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Making Our Own Types and Typeclasses
Algebraic data types intro

So far, we’ve run into a lot of data types: Bool, Int, Char,
Maybe, etc. But how do we make our own?

One way is to use the data keyword to define a type.

Let’s see how the Bool type is defined in the standard library.

data Bool = False | True

data means that we’re defining a new data type.
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data Bool = False | True

The part before the = denotes the type, which is Bool.

The parts after the = are value constructors. They specify the
different values that this type can have.

The | is read as or. So we can read this as: the Bool type can
have a value of True or False.

Both the type name and the value constructors have to be capital
cased.
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head' :: [a] -> Maybe a

head' [] = Nothing

head' (x : _) = Just x

tail' :: [a] -> Maybe [a]

tail' [] = Nothing

tail' (_ : xs) = Just xs

last' :: [a] -> Maybe a

last' = head' . reverse

init' :: [a] -> Maybe [a]

init' xs = case tail' (reverse xs) of

Nothing -> Nothing

Just xs' -> Just (reverse xs')
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λ ∶ head' []

Nothing

λ ∶ head' [1..5]

Just 1

λ ∶ tail' []

Nothing

λ ∶ tail' [1..5]

Just [2,3,4,5]

λ ∶ last' []

Nothing

λ ∶ last' [1..5]

Just 5

λ ∶ init' []

Nothing

λ ∶ init' [1..5]

Just [1,2,3,4]



Shape

let’s think about how we would represent a shape in Haskell.



Shape

data Shape = Circle Float Float Float

| Rectangle Float Float Float Float

The Circle value constructor has three fields, which take floats:
the first two fields are the coordinates of its center, the third one
its radius.

The Rectangle value constructor has four fields which accept
floats: the first two are the coordinates to its upper left corner and
the second two are coordinates to its lower right one.



Shape

λ ∶ :type Circle

Circle :: Float -> Float -> Float -> Shape

λ ∶ :type Rectangle

Rectangle :: Float -> Float -> Float -> Float -> Shape

λ ∶

Value constructors are functions like everything else.



Shape

Let’s make a function that takes a shape and returns its surface:

surface :: Shape -> Float

surface (Circle _ _ r) = pi * r ^ 2

surface (Rectangle x y x' y') = abs (x'-x) * abs (y'-y)

λ ∶ surface $ Circle 10 20 10

314.15927

λ ∶ surface $ Rectangle 0 0 100 100

10000.0

λ ∶ c = Circle 10 20 10

λ ∶ surface c

314.15927

λ ∶ r = Rectangle 0 0 100 100

λ ∶ surface r

10000.0



Shape

Haskell doesn’t know how to display our data type as a string (yet):

λ ∶ Circle 10 20 30

<interactive>:27:1:

No instance for (Show Shape) arising from a use of 'print'

In a stmt of an interactive GHCi command: print it

λ ∶ Rectangle 0 0 100 100

<interactive>:28:1:

No instance for (Show Shape) arising from a use of 'print'

In a stmt of an interactive GHCi command: print it



Shape

data Shape = Circle Float Float Float

| Rectangle Float Float Float Float

deriving (Show)

λ ∶ Circle 10 20 30

Circle 10.0 20.0 30.0

λ ∶ Rectangle 0 0 100 100

Rectangle 0.0 0.0 100.0 100.0



Shape

Value constructors are functions, so we can map them and partially
apply them and everything.

λ ∶ :type Circle

Circle :: Float -> Float -> Float -> Shape

λ ∶ :type Rectangle

Rectangle :: Float -> Float -> Float -> Float -> Shape

If we want a list of concentric circles with different radii, we can do
this.

λ ∶ map (Circle 10 20) [4,5]

[Circle 10.0 20.0 4.0,Circle 10.0 20.0 5.0]

If we want a list of rectangles with different lower right corners, we
can do this.

