
Haskell
Modules

http://igm.univ-mlv.fr/~vialette/?section=teaching

Stéphane Vialette

LIGM, Université Paris-Est Marne-la-Vallée

November 28, 2022

http://igm.univ-mlv.fr/~vialette/?section=teaching

Modules

Modules

● A Haskell module is a collection of related functions, types
and typeclasses.

● A Haskell program is a collection of modules where the main
module loads up the other modules and then uses the
functions defined in them to do something.

● Having code split up into several modules has quite a lot of
advantages. If a module is generic enough, the functions it
exports can be used in a multitude of different programs. If
your own code is separated into self-contained modules which
don’t rely on each other too much (we also say they are
loosely coupled), you can reuse them later on.

● It makes the whole deal of writing code more manageable by
having it split into several parts, each of which has some sort
of purpose.

Modules

● The Haskell standard library is split into modules, each of
them contains functions and types that are somehow related
and serve some common purpose.

● There’s a module for manipulating lists, a module for
concurrent programming, a module for dealing with complex
numbers, etc.

● All the functions, types and typeclasses that we’ve dealt with
so far were part of the Prelude module, which is imported by
default.

● In this chapter, we’re going to examine a few useful modules
and the functions that they have.

Modules

● The syntax for importing modules in a Haskell script is
import module_name.

● This must be done before defining any functions, so imports
are usually done at the top of the file.

● One script can, of course, import several modules. Just put
each import statement into a separate line.

Modules

import Data.List

countUniques :: (Eq a) => [a] -> Int

countUniques = length . nub

● When you do import Data.List, all the functions that
Data.List exports become available in the global namespace,
meaning that you can call them from wherever in the script.

● nub is a function defined in Data.List that takes a list and
weeds out duplicate elements.

● Composing length and nub by doing length . nub

produces a function that’s the equivalent of
\ xs -> length (nub xs).

Importing modules

You can also put the functions of modules into the global
namespace when using GHCI. If you’re in GHCI and you want to
be able to call the functions exported by Data.List, do this:

λ ∶ :m + Data.List

If we want to load up the names from several modules inside
GHCI, we don’t have to do :m + several times, we can just load up
several modules at once.

λ ∶ :m + Data.List Data.Map Data.Set

However, if you’ve loaded a script that already imports a module,
you don’t need to use :m + to get access to it.

Importing modules

If you just need a couple of functions from a module, you can
selectively import just those functions.

If we wanted to import only the nub and sort functions from
Data.List, we’d do this:

import Data.List (nub, sort)

You can also choose to import all of the functions of a module
except a few select ones. That’s often useful when several modules
export functions with the same name and you want to get rid of
the offending ones. Say we already have our own function that’s
called nub and we want to import all the functions from
Data.List except the nub function:

import Data.List hiding (nub)

Importing modules

Another way of dealing with name clashes is to do qualified
imports.

The Data.Map module, which offers a data structure for looking
up values by key, exports a bunch of functions with the same name
as Prelude functions, like filter or null.

So when we import Data.Map and then call filter, Haskell won’t
know which function to use.

Here’s how we solve this:

import qualified Data.Map

Importing modules

import qualified Data.Map

This makes it so that if we want to reference Data.Map’s filter

function, we have to do Data.Map.filter, whereas just filter
still refers to the normal filter we all know (and love ,).

But typing out Data.Map in front of every function from that
module is kind of tedious. That’s why we can rename the qualified
import to something shorter:

import qualified Data.Map as M

Now, to reference Data.Map’s filter function, we just use
M.filter.

Modules

Use https://downloads.haskell.org/~ghc/latest/docs/

html/libraries/ to see which modules are in the standard
library.

To search for functions or to find out where they’re located, use
Hoogle (https://hoogle.haskell.org/). It’s a really awesome
Haskell search engine, you can search by name, module name or
even type signature.

https://downloads.haskell.org/~ghc/latest/docs/html/libraries/
https://downloads.haskell.org/~ghc/latest/docs/html/libraries/
https://hoogle.haskell.org/

Hoogle

Data.List

Data.List

intersperse takes an element and a list and then puts that
element in between each pair of elements in the list.

