
Haskell
Starting Out

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Gustave Eiffel

November 8, 2022

http://igm.univ-mlv.fr/~vialette/?section=teaching

Ready, set, go!

Ready, set, go!
ghc’s interactive mode

barbalala: ghci

GHCi, version 7.10.3: http://www.haskell.org/ghc/

:? for help

>>> 1 + 2

3

>>> 3 * 4

12

>>> 5 - 6

-1

>>> 7 / 8

0.875

Ready, set, go!
ghc’s interactive mode

>>> True && True

True

>>> False || True

True

>>> not False

True

>>> not (True && True)

False

>>> :type True

True :: Bool

>>> :type False

False :: Bool

Ready, set, go!
ghc’s interactive mode

>>> 1 == 1

True

>>> 1 == 2

False

>>> 1 /= 2

True

>>> 1 /= 1

False

>>> False && True

False

Ready, set, go!
ghc’s interactive mode

>>> 1 == True

<interactive>:17:1:

No instance for (Num Bool) arising from the literal '1'

In the first argument of '(==)', namely '1'

In the expression: 1 == True

In an equation for 'it': it = 1 == True

Functions
ghc’s interactive mode

* is a function that takes two numbers and multiplies them.

>>> :type (*)

(*) :: Num a => a -> a -> a

As you’ve seen, we call it by sandwiching it between them. This is
what we call an infix function.

Most functions that aren’t used with numbers are prefix functions.

Calling functions

Suppose that f is a function that takes two integers as arguments
and returns some integer (in haskell f :: Int -> Int -> Int).

Call f without parentheses:

f 3 4

Do not write:

f(3, 4)

Functions
ghc’s interactive mode

>>> succ 1

2

>>> :type succ

succ :: Enum a => a -> a

>>> :type succ 1

succ 1 :: (Enum a, Num a) => a

>>> succ 1.2

2.2

>>> :type succ 1.2

succ 1.2 :: (Enum a, Fractional a) => a

>>> succ False

True

>>> :type succ False

succ False :: Bool

>>> succ True

*** Exception: ghci.Enum.Bool.succ: bad argument

Functions
ghc’s interactive mode

>>> min 2 1

1

>>> :type min

min :: Ord a => a -> a -> a

>>> :type min 2 1

min 2 1 :: (Num a, Ord a) => a

>>> max 2 1

2

>>> :type max

max :: Ord a => a -> a -> a

>>> :type max 2 1

max 2 1 :: (Num a, Ord a) => a

Functions
ghc’s interactive mode

Function application has the highest precedence of them all. What
that means for us is that these two statements are equivalent.

>>> succ 9 + max 5 4 + 1

16

>>> (succ 9) + (max 5 4) + 1

16

First functions
doubleX

>>> doubleX x = x + x

>>> :type doubleX

doubleX :: Num a => a -> a

>>> doubleX 3

6

>>> doubleX 3.0

6.0

>>> doubleX 9/3

6.0

>>> :type (/)

(/) :: Fractional a => a -> a -> a

First functions
doubleXY

>>> doubleXY x y = 2*x + 2*y

>>> :type doubleXY

doubleXY :: Num a => a -> a -> a

>>> doubleXY 4 9

26

>>> doubleXY 2.3 34.2

73.0

>>> doubleXY 28 88 + doubleX 123

478

>>> doubleXY doubleX 2 doubleX 10

<interactive>:11:1:

No instance for (Num ((a0 -> a0) -> a0 -> a0))

arising from a use of 'it'

In a stmt of an interactive GHCi command: print it

>>> doubleXY (doubleX 2) (doubleX 10)

48

First functions

doubleX x = x + x

doubleXY x y = doubleX x + doubleX y

This is a very simple example of a common pattern you will see
throughout Haskell. Making basic functions that are obviously
correct and then combining them into more complex functions

First functions
doubleSmallNumber

Write a function that multiplies a number by 2 but only if that
number is smaller than or equal to 100 because numbers bigger
than 100 are big enough as it is!

doubleSmallNumber x = if x > 100 then x else 2*x

The difference between Haskell’s if statement and if statements in
imperative languages is that the else part is mandatory in Haskell.

