Functional programming Lecture 02 — Function 101

Stéphane Vialette stephane.vialette@univ-eiffel.fr

November 7, 2023

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049, Université Gustave Eiffel

Conditional

Conditional

Pattern matching

Some functions

```
even :: Integral a => a -> Bool
even n = n `mod` 2 == 0
```

```
odd :: Integral a => a -> Bool
odd n = n `mod` 2 /= 0
```

```
recip :: Fractional a => a -> a
recip n = 1 / n
```

For processing conditions, the if-then-else syntax was defined in Haskell98.

if <condition> then <true-value> else <false-value>

if is an expression (which is converted to a value) and not a statement (which is executed) as in many imperative languages. As a consequence, the else is mandatory in Haskell. Since if is an expression, it must evaluate to a result whether the condition is true or false, and the else ensures this.

Conditional expressions

```
abs :: Int \rightarrow Int
abs n = if n >= 0 then n else -n
```

```
signum :: Int -> Int
signum n = if n < 0 then -1 else
if n == 0 then 0 else 1</pre>
```

addOneIfEven1 :: Integral a => a -> a addOneIfEven1 n = if even n then n+1 else n

addOneIfEven2 :: Integral a => a -> a addOneIfEven2 n = n + if even n then 1 else 0

addOneIfEven3 :: Integral a => a -> a addOneIfEven3 n = (if even n then (+ 1) else (+ 0)) n

addOneIfEven4 :: Integral a => a -> a addOneIfEven4 n = (if even n then (+ 1) else id) n Remember that

```
isNullLength :: Foldable t => t a -> Bool
isNullLength xs = if length xs == 0 then True else False
is nothing but
isNullLength :: Foldable t => t a -> Bool
isNullLength xs = length xs == 0
or (as we we shall see soon ... but not really better here!)
isNullLength :: Foldable t => t a -> Bool
isNullLength = (== 0) . length
```

As an alternative to using conditional expressions, functions can also be defined using guarded expressions, in which a sequence of logical expressions called guards is used to choose between a sequence of results of the same type.

- If the first guard is True, then the first result is chosen.
- Otherwise, if the second guard is **True**, then the second result is chosen.
- And so on.

abs1 :: Int \rightarrow Int abs1 n = if n >= 0 then n else -n

abs2 :: Int -> Int abs2 n

| n >= 0 = n

| otherwise = -n

Guarded expressions

```
signum1 :: Int -> Int
signum1 n = if n < 0 then -1 else
if n == 0 then 0 else 1</pre>
```

```
signum2 :: Int -> Int
signum2 n
| n < 0 = -1
| n == 0 = 0
| otherwise = 1</pre>
```

Guarded expressions

describeLetter2 :: Char -> String describeLetter2 c | c >= 'a' && c <= 'z' = "Lower case" | c >= 'A' && c <= 'Z' = "Upper case" | otherwise = "Not an ASCII letter" fact :: (Eq t, Num t) \Rightarrow t \rightarrow t fact n | n == 0 = 1otherwise = n * fact (n-1) mult :: (Eq t, Num t, Num a) \Rightarrow a \rightarrow t \Rightarrow a mult n m | m == 0 = 0| otherwise = n + mult n (m - 1)

Conditional

Pattern matching

Some functions

Many functions have a simple and intuitive definition using pattern matching, in which a sequence of syntactic expressions called patterns is used to choose between a sequence of results of the same type.

The wildcard pattern _ matches any value.

- If the first pattern is matched, then the first result is chosen.
- Otherwise, if the second pattern is matched, then the second result is chosen.
- And so on...

-- conditional expression
not :: Bool -> Bool
not b = if b == True then False else True

```
-- guarded function
not :: Bool -> Bool
not b
   | b == True = False
   | otherwise = True
-- pattern matching
not :: Bool -> Bool
```

not False = True

not True = False

(&&) :: Bool -> Bool -> Bool True && True = True True && False = False False && True = False False && False = False

(&&) :: Bool -> Bool -> Bool True && True = True _ && _ = False

```
(&&) :: Bool -> Bool -> Bool
True && b = b
False && _ = False
```

guess	:: Int -> Str	ing
guess	0 = "I am zero	o"
guess	1 = "I am one"	II.
guess	2 = "I am two"	II.
guess	_ = "I am at I	least three"

```
-- be careful with the wildcard pattern !
guess :: Int -> String
guess _ = "I am at least three"
guess 0 = "I am zero"
guess 1 = "I am one"
guess 2 = "I am two"
```