λ ∶ :type intersperse

intersperse :: a -> [a] -> [a]

λ ∶ intersperse '.' "MONKEY"

"M.O.N.K.E.Y"

λ ∶ intersperse 0 [1..10]

[1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,0,10]

Data.List

intersperse' :: a -> [a] -> [a]

intersperse' _ [] = []

intersperse' _ [x] = [x]

intersperse' y (x : xs) = x : y : intersperse' y xs

Data.List

intercalate takes a list of lists and a list. It then inserts that list
in between all those lists and then flattens the result.

λ ∶ :type intercalate

intercalate :: [a] -> [[a]] -> [a]

λ ∶ intercalate " " ["hey","there","guys"]

"hey there guys"

λ ∶ intercalate [0,0] [[1,2],[3,4,5],[6,7]]

[1,2,0,0,3,4,5,0,0,6,7]

Data.List

transpose transposes a list of lists. If you look at a list of lists as
a 2D matrix, the columns become the rows and vice versa.

λ ∶ :type transpose

transpose :: [[a]] -> [[a]]

λ ∶ transpose [[1,2,3],[4,5,6],[7,8,9]]

[[1,4,7],[2,5,8],[3,6,9]]

λ ∶ transpose ["hey","there","guys"]

["htg","ehu","yey","rs","e"]

Data.List

concat flattens a list of lists into just a list of elements.

λ ∶ :type concat

concat :: [[a]] -> [a]

λ ∶ concat ["foo","bar","car"]

"foobarcar"

λ ∶ concat [[3,4,5],[2,3,4],[2,1,1]]

[3,4,5,2,3,4,2,1,1]

It will just remove one level of nesting. So if you want to
completely flatten [[[2,3],[3,4,5],[2]],[[2,3],[3,4]]],
which is a list of lists of lists, you have to concatenate it twice.

Data.List

concat' :: [[a]] -> [a]

concat' = foldr (++) []

Data.List

Doing concatMap is the same as first mapping a function to a list
and then concatenating the list with concat.

λ ∶ :type concatMap

concatMap :: (a -> [b]) -> [a] -> [b]

λ ∶ concatMap (replicate 4) [1..3]

[1,1,1,1,2,2,2,2,3,3,3,3]

λ ∶ concatMap (\ x -> [x]) [1..3]

[1,2,3]

λ ∶ concatMap (\ x -> [[x]]) [1..3]

[[1],[2],[3]]

Data.List

concatMap' :: (a -> [b]) -> [a] -> [b]

concatMap' f = concat . map f

concatMap'' :: Foldable t => (a -> [b]) -> t a -> [b]

concatMap'' f = concat . foldr (\ x acc -> f x : acc) []

Data.List

and takes a list of boolean values and returns True only if all the
values in the list are True.

λ ∶ :type and

and :: [Bool] -> Bool

λ ∶ and $ map (>4) [5,6,7,8]

True

λ ∶ and $ map (==4) [4,4,4,3,4]

False

λ ∶ and $ map ('a' `elem`) ["to", "ti", "ta"]

False

λ ∶ and $ map ('t' `elem`) ["to", "ti", "ta"]

True

Data.List

or is like and, only it returns True if any of the boolean values in
a list is True.

λ ∶ :type or

or :: [Bool] -> Bool

λ ∶ or $ map (==4) [2,3,4,5,6,1]

True

λ ∶ or $ map (>4) [1,2,3]

False

Data.List

or' :: [Bool] -> Bool

or' [] = False

or' (x : xs) = x || or' xs

or'' :: [Bool] -> Bool

or'' = foldr (||) False

and' :: [Bool] -> Bool

and' [] = True

and' (x : xs) = x && and' xs

and'' :: [Bool] -> Bool

and'' = foldr (&&) True

Data.List

any and all take a predicate and then check if any or all the
elements in a list satisfy the predicate, respectively. Usually we use
these two functions instead of mapping over a list and then doing
and or or.

