
Functional programming

Lecture 01 — First steps

(version: 2025-10-06–21:56:22)

Stéphane Vialette

stephane.vialette@univ-eiffel.fr

Laboratoire d’Informatique Gaspard-Monge, UMR CNRS 8049,

Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Indroduction

Indroduction

First steps

Types

Classes

1

Genealogy of programming languages

2

Main functional languages

• Lisp, Common Lisp, Scheme, Racket, . . .

• Erlang, Elixir, . . .

• ML, Standard ML, Ocaml, F#, . . .

• Clojure, Scala, . . .

• Haskell, Elm, Miranda, Idris, Agda, . . .

3

Haskell

4

Haskell

• Haskell is a compiled, statically typed, functional

programming language.

• It was created in the early 1990s as one of the first

open-source purely functional programming languages.

• It is named after the American logician Haskell Brooks Curry.

5

Characteristics of functional programming (haskell)

6

Haskell landscape

The imperatives

• GHC: state-of-the-art, open source, compiler and interactive

environment for the functional language Haskell.

• GHCi: GHC’s interactive environment.

• Hackage: Haskell community’s central package archive of

open source software.

7

https://www.haskell.org/ghc/
https://wiki.haskell.org/GHC/GHCi
https://hackage.haskell.org/

Haskell landscape

Testing Frameworks

• QuickCheck: powerful testing framework where test cases are

generated according to specific properties.

• HUnit: unit testing framework similar to JUnit.

• Hspec: a testing framework similar to RSpec with support for

QuickCheck and HUnit.

• The Haskell Test Framework, HTF: integrates both Hunit and

QuickCheck.

8

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/HUnit
https://hspec.github.io/
https://hackage.haskell.org/package/HTF

Haskell landscape

Ancillary Tools

• darcs: revision control system.

• haddock: documentation system.

• cabal: build system.

• stack: build system.

• hoogle: type-aware API search engine.

9

http://darcs.net/
https://haskell-haddock.readthedocs.io/en/latest/
https://www.haskell.org/cabal/
https://docs.haskellstack.org/en/stable/
https://hoogle.haskell.org/

Haskell landscape

Static Analysis Tools

• hlint: detect common style mistakes and redundant parts of

syntax, improving code quality.

• Sourcegraph: Haskell visualizer.

Dynamic Analysis Tools

• criterion: powerful benchmarking framework.

• hpc: check evaluation coverage of a haskell program, useful

for determining test coverage.

10

https://hackage.haskell.org/package/hlint
https://hackage.haskell.org/package/SourceGraph
https://hackage.haskell.org/package/criterion
http://web.archive.org/web/20090705020757/projects.unsafeperformio.com/hpc/

Haskell landscape

IDEs

• VSCodium

• IntelliJ

• Vim

• GNU Emacs

• Haskell for Mac (commercial)

• Sublime Text (free/commercial)

11

https://vscodium.com/
https://www.jetbrains.com/fr-fr/idea/
https://www.vim.org/
https://www.gnu.org/software/emacs/
http://haskellformac.com/
https://www.sublimetext.com/

Haskell books

12

Haskell books

13

Functional programming books

14

Install and manage the Haskell toolchain with GHCup

15

Haskell

Haskell can be used both as a compiled language and through an

interpreter.

Programs can be compiled into efficient executables using the

Glasgow Haskell Compiler (GHC), which ensures strong type

checking and high performance.

At the same time, Haskell offers an interactive environment called

GHCi (the Glasgow Haskell Compiler interactive), which acts as an

interpreter.

With GHCi, developers can quickly test code snippets, experiment

with functions, and explore ideas without compiling an entire

program. This dual approach makes Haskell both practical for

rapid prototyping and powerful for building production-ready

applications.
16

A taste of haskell : Multiplying elements

fact :: (Eq a, Num a) => a -> a

fact n = if n == 0 then 1 else n * fact (n-1)

17

A taste of haskell : Multiplying elements

fact :: (Eq a, Num a) => a -> a

fact n = if n == 0 then 1 else n * fact (n-1)

λ > fact 0

1

λ > fact 1

1

λ > fact 3

6

λ > fact 5

120

λ > fact 40

815915283247897734345611269596115894272000000000

17

A taste of haskell : Multiplying elements

fact :: (Eq a, Num a) => a -> a

fact n = if n == 0 then 1 else n * fact (n-1)

fact 3

= { applying function fact }

3 * fact 2

= { applying function fact }

3 * 2 * fact 1

= { applying function fact }

3 * 2 * 1 * fact 0

= { applying function fact }

3 * 2 * 1 * 1

= { applying function (+) }

6 * 1 * 1

= { applying function (+) }

6 * 1

= { applying function (+) }

6

17

A taste of haskell : Summing elements

sum :: Num a => [a] -> a

sum [] = 0

sum (x : xs) = x + sum xs

18

A taste of haskell : Summing elements

sum :: Num a => [a] -> a

sum [] = 0

sum (x : xs) = x + sum xs

λ > sum []