Functions fst and snd are defined in the module Data.Tuple:

```
\begin{array}{l} \lambda > : \text{type fst} \\ \text{fst} :: (a, b) \rightarrow a \\ \lambda > \text{fst} (1, 2) \\ 1 \\ \lambda > : \text{type snd} \\ \text{snd} :: (a, b) \rightarrow b \\ \lambda > \text{snd} (1, 2) \\ 2 \end{array}
```

Functions fst and snd are defined in the module Data.Tuple:

```
fst :: (a, b) -> a
fst (x, _) = x
snd :: (a, b) -> b
snd (_, x) = x
```

first3 :: (a, b, c) -> a
first3 (x, _, _) = x
second3 :: (a, b, c) -> b
second3 (_, x, _) = x
third3 :: (a, b, c) -> c
third3 (_, _, x) = x

first4 :: (a, b, c, d) -> a
first4 (x, _, _, _) = x
second4 :: (a, b, c, d) -> b
second4 (_, x, _, , _) = x
third4 :: (a, b, c, d) -> c
third4 (_, _, x, _) = x
fourth4 :: (a, b, c, d) -> d
fourth4 (_, _, _, x) = x

Pattern matching – List patterns

A list of patterns is itself a pattern, which matches any list of the same length whose components all match the corresponding patterns in order.

-- three characters beginning with the letter 'a'
test :: [Char] -> Bool
test ['a', _, _] = True
test _ = False

```
-- four characters ending with the letter 'z'
test :: [Char] -> Bool
test [_, _, _, 'z'] = True
test _ = False
```

Pattern matching – List patterns

A list of patterns is itself a pattern, which matches any list of the same length whose components all match the corresponding patterns in order.

There are two different functions

-- three characters beginning with the letter 'a'
test :: [Char] -> Bool
test ['a', _, _] = True
test _ = False

-- three characters beginning with the letter 'a' test :: (Char, Char, Char) -> Bool test ('a', _, _) = True test _ = False

Pattern matching – Lambda expression

- An anonymous function is a function without a name.
- It is a Lambda abstraction and might look like this: $x \rightarrow x + 1$.

(That backslash is Haskell's way of expressing a λ and is supposed to look like a Lambda.)

```
\lambda > :type (x \to x+1)
(\x -> x+1) :: Num a => a -> a
\lambda > (x \to x+1) 2
```

The definition

add :: Int -> Int -> Int -> Int add x y z = x+y+z

can be understood as meaning

add :: Int \rightarrow Int \rightarrow Int \rightarrow Int add = $x \rightarrow (y \rightarrow (x \rightarrow x+y+z))$

which makes precise that add is a function that takes an integer x and returns a function which in turn takes another integer y and returns a function which in turn takes another integer z and returns the result x+y+z.

 λ -expressions are useful when defining functions that returns function as results by their very nature, rather than a consequence of currying.

const :: a -> b -> a
const x _ = x
-- emphasis const :: a -> (b -> a)
const :: a -> b -> a
const x = _ -> x

Pattern matching – Lambda expression

A closure (the opposite of a combinator) is a function that makes use of free variables in its definition. It closes around some portion of its environment.

f :: Num a \Rightarrow a \rightarrow a \rightarrow a f x = $y \rightarrow x + y$

f returns a closure, because the variable x, which is bounded outside of the lambda abstraction is used inside its definition.

```
\begin{array}{l} \lambda > g = f 1\\ \lambda > g 2\\ 3\\ \lambda > g 3\\ 4\\ \lambda > g 4\\ 5\end{array}
```

Pattern matching – Operator sections

- Functions such as + that are written between their two arguments are called section
- Any operator can be converted into a curried function by enclosing the name of the operator in parentheses, such as (+) 1 2.
- More generally, if o is an operator, then expression of the form
 (o), (x o) and (o y) are called sections whose meaning as
 functions can be formalised using λ-expressions as follows:

- (+) is the addition function $x \rightarrow (y \rightarrow x+y)$.
- (1 +) is the successor function $y \rightarrow 1+y$.
- (1 /) is the reciprocation function $y \rightarrow 1/y$.
- (* 2) is the doubling function $x \rightarrow x*2$.
- (/ 2) is the halving function $x \rightarrow x/2$.