λ ∶ map (\ (x,y) -> Rectangle 0 0 x y) [(10,10),(11,11)]

[Rectangle 0.0 0.0 10.0 10.0,Rectangle 0.0 0.0 11.0 11.0]



Shape

Our data type is good, although it could be better. Let’s make an
intermediate data type that defines a point in two-dimensional
space.

data Point = Point Float Float deriving (Show)

data Shape = Circle Point Float

| Rectangle Point Point deriving (Show)

Notice that when defining a point, we used the same name for the
data type and the value constructor. This has no special meaning,
although it’s common to use the same name as the type if there’s
only one value constructor.

So now the Circle has two fields, one is of type Point and the
other of type Float. Same goes for the rectangle.



Shape

We have to adjust our surface function to reflect these changes.

surface :: Shape -> Float

surface (Circle _ r) = pi * r ^ 2

surface (Rectangle (Point x1 y1) (Point x2 y2)) = lx * ly

where

lx = abs $ x2 - x1

ly = abs $ y2 - y1

λ ∶ surface (Rectangle (Point 0 0) (Point 100 100))

10000.0

λ ∶ surface (Circle (Point 0 0) 24)

1809.5574



Shape

How about a function that nudges a shape? It takes a shape, the
amount to move it on the x axis and the amount to move it on the
y axis and then returns a new shape that has the same dimensions,
only it’s located somewhere else.

nudge :: Shape -> Float -> Float -> Shape

nudge (Circle (Point x y) r) a b =

Circle (Point (x+a) (y+b)) r

nudge (Rectangle (Point x1 y1) (Point x2 y2)) a b =

Rectangle p1 p2

where

p1 = Point (x1+a) (y1+b)

p2 = Point (x2+a) (y2+b)

λ ∶ nudge (Circle (Point 34 34) 10) 5 10

Circle (Point 39.0 44.0) 10.0



Shape

If we don’t want to deal directly with points, we can make some
auxilliary functions that create shapes of some size at the zero
coordinates and then nudge those.

baseCircle :: Float -> Shape

baseCircle r = Circle (Point 0 0) r

baseRectangle :: Float -> Float -> Shape

baseRectangle w h = Rectangle (Point 0 0) (Point w h)

λ ∶ nudge (baseRectangle 40 100) 60 23

Rectangle (Point 60.0 23.0) (Point 100.0 123.0)



Shape

You can, of course, export your data types in your modules.

To do that, just write your type along with the functions you are
exporting and then add some parentheses and in them specify the
value constructors that you want to export for it, separated by
commas.

If you want to export all the value constructors for a given type,
just write ...



Shape

module Shapes

( Point(..)

, Shape(..)

, surface

, nudge

, baseCircle

, baseRectangle

) where

By doing Shape(..), we exported all the value constructors for
Shape, so that means that whoever imports our module can make
shapes by using the Rectangle and Circle value constructors.

It’s the same as writing Shape (Rectangle, Circle).



Shape

We could also opt not to export any value constructors for Shape
by just writing Shape in the export statement.

That way, someone importing our module could only make shapes
by using the auxilliary functions baseCircle and baseRectangle.

Not exporting the value constructors of a data types makes them
more abstract in such a way that we hide their implementation.
Also, whoever uses our module can’t pattern match against the
value constructors.



Data.Map

Data.Map uses that approach. You can’t create a map by doing
Map.Map [(1,2),(3,4)] because it doesn’t export that value
constructor.

However, you can make a mapping by using one of the auxilliary
functions like Map.fromList.

Remember, value constructors are just functions that take the
fields as parameters and return a value of some type (like Shape)
as a result. So when we choose not to export them, we just
prevent the person importing our module from using those
functions, but if some other functions that are exported return a
type, we can use them to make values of our custom data types.



Record syntax



Record syntax

The info that we want to store about a person is: first name, last
name, age, height and phone number.

data Person = Person String String Int Float String

deriving (Show)

λ ∶ guy = Person "Jo" "Dalton" 43 184.0

λ ∶ guy

Person "Jo" "Dalton" 43 184.0



Record syntax

firstName :: Person -> String

firstName (Person firstname _ _ _ _ _) = firstname

lastName :: Person -> String

lastName (Person _ lastname _ _ _ _) = lastname

age :: Person -> Int

age (Person _ _ age _ _ _) = age

height :: Person -> Float

height (Person _ _ _ height _ _) = height



Record syntax

data Person = Person { firstName :: String

, lastName :: String

, age :: Int

, height :: Float

} deriving (Show)



Record syntax

The main benefit of this is that it creates functions that lookup
fields in the data type.