First functions

Another thing about the if statement in Haskell is that it is an
expression.

An expression is basically a piece of code that returns a value.

5 is an expression because it returns 5, 1+2 is an expression, x+y is
an expression because it returns the sum of x and y.

Because the else is mandatory, an if statement will always return
something and that’s why it’s an expression.

If we wanted to add one to every number that’s produced in our
previous function, we could have written its body like this:

doubleSmallNumber' x = (if x > 100 then x else 2*x) + 1

First functions

Note the ' at the end of the function name.

That apostrophe doesn’t have any special meaning in Haskell’s
syntax. It’s a valid character to use in a function name.

We usually use ' to either denote a strict version of a function
(one that isn’t lazy) or a slightly modified version of a function or
a variable.

Because ' is a valid character in functions, we can make a function
like this:

conanO'Brien = "It's a-me, Conan O'Brien!"

First functions

doubleSmallNumber x = if x > 100 then x else 2*x

doubleSmallNumber' x

| x > 100 = x

| otherwise = 2*x

Functional thinking

An introduction to lists

>>> numbers = [4,8,15,16,23,42]

>>> numbers

[4,8,15,16,23,42]

>>> :type numbers

numbers :: Num t => [t]

>>> [1,2,3,4] ++ [9,10,11,12]

[1,2,3,4,9,10,11,12]

>>> "hello" ++ " " ++ "world"

"hello world"

>>> :type "toto"

"toto" :: [Char]

>>> ['w','o'] ++ ['o','t']

"woot"

An introduction to lists

When you put together two lists (even if you append a singleton
list to a list, for instance: [1,2,3] ++ [4]), internally, Haskell
has to walk through the whole list on the left side of ++.

That’s not a problem when dealing with lists that aren’t too big.

However, putting something at the beginning of a list using the :
operator (also called the cons operator) is instantaneous:

>>> 'A' : " SMALL CAT"

"A SMALL CAT"

>>> 5 : [1,2,3,4,5]

[5,1,2,3,4,5]

Notice how : takes a number and a list of numbers or a character
and a list of characters, whereas ++ takes two lists.

An introduction to lists

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

An introduction to lists

If you want to get an element out of a list by index, use !!. The
indices start at 0.

>>> [1,2,3,4,5] !! 0

1

>>> "Hello" !! 1

'e'

>>> [1,2,3,4,5] !! (-1)

*** Exception: ghci.(!!): negative index

>>> [1,2,3,4,5] !! 5

*** Exception: ghci.(!!): index too large

You will rarely, if ever, use !!. If you happen to use !!, you
should think again.

An introduction to lists

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

(!!) :: [a] -> Int -> a

An introduction to lists

Lists can also contain lists. They can also contain lists that
contain lists that contain lists . . .

>>> l = [[1,2,3],[4,5,6],[7,8,9]]

>>> l

[[1,2,3],[4,5,6],[7,8,9]]

>>> :type l

l :: Num t => [[t]]

>>> l ++ [[6,6,6]]

[[1,2,3],[4,5,6],[7,8,9],[6,6,6]]

>>> [0,0,0]:l

[[0,0,0],[1,2,3],[4,5,6],[7,8,9]]

>>> l !! 1

[4,5,6]

An introduction to lists

>>> 1 : 2 : 3 : 4 : []

[1,2,3,4]

>>> 1 : 2 : 3 : [4]

[1,2,3,4]

>>> 1 : 2 : [3, 4]

[1,2,3,4]

>>> 1 : [2,3, 4]

[1,2,3,4]

>>> [1,2,3, 4]

[1,2,3,4]

An introduction to lists

>>> l1 = [1,2,3]

>>> l2 = [4,5,6]

>>> l1 : l2

<interactive>:36:1:

Non type-variable argument in the constraint: Num [t]

...