- A where clause is used to divide the more complex logic or calculation into smaller parts, which makes the logic or calculation easy to understand and handle
- A where clause is bound to a surrounding syntactic construct, like the pattern matching line of a function definition.
- A where clause is a syntactic construct

Pattern matching – Bindings

```
bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height
  | weight / height ^ 2 <= 18.5 = "Underweight"
  | weight / height ^ 2 < 25.0 = "Healthy weight"
  | weight / height ^ 2 < 30.0 = "Overweight"
  | otherwise = "Obese"
```

```
bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height
  | bmi <= 18.5 = "Underweight"
  | bmi < 25.0 = "Healthy weight"
  | bmi < 30.0 = "Overweight"</pre>
```

```
| otherwise = "Obese"
```

where

bmi = weight / height ^ 2

```
bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height
  | bmi <= underweight = "Underweight"
  bmi < healthy = "Healthy weight"</pre>
  bmi < overweight = "Overweight"</pre>
                = "Obese"
  | otherwise
  where
    bmi = weight / height ^ 2
   underweight = 18.5
   healthy = 25
```

overweight = 30

- A let binding binds variables anywhere and is an expression itself, but its scope is tied to where the let expression appears.
- if a let binding is defined within a guard, its scope is local and it will not be available for another guard.
- A let binding can take global scope overall pattern-matching clauses of a function definition if it is defined at that level.

```
cylinder :: (RealFloat a) => a -> a -> a
cylinder r h =
  let sideArea = 2 * pi * r * h
     topArea = pi * r ^2
  in sideArea + 2*topArea
```

Pattern matching – Bindings

```
\lambda > let zoot x y z = x*y + z
\lambda > :type zoot
\lambda > zoot 3 9 2
29
\lambda > let boot x y z = x*y + z in boot 3 9 2
29
\lambda > :type boot
<interactive>: error:
  o Variable not in scope: boot
```

Pattern matching – Bindings

```
\lambda > let a = 1; b = 2 in a + b
3
\lambda > let a = 1; b = a + 2 in a + b
4
\lambda > let a = 1; a = 2 in a
<interactive>:: error:
    Conflicting definitions for 'a'
\lambda > let a = 1; b = 2+a; c = 3+a+b in (a, b, c)
(1, 3, 7)
```
$$\lambda$$
 > let a = 1 in let a = 2; b = 3+a in b 5

 λ > let a = 1 in let a = a+2 in let b = 3+a in b ^CInterrupted.

 $\lambda >$ let f x y = x+y+1 in f 3 5 9 $\lambda >$ let f x y = x+y; g x = f x (x+1) in g 5 11

Pattern matching – Bindings

```
dist :: Floating a => (a, a) -> (a, a) -> a
dist (x1,y1) (x2,y2) =
    let xdist = x2 - x1
        ydist = y2 - y1
        sqr z = z*z
        in sqrt ((sqr xdist) + (sqr ydist))
```

dist :: Floating a => (a, a) -> (a, a) -> a
dist (x1,y1) (x2,y2) = sqrt((sqr xdist) + (sqr ydist))
where

$$xdist = x2 - x1$$

ydist = y2 - y1
sqr z = z*z

We can pattern match with let bindings. E.g., we can dismantle a tuple into components and bind the components to names.

```
\lambda > f x y z = let (sx,sy,sz) = (x*x,y*y,z*z) in (sx,sy,sz)
\lambda > f 1 2 3
(1, 4, 9)
\lambda > g x y = let (sx,_) = (x*x,y*y) in sx
\lambda > g 2 3
4
\lambda > h x = let ((sx,cx),qx) = ((x*x,x*x*x),x*x*x*x) in (sx,cx,qx)
\lambda > h 2
(4, 8, 16)
```

Pattern matching – Bindings

```
let bindings are expressions.
\lambda > 1 + \text{let } x = 2 \text{ in } x + x
5
\lambda > (let x = 2 in x*x) + 1
5
\lambda > (let (x,y,z) = (1,2,3) in x+y+z) * 100
600
\lambda > (let x = 2 in (+ x)) 3
5
\lambda > let x=3 in x*x + let x=4 in x*x
25
```