By using record syntax to create this data type, Haskell
automatically made these functions: firstName, lastName, age
and height.

λ ∶ :type Person

Person :: String -> String -> Int -> Float -> Person

λ ∶ :type firstName

firstName :: Person -> String

λ ∶ :type lastName

lastName :: Person -> String

λ ∶ :type age

age :: Person -> Int

λ ∶ :type height

height :: Person -> Float



Record syntax

When we derive Show for the type, it displays it differently if we
use record syntax to define and instantiate the type.

data Car = Car String String Int deriving (Show)

λ ∶ Car "Ford" "Mustang" 1967

Car "Ford" "Mustang" 1967

data Car = Car {company::String, model::String, year::Int}

deriving (Show)

λ ∶ Car "Ford" "Mustang" 1967

Car {company = "Ford", model = "Mustang", year = 1967}



Record syntax

origin :: Car -> String

origin (Car {company="Ford", model=_, year=_}) = "USA"

origin (Car {company="Renault", model=_, year=_}) = "France"

origin (Car {company="BMW", model=_, year=_}) = "Germany"

origin _ = "???"

λ ∶ origin (Car "Ford" "Mustang" 1967)

"USA"

λ ∶ origin (Car "Renault" "Espace" 2016)

"France"

λ ∶ origin (Car "BMW" "Z3" 2000)

"Germany"

λ ∶ origin (Car "Opel" "Corsa" 1990)

"???"



Type parameters



Type parameters

A value constructor can take some values parameters and then
produce a new value.

For instance, the Car constructor takes three values and produces
a car value.

In a similar manner, type constructors can take types as
parameters to produce new types.

This might sound a bit too meta at first, but it’s not that
complicated. If you’re familiar with templates in C++, you’ll see
some parallels.



Type parameters

data Maybe a = Nothing | Just a

The a here is the type parameter.

And because there’s a type parameter involved, we call Maybe a
type constructor.

Depending on what we want this data type to hold when it’s not
Nothing, this type constructor can end up producing a type of
Maybe Int, Maybe Car, Maybe String, etc.

No value can have a type of just Maybe, because that’s not a type
per se, it’s a type constructor. In order for this to be a real type
that a value can be part of, it has to have all its type parameters
filled up.



Type parameters

λ ∶ :type Just

Just :: a -> Maybe a

λ ∶ :type Nothing

Nothing :: Maybe a

λ ∶ :type Just 1

Just 1 :: Num a => Maybe a

λ ∶ :type Just 'a'

Just 'a' :: Maybe Char

λ ∶ :type Just "ab"

Just "ab" :: Maybe [Char]

λ ∶ :type Just Nothing

Just Nothing :: Maybe (Maybe a)

λ ∶ :type Just (Just ["ab", "cd"])

Just (Just ["ab", "cd"]) :: Maybe (Maybe [[Char]])



Type parameters

Notice that the type of Nothing is Maybe a.

Its type is polymorphic. If some function requires a Maybe Int as
a parameter, we can give it a Nothing, because a Nothing doesn’t
contain a value anyway and so it doesn’t matter.

The Maybe a type can act like a Maybe Int if it has to, just like 5

can act like an Int or a Double.

Similarly, the type of the empty list is [a]. An empty list can act
like a list of anything. That’s why we can do [1,2,3] ++ [] and
["ha","ha","ha"] ++ [].



Parameterized type

Another example of a parameterized type that we’ve already met is
Map k v from Data.Map.

The k is the type of the keys in a map and the v is the type of the
values.

This is a good example of where type parameters are very useful.
Having maps parameterized enables us to have mappings from any
type to any other type, as long as the type of the key is part of the
Ord typeclass.