λ ∶ :type any

any :: (a -> Bool) -> [a] -> Bool

λ ∶ any (==4) [2,3,5,6,1,4]

True

λ ∶ any (`elem` ['A'..'Z']) "HEYGUYSwhatsup"

True

λ ∶ :type all

all :: (a -> Bool) -> [a] -> Bool

λ ∶ all (>4) [6,9,10]

True

λ ∶ all (`elem` ['A'..'Z']) "HEYGUYSwhatsup"

False

Data.List

any' :: (a -> Bool) -> [a] -> Bool

any' _ [] = False

any' f (x : xs) = f x || any' f xs

any'' :: (a -> Bool) -> [a] -> Bool

any'' f = foldr (\ x acc -> f x || acc) False

all' :: (a -> Bool) -> [a] -> Bool

all' _ [] = True

all' f (x : xs) = f x && all' f xs

all'' :: (a -> Bool) -> [a] -> Bool

all'' f = foldr (\ x acc -> f x && acc) True

Data.List

iterate takes a function and a starting value. It applies the
function to the starting value, then it applies that function to the
result, then it applies the function to that result again, etc. It
returns all the results in the form of an infinite list.

λ ∶ :type iterate

iterate :: (a -> a) -> a -> [a]

λ ∶ take 10 $ iterate (*2) 1

[1,2,4,8,16,32,64,128,256,512]

λ ∶ take 3 $ iterate (++ "haha") "haha"

["haha","hahahaha","hahahahahaha"]

Data.List

splitAt takes a number and a list. It then splits the list at that
many elements, returning the resulting two lists in a tuple.

λ ∶ :type splitAt

splitAt :: Int -> [a] -> ([a], [a])

λ ∶ splitAt 3 "heyman"

("hey","man")

λ ∶ splitAt 100 "heyman"

("heyman","")

λ ∶ splitAt (-3) "heyman"

("","heyman")

λ ∶ let (a,b) = splitAt 3 "foobar" in b ++ a

"barfoo"

Data.List

takeWhile is a really useful little function. It takes elements from
a list while the predicate holds and then when an element is
encountered that doesn’t satisfy the predicate, it’s cut off. It turns
out this is very useful.

λ ∶ :type takeWhile

takeWhile :: (a -> Bool) -> [a] -> [a]

λ ∶ takeWhile (>3) [6,5,4,3,2,1,2,3,4,5,4,3,2,1]

[6,5,4]

λ ∶ takeWhile (/=' ') "This is a sentence"

"This"

λ ∶ sum $ takeWhile (<10000) $ map (^3) [1..]

53361

Data.List

any' :: (a -> Bool) -> [a] -> Bool

any' _ [] = False

any' f (x : xs) = f x || any' f xs

any'' :: (a -> Bool) -> [a] -> Bool

any'' f = foldr (\ x acc -> f x || acc) False

all' :: (a -> Bool) -> [a] -> Bool

all' _ [] = True

all' f (x : xs) = f x && all' f xs

all'' :: (a -> Bool) -> [a] -> Bool

all'' f = foldr (\ x acc -> f x && acc) True

Data.List

dropWhile is similar to takeWhile, only it drops all the elements
while the predicate is true. Once predicate equates to False, it
returns the rest of the list. An extremely useful (and lovely ,)
function!

λ ∶ :type dropWhile

dropWhile :: (a -> Bool) -> [a] -> [a]

λ ∶ dropWhile (/=' ') "This is a sentence"

" is a sentence"

λ ∶ dropWhile (<3) [1,2,2,2,3,4,5,4,3,2,1]

[3,4,5,4,3,2,1]

λ ∶ :{

| let stock = [(9.2,2008,01),(11.4,2008,02),

| (7.2,2007,03)]

| :}

λ ∶ head $ dropWhile (\(v,y,n) -> v < 10) stock

(11.4,2008,2)

Data.List

dropWhile' :: (a -> Bool) -> [a] -> [a]

dropWhile' _ [] = []

dropWhile' f (x : xs)

| f x = dropWhile' f xs

| otherwise = x : xs

Data.List

sort simply sorts a list. The type of the elements in the list has to
be part of the Ord typeclass, because if the elements of a list can’t
be put in some kind of order, then the list can’t be sorted.

λ ∶ :type sort

sort :: Ord a => [a] -> [a]

λ ∶ sort [8,5,3,2,1,6,4,2]

[1,2,2,3,4,5,6,8]

λ ∶ sort ['a','g','d','b','d','c','f','e']

"abcddefg"

Data.Map

Data.Map

Association lists (also called dictionaries) are lists that are used to
store key-value pairs where ordering doesn’t matter.