Conditional

Pattern matching

Some functions

The double factorial (or semifactorial of a number n, denoted by n!!, is the product of all the integers from 1 up to n that have the same parity (odd or even) as n

```
The double factorial (or semifactorial of a number n, denoted by
n!!, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n
dblFact1 :: Integral a => a -> a
dblFact1 n = go n
  where
    p m = (even n \&\& even m) || (odd n \&\& odd m)
    go 0 = 1
    go m
       | pm = m * go (m-1)
```

| otherwise = go (m-1)

```
The double factorial (or semifactorial of a number n, denoted by n!!, is the product of all the integers from 1 up to n that have the same parity (odd or even) as n
```

```
dblFact2 :: Integral a => a -> a
dblFact2 n = go n
 where
   nParity2 = n `mod` 2
   p m = m `mod` 2 == nParity2
   go 0 = 1
   go m
      | pm = m * go (m-1)
      | otherwise = go (m-1)
```

The double factorial (or semifactorial of a number n, denoted by n!!, is the product of all the integers from 1 up to n that have the same parity (odd or even) as n

dblFact3 :: (Eq a, Num a) \Rightarrow a \Rightarrow a dblFact3 0 = 1 dblFact3 1 = 1 dblFact3 n = n * dblFact3 (n-2) The double factorial (or semifactorial of a number n, denoted by n!!, is the product of all the integers from 1 up to n that have the same parity (odd or even) as n

dblFact4 :: (Num a, Enum a) => a -> a dblFact4 n = product [n,n-2..1]

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved problems in mathematics. It concerns sequences of integers in which each term is obtained from the previous term as follows:

$$u_n = \begin{cases} u_{n-1}/2 & \text{if } u_{n-1} \text{ is even} \\ 3u_{n-1} + 1 & \text{if } u_{n-1} \text{ is odd} \end{cases}$$

For instance, starting with n = 19, one gets the sequence 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved problems in mathematics. It concerns sequences of integers in which each term is obtained from the previous term as follows:

$$u_n = \begin{cases} u_{n-1}/2 & \text{if } u_{n-1} \text{ is even} \\ 3u_{n-1}+1 & \text{if } u_{n-1} \text{ is odd} \end{cases}$$

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved problems in mathematics. It concerns sequences of integers in which each term is obtained from the previous term as follows:

$$u_n = \begin{cases} u_{n-1}/2 & \text{if } u_{n-1} \text{ is even} \\ 3u_{n-1} + 1 & \text{if } u_{n-1} \text{ is odd} \end{cases}$$

For instance, starting with n = 19, one gets the sequence 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

```
collatz2 :: Integral a => a -> String
collatz2 1 = "win"
collatz2 n
  | even n = collatz2 (n `div` 2)
  | otherwise = collatz2 (3*n + 1)
```

$$A(0, n) = n + 1$$

$$A(m + 1, 0) = A(m, 1)$$

$$A(m + 1, n + 1) = A(m, A(m + 1, n))$$

```
aP :: (Num a, Eq a, Num b, Eq b) => a -> b -> b

aP 0 n = n+1

aP m 0 = aP (m-1) 1

aP m n = aP (m-1) (aP m (n-1))
```

A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.

```
-- odd number predicate

isOdd :: (Eq a, Num a) => a -> Bool

isOdd 0 = False

isOdd 1 = True

isOdd n = isEven (n-1)
```

```
-- even number predicate

isEven :: (Eq a, Num a) => a -> Bool

isEven 0 = True

isEven 1 = False

isEven n = isOdd (n-1)
```

fact1 :: (Eq a, Num a) => a -> a fact1 n = if n == 0 then 1 else n * fact1 (n-1) fact2 :: (Eq a, Num a) => a -> a

fact2 n

```
| n == 0 = 1
| otherwise = n * fact2 (n-1)
```

Factorial

```
fact3 :: (Ord a, Num a) \Rightarrow a \Rightarrow a
fact3 = go 1
  where
    go m n
       | m > n = 1
       | otherwise = m * go (m+1) n
fact4 :: (Eq t, Num t) \Rightarrow t \rightarrow t
fact4 n = go 1 n
  where
    go acc 0 = acc
    go acc m = go (acc*m) (m-1)
```

```
fact5 :: (Enum a, Num a) => a -> a
fact5 n = product [1..n]
```


Pascal's relation

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$