If we were defining a mapping type, we could add a typeclass
constraint in the data declaration:

data (Ord k) => Map k v = ...



Parameterized type

However, it’s a very strong convention in Haskell to never add
typeclass constraints in data declarations.

Why? Well, because we don’t benefit a lot, but we end up writing
more class constraints, even when we don’t need them.

If we put or don’t put the Ord k constraint in the data declaration
for Map k v, we’re going to have to put the constraint into
functions that assume the keys in a map can be ordered.

But if we don’t put the constraint in the data declaration, we don’t
have to put (Ord k) => in the type declarations of functions that
don’t care whether the keys can be ordered or not.



Parameterized type

Let’s implement a 3D vector type and add some operations for it.

data Vector a = Vector a a a deriving (Show)

vplus :: (Num t) => Vector t -> Vector t -> Vector t

(Vector i j k) `vplus` (Vector l m n) =

Vector (i+l) (j+m) (k+n)

vectMult :: (Num t) => Vector t -> t -> Vector t

(Vector i j k) `vectMult` m =

Vector (i*m) (j*m) (k*m)

scalarMult :: (Num t) => Vector t -> Vector t -> t

(Vector i j k) `scalarMult` (Vector l m n) =

i*l + j*m + k*n



Parameterized type

λ ∶ :type Vector

Vector :: a -> a -> a -> Vector a

λ ∶ v = Vector 1 2 3

λ ∶ v `vplus` v

Vector 2 4 6

λ ∶ v `vectMult` 10

Vector 10 20 30

λ ∶ v `scalarMult` v

14



Parameterized type

λ ∶ v = Vector 1 2 3.0

λ ∶ v

Vector 1.0 2.0 3.0

λ ∶ :type v

v :: Fractional a => Vector a

λ ∶ v' = Vector 1 2 3 `vplus` Vector 1.0 2.0 3.0

λ ∶ v'

Vector 2.0 4.0 6.0

λ ∶ :type v'

v' :: Fractional t => Vector t

λ ∶ Vector 1 2 '3'

<interactive>:113:8:

No instance for (Num Char) arising from the literal '1'

In the first argument of 'Vector', namely '1'

In the expression: Vector 1 2 '3'

In an equation for 'it': it = Vector 1 2 '3'

λ ∶



Parameterized type

λ ∶ Vector 3 5 8 `vplus` Vector 9 2 8

Vector 12 7 16

λ ∶ Vector 3 5 8 `vplus` Vector 9 2 8 `vplus` Vector 0 2 3

Vector 12 9 19

λ ∶ Vector (Vector 1 2 3) (Vector 4 5 6) (Vector 7 8 9)

Vector (Vector 1 2 3) (Vector 4 5 6) (Vector 7 8 9)

λ ∶
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Derived instances

In the Typeclasses 101 section, we explained the basics of
typeclasses.

We explained that a typeclass is a sort of an interface that defines
some behavior.

A type can be made an instance of a typeclass if it supports that
behavior.



Derived instances

the Int type is an instance of the Eq typeclass because the Eq

typeclass defines behavior for stuff that can be equated.

And because integers can be equated, Int is a part of the Eq

typeclass.

The real usefulness comes with the functions that act as the
interface for Eq, namely == and /=.

If a type is a part of the Eq typeclass, we can use the == functions
with values of that type.

That’s why expressions like 4 == 4 and "foo" /= "bar"

typecheck.



Derived instances

Consider this data type:

data Person = Person { name :: String

, age :: Int

} deriving (Eq)

When we derive the Eq instance for a type and then try to
compare two values of that type with == or /=, Haskell will see if
the value constructors match (there’s only one value constructor
here though) and then it will check if all the data contained inside
matches by testing each pair of fields with ==.

There’s only one catch though, the types of all the fields also have
to be part of the Eq typeclass. But since both String and Int

are, we’re OK.



