programs.
It also supports a number of powerful new ways to structure and
reason about programs.

x = x+1; We understand this syntax because we often resort to
telling the computer what to do, but this equation really makes no
sense at all!

Ask, don’t tell.

FP offers a different programming perspective

For me, the most important thing about FP isn’t that functional
languages have some particular useful language features, but that
it allows to think differently and simply about problems that you
encouter when designing and writing applications. This is much
more important than understanding any new technology or a
programming language.

Tomas Petricek
http://tomasp.net/blog/

http://tomasp.net/blog/

Quicksort

Quicksort

Erlang

-module(quicksort).

-export([qsort/1]).

qsort([]) -> [];

qsort([X|Xs]) ->

qsort([Y || Y <- Xs, Y < X]) ++

[X] ++

qsort([Y || Y <- Xs, Y >= X]).

Quicksort

Elixir

defmodule Sort do

def qsort([]), do: []

def qsort([h | t]) do

{lesser, greater} = Enum.split_with(t, &(&1 < h))

qsort(lesser) ++ [h] ++ qsort(greater)

end

end

Quicksort

Ocaml

let rec qksort gt = function

| [] -> []

| x::xs ->

let ys, zs = List.partition (gt x) xs in

(qsort gt ys) @ (x :: (qsort gt zs))

Quicksort

Lisp

(defun qsort (list)

(when list

(destructuring-bind (x . xs) list

(nconc (qsort (remove-if (lambda (a) (> a x)) xs))

`(,x)

(qsort (remove-if (lambda (a) (<= a x)) xs))))))

Quicksort

Clojure

(defn qsort [[pivot & xs]]

(when pivot

(let [smaller #(< % pivot)]

(lazy-cat (qsort (filter smaller xs))

[pivot]

(qsort (remove smaller xs))))))

Quicksort

Racket
#lang racket

(define (quicksort < l)

(match l

['() '()]

[(cons x xs)

(let-values ([(xs-gte xs-lt) (partition (curry < x) xs)])

(append (quicksort < xs-lt)

(list x)

(quicksort < xs-gte)))]))

Quicksort

Haskell

qsort [] = []

qsort (x:xs) = qsort [y | y <- xs, y < x] ++

[x] ++

qsort [y | y <- xs, y >= x]

Quicksort

Haskell

import Data.List (partition)

qsort' :: Ord a => [a] -> [a]

qsort' [] = []

qsort' (x:xs) = qsort' ys ++ x : qsort' zs

where

(ys, zs) = partition (< x) xs

Quicksort

Python

def qsort(xs):

return (qsort([y for y in xs[1:] if y < xs[0]]) +

xs[:1] +

qsort([y for y in xs[1:] if y >= xs[0]])) if len(xs) > 1 else xs

Functional programming is becoming more accessible

More language options.

Tooling, IDEs.

Supports.

Books.

Blogs, podcasts and screencasts.

Conferences and user groups.

Haskell is becoming more accessible
IntelliJ IDEA

Haskell is becoming more accessible
Atom

Haskell is becoming more accessible
Emacs

Haskell is becoming more accessible
Leksah

Key Haskell concepts

High order functions, map, filter reduce (i.e., fold).

Recursion.

Pattern matching.

Currying.

Lazy/eager evaluation.

Strict/non-strict semantics.

Type inference.

Monads.

Continuations.

Closures.

Haskell

Haskell

Haskell is a standardized, general-purpose purely functional
programming language, with non-strict semantics and strong static
typing.

It is named after logician Haskell Curry.

Haskell

What can Haskell offer the programmer?

Purity

Unlike some other functional programming languages Haskell is
pure. It doesn’t allow any side-effects. This is probably the most
important feature of Haskell.

• Functions have no side effects.

• Given the same parameters, a function will always return the
same result.

• There are other needs that can’t be met in a pure fashion.

What can Haskell offer the programmer?

Referential transparency

• Pure computations yield the same value each time they are
invoked.

• Side effects like (uncontrolled) imperative update break this
desirable property.

• Make it easier to reason about the behavior of programs.

random :: Int

random = 4 -- chosen by fair dice rool, guaranted to be random.

today :: String

today = "Mon 21 Sep 2020" -- guaranted at the time of writing.

getInputChar:: Char

getInputChar = 'a' -- The user did type 'a', so what!?

What can Haskell offer the programmer?

Higher-order functions

• Functions that take other functions as their arguments.

• Useful for refactoring code.

• Reduce the amount of repetition.

quicksort :: (Ord a) => [a] -> [a]

quicksort [] = []

quicksort (x:xs) = smallerSorted ++ [x] ++ biggerSorted

where

smallerSorted = quicksort (filter (<=x) xs)

biggerSorted = quicksort (filter (>x) xs)

What can Haskell offer the programmer?