>>> l1 ++ l2

[1,2,3,4,5,6]

An introduction to lists

>>> l = 1 : 3 : l

>>> l !! 0

1

>>> l !! 1

3

>>> l !! 2

1

>>> l !! 3

3

>>> l -- don't do this

[1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,...

An introduction to lists

Lists can be compared if the stuff they contain can be compared.

When using <, <=, > and >= to compare lists, they are compared in
lexicographical order. First the heads are compared. If they are
equal then the second elements are compared, etc.

>>> [3,2,1] > [2,1,0]

True

>>> [3,2,1] > [2,10,100]

True

>>> [3,4,2] > [3,4]

True

>>> [3,4,2] > [2,4]

True

>>> [3,4,2] == [3,4,2]

True

An introduction to lists
Some basic functions that operate on lists

head takes a list and returns its head. The head of a list is
basically its first element.

>>> :type head

head :: [a] -> a

>>> head "Hello"

'H'

>>> head [1,2,3,4,5]

1

>>> head []

*** Exception: ghci.head: empty list

An introduction to lists
Some basic functions that operate on lists

tail takes a list and returns its tail. In other words, it chops off a
list’s head.

>>> :type tail

tail :: [a] -> [a]

>>> tail "Hello"

"ello"

>>> tail [1,2,3,4,5]

[2,3,4,5]

>>> tail [1]

[]

>>> tail ['a']

""

>>> tail []

*** Exception: ghci.tail: empty list

An introduction to lists
Some basic functions that operate on lists

last takes a list and returns its last element.

>>> :type last

last :: [a] -> a

>>> last "Hello"

'o'

>>> last [1,2,3,4,5]

5

>>> last []

*** Exception: ghci.last: empty list

An introduction to lists
Some basic functions that operate on lists

init takes a list and returns everything except its last element.

>>> :type init

init :: [a] -> [a]

>>> init "Hello"

"Hell"

>>> init [1,2,3,4,5]

[1,2,3,4]

>>> init [1]

[]

>>> init []

*** Exception: ghci.init: empty list

An introduction to lists

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

head :: [a] -> a

tail :: [a] -> [a]

last :: [a] -> a

init :: [a] -> [a]

An introduction to lists

An introduction to lists
Some basic functions that operate on lists

length takes a list and returns its length, obviously.

>>> :type length

length :: Foldable t => t a -> Int

>>> length "Hello"

5

>>> length [1,2,3,4,5]

5

>>> length []

0

An introduction to lists
Some basic functions that operate on lists

null checks if a list is empty. If it is, it returns True, otherwise it
returns False.

Use this function instead of xs == [] (if you have a list called xs)

>>> :type null

null :: Foldable t => t a -> Bool

>>> null "hello"

False

>>> null [1,2,3,4,5]

False

>>> null []

True

An introduction to lists
Some basic functions that operate on lists

reverse reverses a list.

>>> :type reverse

reverse :: [a] -> [a]

>>> reverse "hello"

"olleh"

>>> reverse [1,2,3,4,5]

[5,4,3,2,1]

>>> reverse []

[]

>>> "abcd" == reverse (reverse "abcd")

True

An introduction to lists
Some basic functions that operate on lists

take takes a number and a list. It extracts that many elements
from the beginning of the list.

>>> :type take

take :: Int -> [a] -> [a]

>>> take 0 [1,2]

[]

>>> take 1 [1,2]

[1]

>>> take 2 [1,2]

[1,2]

>>> take 3 [1,2]

[1,2]

>>> take 0 []

[]

>>> take 1 []

[]

An introduction to lists
Some basic functions that operate on lists

drop works in a similar way, only it drops the number of elements
from the beginning of a list.

>>> :type drop

drop :: Int -> [a] -> [a]

>>> drop 0 [1,2,3]

[1,2,3]

>>> drop 1 [1,2,3]

[2,3]

>>> drop 2 [1,2,3]

[3]

>>> drop 3 [1,2,3]

[]

>>> drop 4 [1,2,3]

[]

An introduction to lists
Some basic functions that operate on lists

maximum :: (Foldable t, Ord a) => t a -> a takes a list of
stuff that can be put in some kind of order and returns the biggest
element. minimum :: (Foldable t, Ord a) => t a -> a

returns the smallest.