Derived instances

λ ∶ mike40 = Person {name = "Michael", age = 40}

λ ∶ mike43 = Person {name = "Michael", age = 43}

λ ∶ adam40 = Person {name = "Adam", age = 40}

λ ∶ adam43 = Person {name = "Adam", age = 43}

λ ∶ mike40 == mike43

False

λ ∶ adam40 == adam43

False

λ ∶ mike40 == adam40

False

λ ∶ mike43 == mike43

True

λ ∶ mike40 == Person {name = "Michael", age = 40}

True

λ ∶



Derived instances

Of course, since Person is now in Eq, we can use it as the a for all
functions that have a class constraint of Eq a in their type
signature, such as elem.

λ ∶ ps = [mike40, mike43, adam40, adam43]

λ ∶ mike40 `elem` ps

True

λ ∶ Person {name = "Michael", age = 43} `elem` ps

True

λ ∶ import Data.List

λ ∶ f p = p == adam40

λ ∶ ps' = filter f ps

λ ∶ length ps'

1



Read and Show typeclasses

The Show and Read typeclasses are for things that can be
converted to or from strings, respectively.

Like with Eq, if a type’s constructors have fields, their type has to
be a part of Show or Read if we want to make our type an instance
of them.

Let’s make our Person data type a part of Show and Read as well.

data Person = Person { name :: String

, age :: Int

} deriving (Eq, Show, Read)



Read and Show typeclasses

Now we can print a person out to the terminal.

λ ∶ adam40

Person {name = "Adam", age = 40}

λ ∶ "adam40 is " ++ show adam40

"adam40 is Person {name = \"Adam\", age = 40}"

λ ∶ f p = p == adam40

λ ∶ ps = [mike40, mike43, adam40, adam43]

λ ∶ filter f ps

[Person {name = "Adam", age = 40}]

λ ∶ filter (\ p -> p == adam40) ps

[Person {name = "Adam", age = 40}]

λ ∶ filter (== adam40) ps

[Person {name = "Adam", age = 40}]



Read and Show typeclasses

Read is pretty much the inverse typeclass of Show. Show is for
converting values of our a type to a string, Read is for converting
strings to values of our type.

λ ∶ read "Person {name = \"Bob\", age = 20}" :: Person

Person {name = "Bob", age = 20}

λ ∶ bob20 = read "Person {name = \"Bob\", age = 20}" :: Person

λ ∶ bob20

Person {name = "Bob", age = 20}

λ ∶ bob20 == read "Person {name = \"Bob\", age = 20}"

True



Ord typeclass

We can derive instances for the Ord type class, which is for types
that have values that can be ordered.

data Bool = False | True deriving (Eq, Ord)

Because the False value constructor is specified first and the True

value constructor is specified after it, we can consider True as
greater than False.

λ ∶ False' `compare` True'

LT

λ ∶ False' < True'

True

λ ∶ False' > True'

False

λ ∶ True' < False'

False



Ord typeclass

In the Maybe a data type, the Nothing value constructor is
specified before the Just value constructor, so a value of Nothing
is always smaller than a value of Just something

λ ∶ Nothing < Just 100

True

λ ∶ Nothing > Just (-49999)

False

λ ∶ Just 3 `compare` Just 2

GT

λ ∶ Just 100 > Just 50

True

λ ∶ Nothing `compare` Nothing

EQ

λ ∶ Just 5 `compare` Just 5

EQ



Ord typeclass

But

λ ∶ Just (== 1) `compare` Just (== 1)

<interactive>:9:7:

No instance for (Eq a0) arising from a use of '=='

The type variable 'a0' is ambiguous

Note: there are several potential instances:

instance Eq a => Eq (GHC.Real.Ratio a) -- Defined in 'GHC.Real'

instance Eq Integer -- Defined in 'integer-gmp:GHC.Integer.Type'

instance Eq a => Eq (Maybe a) -- Defined in 'Data.Maybe'

...



Bounded and Enum typeclasses

We can easily use algebraic data types to make enumerations and
the Bounded and Enum typeclasses help us with that.

data Day = Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday



Bounded and Enum typeclasses

Because all the value constructors are nullary (take no parameters,
i.e. fields), we can make it part of the Enum typeclass.

The Enum typeclass is for things that have predecessors and
successors.