Immutable data
• Expressions in Haskell are immutable. They cannot change

after they are evaluated.

• Immutability makes refactoring super easy and code much
easier to reason about.

• To change an object, most data structures provide methods
taking the old object and creating a new copy.

>> let a = [1,2,3]

>> reverse a

[3,2,1]

>> a

[1,2,3]

What can Haskell offer the programmer?

Laziness
Haskell is lazy (technically speaking, it’s non-strict). This means
that nothing is evaluated until it has to be evaluated.

• Laziness is important.

• Laziness let us separate producers and consumers and still get
efficient execution.

• This allows us to work with infinite lists without getting stuck
in an infinite computation.

What can Haskell offer the programmer?

Laziness
Haskell is lazy (technically speaking, it’s non-strict). This means
that nothing is evaluated until it has to be evaluated.

In a strict language, evaluating f 5 (29^35792) will first com-
pletely evaluate 5 (already done) and 29^35792 (which is a lot of
work) before passing the results to f.

What can Haskell offer the programmer?

Laziness
Haskell is lazy (technically speaking, it’s non-strict). This means
that nothing is evaluated until it has to be evaluated.

λ : 1 `div` 0

*** Exception: divide by zero

λ : (1 == 2-1) || (1 `div` 0 == 1)

True

λ : (1 /= 2-1) && (1 `div` 0 == 1)

False

λ : head [1, 2 `div` 0, 3]

1

λ : last (tail [1, 2 `div` 0, 3])

3

What can Haskell offer the programmer?

Strong typing

Haskell is strongly typed, this means just what it sounds like.
Unlike other strongly typed languages types in Haskell are
automatically inferred.

• It’s impossible to inadvertently convert a Double to an Int,
or follow a null pointer.

• Types are checked at compile-time.

• You can easily defined your own types.

What can Haskell offer the programmer?

Elegance

Another property of Haskell that is very important to the
programmer, even though it doesn’t mean as much in terms of
stability or performance, is the elegance of Haskell.

• A function definition usually resembles the informal
description of the function very closely.

• To put it simply: stuff just works like you’d expect it to.

So what !?

Reference book

Show me some code!

Hello, World!

module Main where

main :: IO ()

main = putStrLn "Hello, World!"

Hello, World!: Compile to native code

barbalala: ghc -o Hello Hello.hs

[1 of 1] Compiling Main (Hello.hs, Hello.o)

Linking Hello ...

barbalala: ./Hello

Hello, World!

barbalala:

Hello, World!: Interpreter

barbalala: ghci

GHCi, version 7.8.3: http://www.haskell.org/ghc/

:? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

Prelude> :load "Hello"

[1 of 1] Compiling Main (Hello.hs, interpreted)

Ok, modules loaded: Main.

*Main> main

Hello, World!

*Main>

Quicksort in Haskell

quicksort :: Ord a => [a] -> [a]

quicksort [] = []

quicksort (p:xs) = quicksort lesser ++

[p] ++

quicksort greater

where

lesser = filter (< p) xs

greater = filter (>= p) xs

The Fibonacci sequence

fib :: (Eq a, Num a, Num b) => a -> b

fib 0 = 0

fib 1 = 1

fib n = fib (n-1) + fib (n-2)

or

fib :: (Integral b, Integral a) => a -> b

fib n = round $ phi ** fromIntegral n / sq5

where

sq5 = sqrt 5 :: Double

phi = (1 + sq5) / 2

or

fibs :: Num a => [a]

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

or . . .

The speed of Haskell

For most applications the difference in speed between C++ and
Haskell is so small that it’s utterly irrelevant

The speed of Haskell

There’s an old rule in computer programming called the ”80/20
rule”. It states that 80% of the time is spent in 20% of the code.
The consequence of this is that any given function in your system
will likely be of minimal importance when it comes to
optimizations for speed. There may be only a handful of functions
important enough to optimize.

Remember that algorithmic optimization can give much better
results than code optimization.

Last but not least, Haskell offers substantially increased
programmer productivity (Ericsson measured an improvement
factor of between 9 and 25 using Erlang, a functional programming
language similar to Haskell, in one set of experiments on telephony
software.)

Haskell in Industry

Why is Haskell not used in the software industry?
even though it is a popular functional programming language!

• Integration with the companies’ existing codebase.

• There are not enough people with Haskell experience.

• Colleges and universities do little to popularize Haskell.

• Clojure and Scala are not purely functional but have done a
lot to popularize functional programming.

Using these languages, the management and programmers can
claim to be trained in functional programming and yet know
of nothing more than map, reduce and fold.

Functional programming languages