For instance, we might use an association list to store phone
numbers, where phone numbers would be the values and people’s
names would be the keys. We don’t care in which order they’re
stored, we just want to get the right phone number for the right
person.

phoneBook =

[("betty","555-2938")

,("bonnie","452-2928")

,("patsy","493-2928")

,("lucille","205-2928")

,("wendy","939-8282")

,("penny","853-2492")

]

Data.Map

Let’s make a function that looks up some value given a key.

findKey :: (Eq k) => k -> [(k,v)] -> v

findKey k = snd . head . filter (\ (k',v) -> k'==k)

Here, if a key isn’t in the association list, we’ll end up trying to get
the head of an empty list, which throws a runtime error. However,
we should avoid making our programs so easy to crash, so let’s use
the Maybe data type. If we don’t find the key, we’ll return a
Nothing. If we find it, we’ll return Just something, where
something is the value corresponding to that key.

findKey :: (Eq k) => k -> [(k,v)] -> Maybe v

findKey key [] = Nothing

findKey k ((k',v):xs) = if k == k'

then Just v

else findKey k xs

Data.Map

findKey :: (Eq k) => k -> [(k,v)] -> Maybe v

findKey k = foldr (\ (k',v) acc -> if k==k' then Just v else acc) Nothing

It’s usually better to use folds for this standard list recursion
pattern instead of explicitly writing the recursion because they’re
easier to read and identify. Everyone knows it’s a fold when they
see the foldr call, but it takes some more thinking to read explicit
recursion.

Data.Map

λ ∶ findKey "penny" phoneBook

Just "853-2492"

λ ∶ findKey "betty" phoneBook

Just "555-2938"

λ ∶ findKey "wilma" phoneBook

Nothing

We just implemented the lookup function from Data.List.

If we want to find the corresponding value to a key, we have to
traverse all the elements of the list until we find it.

The Data.Map module offers association lists that are much faster
(because they’re internally implemented with trees) and also it
provides a lot of utility functions.

Data.Map

Because Data.Map exports functions that clash with the Prelude

and Data.List ones, we’ll do a qualified import.

import qualified Data.Map as M

Data.Map

The fromList function takes an association list (in the form of a
list) and returns a map with the same associations.

λ ∶ :type M.fromList

M.fromList :: Ord k => [(k, a)] -> M.Map k a

λ ∶ M.fromList [('a', 1),('b', 2),('c',3),('d',4)]

fromList [('a',1),('b',2),('c',3),('d',4)]

λ ∶ M.fromList [(i,i^2) | i <- [1..5]]

fromList [(1,1),(2,4),(3,9),(4,16),(5,25)]

λ ∶ M.fromList [(1,1),(1,1),(2,2)]

fromList [(1,1),(2,2)]

Data.Map

empty represents an empty map. It takes no arguments, it just
returns an empty map.

λ ∶ :type M.empty

M.empty :: M.Map k a

λ ∶ M.empty

fromList []

Data.Map
insert

insert takes a key, a value and a map and returns a new map
that’s just like the old one, only with the key and value inserted.

λ ∶ :type M.insert

M.insert :: Ord k => k -> a -> M.Map k a -> M.Map k a

λ ∶ M.insert 'a' 1 M.empty

fromList [('a',1)]

λ ∶ M.insert 'a' 1 $ M.insert 'b' 2 M.empty

fromList [('a',1),('b',2)]

λ ∶ let m = M.empty

λ ∶ M.insert 'a' 1 $ M.insert 'b' 2 m

fromList [('a',1),('b',2)]

λ ∶ M.insert 'a' 2 $ M.insert 'a' 1 M.empty

fromList [('a',2)]

Data.Map
insert

We can implement our own fromList by using the empty map,
insert and a fold.
fromList' :: (Ord k) => [(k,v)] -> M.Map k v

fromList' = foldr (\ (k,v) acc -> M.insert k v acc) M.empty

It’s a pretty straightforward fold. We start of with an empty map
and we fold it up from the right, inserting the key value pairs into
the accumulator as we go along.

Data.Map
null

null checks if a map is empty.

λ ∶ :type M.null

M.null :: M.Map k a -> Bool

λ ∶ M.null M.empty

True

λ ∶ M.null $ M.insert "k" "v" M.empty

False

Data.Map
size

size reports the size of a map.