We can also make it part of the Bounded typeclass, which is for
things that have a lowest possible value and highest possible value.

And while we’re at it, let’s also make it an instance of all the other
derivable typeclasses and see what we can do with it.



Bounded and Enum typeclasses

data Day = Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Ord, Show, Read, Bounded, Enum)



Bounded and Enum typeclasses

λ ∶ Tuesday

Tuesday

λ ∶ show Tuesday

"Tuesday"

λ ∶ succ Tuesday

Wednesday

λ ∶ pred Tuesday

Monday

λ ∶ pred $ pred Tuesday

*** Exception: pred{Day}: tried to take 'pred'

of first tag in enumeration

λ ∶ succ $ succ Saturday

*** Exception: succ{Day}: tried to take 'succ'

of last tag in enumeration

λ ∶ read "Saturday" :: Day

Saturday



Bounded and Enum typeclasses

Main: Monday == Sunday

False

λ ∶ Monday < Sunday

True

λ ∶ Sunday `compare` Monday

GT

λ ∶ minBound :: Day

Monday

λ ∶ maxBound :: Day

Sunday

λ ∶ [minBound .. maxBound] :: [Day]

[Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday]

λ ∶ [Monday .. Friday]

[Monday,Tuesday,Wednesday,Thursday,Friday]



Type synonyms



Type synonyms

We mentioned that when writing types, the [Char] and String

types are equivalent and interchangeable.

That’s implemented with type synonyms.

Type synonyms don’t really do anything per se, they’re just about
giving some types different names so that they make more sense to
someone reading our code and documentation.

Here’s how the standard library defines String as a synonym for
[Char].

type String = [Char]



Type synonyms

The type keyword might be misleading to some, because we’re not
actually making anything new (we did that with the data

keyword), but we’re just making a synonym for an already existing
type.

If we make a function that converts a string to uppercase and call it
toUpperString or something, we can give it a type declaration of

toUpperString :: [Char] -> [Char]

or

toUpperString :: String -> String.

Both of these are essentially the same, only the latter is nicer to
read.



Type synonyms

Type synonyms can also be parameterized. If we want a type that
represents an association list type but still want it to be general so
it can use any type as the keys and values, we can do this:

type AssocList k v = [(k,v)]

Now, a function that gets the value by a key in an association list
can have a type of
(Eq k) => k -> AssocList k v -> Maybe v.

AssocList is a type constructor that takes two types and produces
a concrete type, like AssocList Int String, for instance.



Type synonyms

Just like we can partially apply functions to get new functions, we
can partially apply type parameters and get new type constructors
from them.

Just like we call a function with too few parameters to get back a
new function, we can specify a type constructor with too few type
parameters and get b ack a partially applied type constructor.

If we wanted a type that represents a map (from Data.Map) from
integers to something, we could either do this:

type IntMap v = Map Int v

Or we could do it like this:

type IntMap = Map Int



Type synonyms



Either

Another cool data type that takes two types as its parameters is
the Either a b type.

data Either a b = Left a | Right b

deriving (Eq, Ord, Read, Show)

It has two value constructors.

If the Left is used, then its contents are of type a and if Right is
used, then its contents are of type b.

So we can use this type to encapsulate a value of one type or
another and then when we get a value of type Either a b, we
usually pattern match on both Left and Right and we different
stuff based on which one of them it was.



Either

λ ∶ Left 10

Left 10

λ ∶ :type Left 10

Left 10 :: Num a => Either a b

λ ∶ Right "abc"

Right "abc"

λ ∶ :type Right "abc"

Right "abc" :: Either a [Char]



Recursive data structures



Recursive data structures

Let’s use algebraic data types to implement our own list

data List a = Empty | Cons a (List a)

deriving (Show, Read, Eq, Ord)

It’s either an empty list or a combination of a head with some
value and a list.

λ ∶ Empty

Empty

λ ∶ 3 `Cons` Empty

Cons 3 Empty

λ ∶ 2 `Cons` (3 `Cons` Empty)

Cons 2 (Cons 3 Empty)

λ ∶ 1 `Cons` (3 `Cons` (3 `Cons` Empty))

Cons 1 (Cons 3 (Cons 3 Empty))



Recursive data structures

We called our Cons constructor in an infix manner so you can see
how it’s just like :.