>>> :type minimum

minimum :: (Ord a, Foldable t) => t a -> a

>>> minimum [3,4,2,5,1,6,9,8,7]

1

>>> :type maximum

maximum :: (Ord a, Foldable t) => t a -> a

>>> maximum [3,4,2,5,1,6,9,8,7]

9

>>> minimum []

*** Exception: ghci.minimum: empty list

>>> maximum []

*** Exception: ghci.maximum: empty list

An introduction to lists
Some basic functions that operate on lists

sum takes a list of numbers and returns their sum.

product takes a list of numbers and returns their product.

>>> :type sum

sum :: (Num a, Foldable t) => t a -> a

>>> sum []

0

>>> sum [1,2,3,4,5]

15

>>> :type product

product :: (Num a, Foldable t) => t a -> a

>>> product []

1

>>> product [1,2,3,4,5]

120

>>> fact n = product [1..n]

>>> fact 5

120

An introduction to lists
Some basic functions that operate on lists

elem takes a thing and a list of things and tells us if that thing is
an element of the list.

It’s usually called as an infix function because it’s easier to read
that way.

>>> :type elem

elem :: (Eq a, Foldable t) => a -> t a -> Bool

>>> 3 `elem` [2,1,3,5,4]

True

>>> elem 3 [2,1,3,5,4]

True

>>> 6 `elem` [2,1,3,5,4]

False

>>> elem 6 [2,1,3,5,4]

False

An introduction to lists

length :: [a] -> Int

null :: [a] -> Bool

reverse :: [a] -> [a]

take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

sum :: Int -> [a] -> [a]

product :: Int -> [a] -> [a]

minimum :: [a] -> a

maximum :: [a] -> a

elem :: a -> [a] -> Bool

Texas ranges

Texas ranges

>>> [1,2,3,4,5,6,7,8,9,10]

[1,2,3,4,5,6,7,8,9,10]

>>> [1..10]

[1,2,3,4,5,6,7,8,9,10]

>>> [10..1]

[]

>>> [1.0..10.0] -- don't do this!

[1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0]

>>> ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"

>>> ['A'..'Z']

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Texas ranges

Ranges are cool because you can also specify a step.

>>> [10,13..20]

[10,13,16,19]

>>> ['a','e'..'z']

"aeimquy"

>>> [1,2,4,8,16..100] -- expecting the powers of 2 !

<interactive>:181:12: parse error on input '..''

>>> [20,18..5]

[20,18,16,14,12,10,8,6]

Texas ranges

Do not use floating point numbers in ranges!

>>> [0.1, 0.3..1]

[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

>>> [1, 0.8..0]

[1.0,0.8,0.6000000000000001,0.40000000000000013,

0.20000000000000018,2.220446049250313e-16]

Texas ranges

You can also use ranges to make infinite lists by just not specifying
an upper limit.

Because Haskell is lazy, it won’t try to evaluate the infinite list
immediately.

>>> l = [1..]

>>> :type l

l :: (Num t, Enum t) => [t]

>>> take 10 l

[1,2,3,4,5,6,7,8,9,10]

>>> l -- don't do this

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,

38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,

55,56,57,58,59,60,61,62,63,...

I’m a list comprehension

I’m a list comprehension

A basic comprehension for a set that contains the first ten even
natural numbers is

{2x | x ∈ N, x ≤ 10}

In Hashell

>>> [2*x | x <- [1..10]]

[2,4,6,8,10,12,14,16,18,20]

I’m a list comprehension

>>> [x | x <- [1..10]]

[1,2,3,4,5,6,7,8,9,10]

>>> [x*2 | x <- [1..10], x*2 >= 12]

[12,14,16,18,20]

>>> [x | x <- [50..100], x `mod` 7 == 3]

[52,59,66,73,80,87,94]

>>> [(x, y) | x <- ['a'..'c'], y <- [1,2]]

[('a',1),('a',2),('b',1),('b',2),('c',1),('c',2)]