λ ∶ :type M.size

M.size :: M.Map k a -> Int

λ ∶ M.size M.empty

0

λ ∶ M.size $ M.insert "k" "v" M.empty

1

Data.Map
singleton

singleton takes a key and a value and creates a map that has
exactly one mapping.

λ ∶ :type M.singleton

M.singleton :: k -> a -> M.Map k a

λ ∶ M.singleton 3 9

fromList [(3,9)]

λ ∶ M.insert 5 9 $ M.singleton 3 9

fromList [(3,9),(5,9)]

Data.Map
lookup

lookup works like the Data.List lookup, only it operates on
maps. It returns Just something if it finds something for the key
and Nothing if it doesn’t.

λ ∶ :type M.lookup

M.lookup :: Ord k => k -> M.Map k a -> Maybe a

λ ∶ let m = M.insert 5 9 $ M.singleton 3 9

λ ∶ M.lookup 5 m

Just 9

λ ∶ M.lookup 6 m

Nothing

Data.Map
member

member is a predicate takes a key and a map and reports whether
the key is in the map or not.

λ ∶ :type M.member

M.member :: Ord k => k -> M.Map k a -> Bool

λ ∶ let m = M.insert 5 9 $ M.singleton 3 9

λ ∶ M.member 5 m

True

λ ∶ M.member 6 m

False

Data.Map
map and filter

map and filter work much like their list equivalents.

λ ∶ let m = M.fromList [(1,1),(2,4),(3,9)]

λ ∶ :type M.map

M.map :: (a -> b) -> M.Map k a -> M.Map k b

λ ∶ M.map (*100) m

fromList [(1,100),(2,400),(3,900)]

λ ∶ :type M.filter

M.filter :: (a -> Bool) -> M.Map k a -> M.Map k a

λ ∶ M.filter (>2) m

fromList [(2,4),(3,9)]

Data.Map
toList

toList is the inverse of fromList.

λ ∶ :type M.toList

M.toList :: M.Map k a -> [(k, a)]

λ ∶ M.toList . M.insert 9 2 $ M.singleton 4 3

[(4,3),(9,2)]

λ ∶ M.toList M.empty

[]

λ ∶ :type M.assocs

M.assocs :: M.Map k a -> [(k, a)]

λ ∶ M.assocs . M.insert 9 2 $ M.singleton 4 3

[(4,3),(9,2)]

Data.Map
keys and elems

keys and elems return lists of keys and values respectively. keys

is the equivalent of map fst . M.toList and elems is the
equivalent of map snd . M.toList.

λ ∶ :type M.keys

M.keys :: M.Map k a -> [k]

λ ∶ :type M.elems

M.elems :: M.Map k a -> [a]

λ ∶ M.keys $ M.insert 9 2 $ M.singleton 4 3

[4,9]

λ ∶ M.elems $ M.insert 9 2 $ M.singleton 4 3

[3,2]

Data.Set

The Data.Set module offers us, well, sets.

Sets are kind of like a cross between lists and maps. All the
elements in a set are unique. And because they’re internally
implemented with trees (much like maps in Data.Map), they’re
ordered.

Checking for membership, inserting, deleting, etc. is much faster
than doing the same thing with lists.

The most common operation when dealing with sets are inserting
into a set, checking for membership and converting a set to a list.

Because the names in Data.Set clash with a lot of Prelude and
Data.List names, we do a qualified import (e.g.,
import qualified Data.Set as S).

Data.Set
fromList

The fromList function works much like you would expect. It
takes a list and converts it into a set.

λ ∶ :type S.fromList

S.fromList :: Ord a => [a] -> S.Set a

λ ∶ S.fromList []

fromList []

λ ∶ S.fromList "i'm a poor lonesome cowboy"

fromList " 'abceilmnoprswy"

Data.Set
intersection

Use intersection function to see which elements sets both share.

λ ∶ let s1 = S.fromList "To be or not to Be"

λ ∶ let s2 = S.fromList "That is the question"

λ ∶ :type S.intersection

S.intersection :: Ord a => S.Set a -> S.Set a -> S.Set a

λ ∶ S.intersection s1 s2

fromList " Tenot"

Data.Set
difference

We can use the difference function to see which letters are in
the first set but aren’t in the second one and vice versa.