We can define functions to be automatically infix by making them
comprised of only special characters. We can also do the same with
constructors, since they’re just functions that return a data type.

infixr 5 :-:

data List a = Empty | a :-: (List a)

deriving (Show, Read, Eq, Ord)

First off, we notice a new syntactic construct, the fixity
declarations. When we define functions as operators, we can use
that to give them a fixity (but we don’t have to).



Recursive data structures

λ ∶ 1 :-: 2 :-: 3 :-: Empty

1 :-: (2 :-: (3 :-: Empty))

λ ∶ l = 1 :-: 2 :-: 3 :-: Empty

λ ∶ 0 :-: l

0 :-: (1 :-: (2 :-: (3 :-: Empty)))



Recursive data structures

Let’s make a function that adds two of our lists together.

infixr 5 .++

(.++) :: List a -> List a -> List a

Empty .++ ys = ys

(x :-: xs) .++ ys = x :-: (xs .++ ys)

λ ∶ l = 1 :-: 2 :-: 3 :-: Empty

λ ∶ l' = 4 :-: 5 :-: Empty

λ ∶ l .++ l'

1 :-: (2 :-: (3 :-: (4 :-: (5 :-: Empty))))

λ ∶ l' .++ l

4 :-: (5 :-: (1 :-: (2 :-: (3 :-: Empty))))



Typeclasses 102



Typeclasses 102

A typeclass defines some behavior (like comparing for equality,
comparing for ordering, enumeration) and then types that can
behave in that way are made instances of that typeclass.

The behavior of typeclasses is achieved by defining functions or
just type declarations that we then implement.

So when we say that a type is an instance of a typeclass, we mean
that we can use the functions that the typeclass defines with that
type.

Typeclasses have pretty much nothing to do with classes in
languages like Java or Python. This confuses many people, so I
want you to forget everything you know about classes in imperative
languages right now.



Typeclasses 102

For example, the Eq typeclass is for stuff that can be equated.

It defines the functions == and /=.

If we have a type (say, Car) and comparing two cars with the
equality function == makes sense, then it makes sense for Car to
be an instance of Eq.
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This is how the Eq class is defined in the standard !λ ∶ !

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)



Typeclasses 102

First off, when we write class Eq a where, this means that
we’re defining a new typeclass and that’s called Eq.

The a is the type variable and it means that a will play the role of
the type that we will soon be making an instance of Eq.

It doesn’t have to be called a, it doesn’t even have to be one
letter, it just has to be a lowercase word.

Then, we define several functions. It’s not mandatory to
implement the function bodies themselves, we just have to specify
the type declarations for the functions.
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Anyway, we did implement the function bodies for the functions
that Eq defines, only we defined them in terms of mutual recursion.

We said that two instances of Eq are equal if they are not different
and they are different if they are not equal.

We didn’t have to do this, really, but we did and we’ll see how this
helps us soon.

If we have say class Eq a where and then define a type
declaration within that class like (==) :: a -> -a -> Bool,
then when we examine the type of that function later on, it will
have the type of (Eq a) => a -> a -> Bool.
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data TrafficLight = Red | Yellow | Green

Notice how we didn’t derive any class instances for it. That’s
because we’re going to write up some instances by hand, even
though we could derive them for types like Eq and Show.

Here’s how we make it an instance of Eq.

instance Eq TrafficLight where

Red == Red = True

Green == Green = True

Yellow == Yellow = True

_ == _ = False
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We did it by using the instance keyword.

So class is for defining new typeclasses and instance is for
making our types instances of typeclasses.

When we were defining Eq, we wrote class Eq a where and we
said that a plays the role of whichever type will be made an
instance later on.

We can see that clearly here, because when we’re making an
instance, we write instance Eq TrafficLight where. We
replace the a with the actual type.