>>> [(y, x) | x <- ['a'..'c'], y <- [1,2]]

[(1,'a'),(2,'a'),(1,'b'),(2,'b'),(1,'c'),(2,'c')]

>>> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]

[10,11,12,14,16,17,18,20]

I’m a list comprehension

>>> [x+y | x <- [1,2,3], y <- [10,20,30]]

[11,21,31,12,22,32,13,23,33]

>>> [x+y | x <- [1,2,3], y <- [10,20,30], x+y > 20]

[21,31,22,32,23,33]

>>> [x+y | x <- [1,2,3], y <- [10,20,30], x+y > 20, x+y < 32]

[21,31,22,23]

>>> [(x, y) | x <- [1..3], y <- [x..3]]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

>>> [(y, x) | x <- [1..3], y <- [x..3]]

[(1,1),(2,1),(3,1),(2,2),(3,2),(3,3)]

>>> take 10 [x*x | x <- [1..]]

[1,4,9,16,25,36,49,64,81,100]

>>> take 10 (drop 10 [x*x | x <- [1..]])

[121,144,169,196,225,256,289,324,361,400]

I’m a list comprehension

>>> length' xs = sum [1 | _ <- xs]

>>> length' []

0

>>> length' [1..100]

100

>>> removeNonUppercase cs = [c | c <- cs, c `elem` ['A'..'Z']]

>>> removeNonUppercase "ABC"

"ABC"

>>> removeNonUppercase "def"

""

>>> removeNonUppercase "I don't LIKE FROGS."

"ILIKEFROGS"

I’m a list comprehension

Nested list comprehensions are also possible if you’re operating on
lists that contain lists.

>>> xss = [[1,2,3],[4,5],[6,7,8,9,10]]

>>> [[x | x <- xs, even x] | xs <- xss]

[[2],[4],[6,8,10]]

>>> [[x | x <- xs, even x] | xs <- xss, length xs > 2]

[[2],[6,8,10]]

>>> map (filter even) xss

[[2],[4],[6,8,10]]

>>> map (filter even) (filter (\xs -> length xs > 2) xss)

[[2],[6,8,10]]

I’m a list comprehension

>>> fibs = 0 : 1 : [a+b | (a, b) <- zip fibs (tail fibs)]

>>> :type fibs

fibs :: Num a => [a]

>>> take 0 fibs

[]

>>> take 10 fibs

[0,1,1,2,3,5,8,13,21,34]

I’m a list comprehension

>>> fibs' = 0 : 1 : zipWith (+) fibs' (tail fibs')

>>> :type fibs'

fibs :: Num a => [a]

>>> take 0 fibs'

[]

>>> take 10 fibs'

[0,1,1,2,3,5,8,13,21,34]

I’m a list comprehension

>>> binaries = [b : bs | bs <- "" : binaries, b <- ['0','1']]

>>> take 2 binaries

["0","1"]

>>> take 6 binaries

["0","1","00","10","01","11"]

>>> take 14 binaries

["0","1","00","10","01","11","000","100","010","110","001",

"101","011","111"]

>>> take 6 (filter (\bs -> last bs == '0') binaries)

["0","00","10","000","100","010"]

I’m a list comprehension

>>> binaries = [b : bs | bs <- "" : binaries, b <- ['0','1']]

>>> binaries' = [b : bs | b <- ['0', '1'], bs <- "" : binaries']

>>> take 6 binaries'

["0","00","000","0000","00000","000000"]

>>> head (drop 10 binaries')

"00000000000"

Tuples

Tuples

In some ways, tuples are like lists – they are a way to store several
values into a single value.

However, there are a few fundamental differences. A list of
numbers is a list of numbers. That’s its type and it doesn’t matter
if it has only one number in it or an infinite amount of numbers.
Tuples, however, are used when you know exactly how many values
you want to combine and its type depends on how many
components it has and the types of the components.

They are denoted with parentheses and their components are
separated by commas.

Another key difference is that they don’t have to be homogenous.
Unlike a list, a tuple can contain a combination of several types.