λ ∶ let s1 = S.fromList "To be or not to Be"

λ ∶ let s2 = S.fromList "That is the question"

λ ∶ :type S.difference

S.difference :: Ord a => S.Set a -> S.Set a -> S.Set a

λ ∶ S.difference s1 s2

fromList "Bbr"

λ ∶ S.difference s2 s1

fromList "ahiqsu"

Data.Set
union

we can see all the unique letters used in both sentences by using
union.

λ ∶ let s1 = S.fromList "To be or not to Be"

λ ∶ let s2 = S.fromList "That is the question"

λ ∶ :type S.union

S.union :: Ord a => S.Set a -> S.Set a -> S.Set a

λ ∶ S.union s1 s2

fromList " BTabehinoqrstu"

Data.Set
null, size, . . .

The null, size, member, empty, singleton, insert and
delete functions all work like you’d expect them to.

λ ∶ :type S.null

S.null :: S.Set a -> Bool

λ ∶ :type S.empty

S.empty :: S.Set a

λ ∶ S.null S.empty

True

Data.Set
null, size, . . .

The null, size, member, empty, singleton, insert and
delete functions all work like you’d expect them to.

λ ∶ S.null $ S.fromList [3,4,5,5,4,3]

False

λ ∶ :type S.size

S.size :: S.Set a -> Int

λ ∶ S.size $ S.fromList [3,4,5,3,4,5]

3

Data.Set
null, size, . . .

The null, size, member, empty, singleton, insert and
delete functions all work like you’d expect them to.

λ ∶ :type S.singleton

S.singleton :: a -> S.Set a

λ ∶ S.singleton 9

fromList [9]

λ ∶ S.null $ S.singleton 9

False

λ ∶ S.size $ S.singleton 9

1

Data.Set
null, size, . . .

The null, size, member, empty, singleton, insert and
delete functions all work like you’d expect them to.

λ ∶ :type S.insert

S.insert :: Ord a => a -> S.Set a -> S.Set a

λ ∶ S.insert 4 $ S.fromList [9,3,8,1]

fromList [1,3,4,8,9]

λ ∶ S.insert 8 $ S.fromList [5..10]

fromList [5,6,7,8,9,10]

λ ∶ S.insert 8 $ S.fromList [5..10]

Data.Set
null, size, . . .

The null, size, member, empty, singleton, insert and
delete functions all work like you’d expect them to.

λ ∶ :type S.delete

S.delete :: Ord a => a -> S.Set a -> S.Set a

λ ∶ S.delete 4 $ S.fromList [3,4,5,4,3,4,5]

fromList [3,5]

λ ∶ S.delete 1 $ S.fromList [3,4,5,4,3,4,5]

fromList [3,4,5]

Data.Set
isSubsetOf and isProperSubsetOf

We can also check for subsets or proper subset. Set A is a subset
of set B if B contains all the elements that A does. Set A is a
proper subset of set B if B contains all the elements that A does
but has more elements.

λ ∶ :type S.isSubsetOf

S.isSubsetOf :: Ord a => S.Set a -> S.Set a -> Bool

λ ∶ :type S.isProperSubsetOf

S.isProperSubsetOf

:: Ord a => S.Set a -> S.Set a -> Bool

λ ∶ S.fromList [2,3,4] `S.isSubsetOf` S.fromList [1,2,3,4,5]

True

λ ∶ S.fromList [1,2,3,4,5] `S.isSubsetOf` S.fromList [1,2,3,4,5]

True

λ ∶ S.fromList [1,2,3,4,5] `S.isProperSubsetOf` S.fromList [1,2,3,4,5]

False

λ ∶ S.fromList [2,3,4,8] `S.isSubsetOf` S.fromList [1,2,3,4,5]

False

Data.Set
map and filter

We can also map over sets and filter them.

λ ∶ :type S.map

S.map :: Ord b => (a -> b) -> S.Set a -> S.Set b

λ ∶ S.map (+1) $ S.fromList [3,4,5,6,7,2,3,4]

fromList [3,4,5,6,7,8]

λ ∶ :type S.filter

S.filter :: (a -> Bool) -> S.Set a -> S.Set a

λ ∶ S.filter odd $ S.fromList [3,4,5,6,7,2,3,4]

fromList [3,5,7]

Data.Set
Sets are often used to weed a list of duplicates from a list by first
making it into a set with fromList and then converting it back to
a list with toList.