Because == was defined in terms of /= and vice versa in the class
declaration, we only had to overwrite one of them in the instance
declaration.
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We did it by using the instance keyword.
If Eq was defined simply like this:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

we’d have to implement both of these functions when making a
type an instance of it, because Haskell wouldn’t know how these
two functions are related.

The minimal complete definition would then be: both == and /=.
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Let’s make this an instance of Show by hand, too.

To satisfy the minimal complete definition for Show, we just have
to implement its show function, which takes a value and turns it
into a string.

instance Show TrafficLight where

show Red = "Red light"

show Yellow = "Yellow light"

show Green = "Green light"
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λ ∶ Red

Red light

λ ∶ Red == Red

True

λ ∶ Red == Green

False

λ ∶ Red /= Yellow

True

λ ∶ Red `elem` [Red, Yellow, Green]

True

λ ∶ [Red, Yellow, Green]

[Red light,Yellow light,Green light]
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Maybe in itself isn’t a concrete type, it’s a type constructor that
takes one type parameter (like Char or something) to produce a
concrete type (like Maybe Char).

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

x == y = not (x /= y)

x /= y = not (x == y)

From the type declarations, we see that the a is used as a concrete
type because all the types in functions have to be concrete
(remember, you can’t have a function of the type a -> Maybe but
you can have a function of a -> Maybe a or
Maybe Int -> Maybe String).
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instance Eq (Maybe m) where

Just x == Just y = x == y

Nothing == Nothing = True

_ == _ = False

This is like saying that we want to make all types of the form
Maybe something an instance of Eq. We actually could have
written (Maybe something), but we usually opt for single letters
to be true to the Haskell style.

The (Maybe m) here plays the role of the a from
class Eq a where. While Maybe isn’t a concrete type, Maybe m

is.

By specifying a type parameter (m, which is in lowercase), we said
that we want all types that are in the form of Maybe m, where m is
any type, to be an instance of Eq.
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There’s one problem with this though.

We use == on the contents of the Maybe but we have no assurance
that what the Maybe contains can be used with Eq!

That’s why we have to modify our instance declaration like this:

instance (Eq m) => Eq (Maybe m) where

Just x == Just y = x == y

Nothing == Nothing = True

_ == _ = False

We want all types of the form Maybe m to be part of the Eq

typeclass, but only those types where the m (so what’s contained
inside the Maybe) is also a part of Eq.



A yes-no typeclass



A yes-no typeclass

In JavaScript and some other weakly typed languages, you can put
almost anything inside an if expression.

For example, you can do all of the following:

if (0) alert("YEAH!") else alert("NO!")

if ("") alert ("YEAH!") else alert("NO!")

if (false) alert("YEAH") else alert("NO!)

etc



A yes-no typeclass
class YesNo a where

yesno :: a -> Bool

instance YesNo Int where

yesno 0 = False

yesno _ = True

instance YesNo [a] where

yesno [] = False

yesno _ = True

instance YesNo Bool where

yesno = id

instance YesNo (Maybe a) where

yesno (Just _) = True

yesno Nothing = False



A yes-no typeclass

λ ∶ yesno $ length []

False

λ ∶ yesno "haha"

True

λ ∶ yesno ""

False

λ ∶ yesno $ Just 0

True

λ ∶ yesno True

True

λ ∶ yesno []

False

λ ∶ yesno [0,0,0]

True

λ ∶ :type yesno

yesno :: YesNo a => a -> Bool



A yes-no typeclass

yesnoIf :: (YesNo y) => y -> a -> a -> a

yesnoIf yesnoVal yesResult noResult =

if yesno yesnoVal then yesResult else noResult

λ ∶ yesnoIf [] "YEAH!" "NO!"

"NO!"

λ ∶ yesnoIf [2,3,4] "YEAH!" "NO!"

"YEAH!"

λ ∶ yesnoIf True "YEAH!" "NO!"

"YEAH!"

λ ∶ yesnoIf (Just 500) "YEAH!" "NO!"

"YEAH!"

λ ∶ yesnoIf Nothing "YEAH!" "NO!"

"NO!"