Tuples

>>> :type (1,2)

(1,2) :: (Num t1, Num t) => (t, t1)

>>> :type (1,2,3)

(1,2,3) :: (Num t2, Num t1, Num t) => (t, t1, t2)

>>> [(1,2),(8,11),(4,5)]

[(1,2),(8,11),(4,5)]

>>> [(1,2),(8,11,5),(4,5)]

<interactive>:68:8:

Couldn't match expected type ...

Tuples

>>> :type ('a', 1, "hello")

('a', 1, "hello") :: Num t => (Char, t, [Char])

>>> (1, 2) < (3, 4)

True

>>> (1, 2) < (0, 1)

False

>>> (1, 2, 3) < (1, 2)

<interactive>:74:13:

Couldn't match expected type ...

Tuples

>>> :type ((1, 'a'), ("a", 1.2))

((1, 'a'), ("a", 1.2))

:: (Fractional b, Num a) => ((a, Char), ([Char], b))

>>> :type (1, (2, (3, 4)))

(1, (2, (3, 4)))

:: (Num a1, Num a2, Num a3, Num b) => (a1, (a2, (a3, b)))

>>> :type ([1,2], ['a', 'b'])

([1,2], ['a', 'b']) :: Num a => ([a], [Char])

>>> :type (,)

(,) :: a -> b -> (a, b)

>>> (,) 1 2

(1,2)

>>> (,,) 1 2 3

(1,2,3)

Tuples
Two useful functions that operate on pairs

>>> fst ('a', 2)

'a'

>>> snd ('a', 2)

2

>>> fst ('a', 2, "hello")

<interactive>:80:5:

Couldn't match expected type ...

>>> third (_, _, z) = z

>>> third (1, 'a', "bc")

"bc"

Tuples
Two useful functions that operate on pairs

>>> :type fst

fst :: (a, b) -> a

>>> :type snd

snd :: (a, b) -> b

>>> fst (('a', 'b'),('c', 'd'))

('a','b')

>>> fst (('a', 'b', 'c'),('d', 'e', 'f'))

('a','b','c')

>>> fst (('a', 'b', 'c'),('d', 'e', 'f', 'g'))

('a','b','c')

Tuples
zip

Tuples
zip

>>> :type zip

zip :: [a] -> [b] -> [(a, b)]

>>> zip [1,2,3,4] ['a','b','c','d']

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

>>> zip [1,2,3,4,5] ['a','b','c','d']

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

>>> zip [1,2,3,4] ['a','b','c','d','e']

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

>>> zip [1,2,3,4] ['a'..]

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

>>> zip [1..] ['a','b','c','d']

[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

>>> zip [1..] ["apple", "orange", "cherry", "mango"]

[(1,"apple"),(2,"orange"),(3,"cherry"),(4,"mango")]

Tuples
zipWith

>>> :type zipWith

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

>>> zipWith (\ x y -> x + y) [0..5] [1,1..]

[1,2,3,4,5,6]

>>> zipWith (+) [0..5] [1,1..]

[1,2,3,4,5,6]

>>> rfibs = 0 : 1 : zipWith (+) rfibs (tail rfibs)

>>> take 10 rfibs

[0,1,1,2,3,5,8,13,21,34]

Right triangle

Which right triangle that has integers for all sides and all sides
equal to or smaller than 10 has a perimeter of 24?

Right triangle

>>> ts = [(a,b,c) | a <- [1..10], b <- [1..10], c <- [1..10]]

>>> length ts

1000

>>> take 5 ts

[(1,1,1),(1,1,2),(1,1,3),(1,1,4),(1,1,5)]

>>> rts = [(a,b,c) | (a,b,c) <- ts, a^2 + b^2 == c^2]

>>> rts

[(3,4,5),(4,3,5),(6,8,10),(8,6,10)]

>>> rts' = [(a,b,c) | (a,b,c) <- ts, a^2 + b^2 == c^2

, a+b+c == 24]

>>> rts'

[(6,8,10),(8,6,10)]

Done!