The Data.List function nub already does that, but weeding out
duplicates for large lists is much faster if you cram them into a set
and then convert them back to a list than using nub.

But using nub only requires the type of the list’s elements to be
part of the Eq typeclass, whereas if you want to cram elements
into a set, the type of the list has to be in Ord.

λ ∶ let setNub xs = S.toList $ S.fromList xs

λ ∶ setNub "HEY WHATS CRACKALACKIN"

" ACEHIKLNRSTWY"

λ ∶ import Data.List as List

λ ∶ List.nub "HEY WHATS CRACKALACKIN"

"HEY WATSCRKLIN"

Making you own module

Making you own module

At the beginning of a module, we specify the module name.

If we have a file called Geometry.hs, then we should name our
module Geometry. Then, we specify the functions that it exports
and after t hat, we can start writing the functions.

module Geometry

(sphereVolume

, sphereArea

, cubeVolume

, cubeArea

, cuboidArea

, cuboidVolume

) where

...

Making you own module

sphereVolume :: Float -> Float

sphereVolume radius = (4.0 / 3.0) * pi * (radius ^ 3)

sphereArea :: Float -> Float

sphereArea radius = 4 * pi * (radius ^ 2)

cubeVolume :: Float -> Float

cubeVolume side = cuboidVolume side side side

cubeArea :: Float -> Float

cubeArea side = cuboidArea side side side

cuboidVolume :: Float -> Float -> Float -> Float

cuboidVolume a b c = rectangleArea a b * c

cuboidArea :: Float -> Float -> Float -> Float

cuboidArea a b c = rectangleArea a b * 2 + rectangleArea a c * 2 +

rectangleArea c b * 2

-- not exported

rectangleArea :: Float -> Float -> Float

rectangleArea a b = a * b

Making you own module

When making a module, we usually export only those functions
that act as a sort of interface to our module so that the
implementation is hidden.

If someone is using our Geometry module, they don’t have to
concern themselves with functions that we don’t export.

We can decide to change those functions completely or delete
them in a newer version (we could delete rectangleArea and just
use * instead) and no one will mind because we weren’t exporting
them in the first place.

Making you own module

To use our module:

import Geometry

or

import qualified Geometry

or

import qualified Geometry as G

Geometry.hs has to be in the same folder that the program that’s
importing it is in, though.

Making you own module

Modules can also be given a hierarchical structures.

Each module can have a number of sub-modules and they can
have sub-modules of their own.

Let’s section these functions off so that Geometry is a module that
has three sub-modules, one for each type of object.

First, we’ll make a folder called Geometry. Mind the capital G. In
it, we’ll place three files: Sphere.hs, Cuboid.hs, and Cube.hs.

Making you own module
Sphere.hs

module Geometry.Sphere

(volume

, area

) where

volume :: Float -> Float

volume radius = (4.0 / 3.0) * pi * (radius ^ 3)

area :: Float -> Float

area radius = 4 * pi * (radius ^ 2)

Making you own module
Cuboid.hs

module Geometry.Cuboid

(volume

, area

) where

volume :: Float -> Float -> Float -> Float

volume a b c = rectangleArea a b * c

area :: Float -> Float -> Float -> Float

area a b c = rectangleArea a b * 2 + rectangleArea a c * 2 +

rectangleArea c b * 2

rectangleArea :: Float -> Float -> Float

rectangleArea a b = a * b

Making you own module
Cube.hs

module Geometry.Cube

(volume

, area

) where

import qualified Geometry.Cuboid as Cuboid

volume :: Float -> Float

volume side = Cuboid.volume side side side

area :: Float -> Float

area side = Cuboid.area side side side

Making you own module

So now if we’re in a file that’s on the same level as the Geometry

folder, we can do, say:

import Geometry.Sphere

If we want to juggle two or more of these modules, we have to do
qualified imports because they export functions with the same
names. So we just do something like:

import qualified Geometry.Sphere as Sphere

import qualified Geometry.Cuboid as Cuboid

import qualified Geometry.Cube as Cube