0

λ > sum [1]

1

λ > sum [1,2,3,4,5]

15

λ > sum [sum [1,2],sum [3,4], 5]

15

λ > sum [1,2] + sum [sum [3,4],5]

15

18

A taste of haskell : Summing elements

sum :: Num a => [a] -> a

sum [] = 0

sum (x : xs) = x + sum xs

sum [1,2,3]

= { applying function sum }

1 + sum [2,3]

= { applying function sum }

1 + 2 + sum [3]

= { applying function sum }

1 + 2 + 3 + sum []

= { applying function sum }

1 + 2 + 3 + 0

= { applying function (+) }

3 + 3 + 0

= { applying function (+) }

6 + 0

= { applying function (+) }

6

18

A taste of haskell : Sorting lists

qSort :: Ord a => [a] -> [a]

qSort [] = []

qSort (x : xs) = qSort smaller ++ [x] ++ qSort larger

where

smaller = [x' | x' <- xs, x' <= x]

larger = [x' | x' <- xs, x' > x]

19

A taste of haskell : Sorting lists

qSort :: Ord a => [a] -> [a]

qSort [] = []

qSort (x : xs) = qSort smaller ++ [x] ++ qSort larger

where

smaller = [x' | x' <- xs, x' <= x]

larger = [x' | x' <- xs, x' > x]

λ > qSort []

[]

λ > qSort [1]

[1]

λ > qSort [1,2,3,4,5]

[1,2,3,4,5]

λ > qSort [4,1,3,5,2]

[1,2,3,4,5]

λ > qSort [4,-1,3,5,-2]

[-2,-1,3,4,5]
19

A taste of haskell : Sorting lists

qSort :: Ord a => [a] -> [a]

qSort [] = []

qSort (x : xs) = qSort smaller ++ [x] ++ qSort larger

where

smaller = [x' | x' <- xs, x' <= x]

larger = [x' | x' <- xs, x' > x]

qSort [x]

= { applying function qSort }

qSort [] ++ [x] ++ qSort []

= { applying function qSort }

[] ++ [x] ++ []

= { applying function ++ (twice) }

[x]

19

A taste of haskell : Sorting lists

qSort :: Ord a => [a] -> [a]

qSort [] = []

qSort (x : xs) = qSort smaller ++ [x] ++ qSort larger

where

smaller = [x' | x' <- xs, x' <= x]

larger = [x' | x' <- xs, x' > x]

qSort [3,5,1,4,2]

= { applying function qSort }

qSort [1,2] ++ [3] ++ qSort [5,4]

= { applying function qSort (twice) }

(qSort [] ++ [1] ++ qSort [2]) ++ [3] ++ (qSort [4] ++ [5] ++ qSort [])

= { applying function qSort (four times) }

([] ++ [1] ++ [2]) ++ [3] ++ ([4] ++ [5] ++ [])

= { applying function ++ (four times) }

[1,2] ++ [3] ++ [4,5]

= { applying function ++ (twice) }

[1,2,3,4,5]

19

First steps

Indroduction

First steps

Types

Classes

20

GHCi

λ > 1 + 2 + 3

6

λ > 1 + 2 * 3

7

λ > (1 + 2) * 3

9

λ > 2 - 3 + 4

3

λ > 2 - (3 + 4)

-5

λ > 2 * 3 / 4

1.5

21

GHCi

λ > 2 * pi

6.283185307179586

λ > (1 + sqrt 5) / 2

1.618033988749895

λ > log 2

0.6931471805599453

λ > abs (-3)

3

22

GHCi

λ > 2^3^4 -- == 2^(3^4)

2417851639229258349412352

λ > (2^3)^4

4096

λ > ceiling 2.6 -- the least integer not less than 2.6

3

λ > floor 2.6 -- the greatest integer not greater 2.6

2

λ > round 2.6 -- round to nearest integer

3

λ > (sin pi)^2 + (cos pi)^2

1.0

23

GHCi

λ > x = 42

λ > x+1

43

λ > x

42

λ > let x = 42 in x+1

43

λ > let x = 1 in let x = 2 in x

2

λ > x = 1

λ > x = x+1

λ > x

^CInterrupted.

λ > y = y+1

λ > y

^CInterrupted.

24

GHCi

λ > "Haskell!"

"Haskell!"

λ > :type "Haskell!"

"Haskell!" :: String

λ > "Haskell" ++ " " ++ "programming"

"Haskell programming"

λ > ['H','a','s','k','e','l','l','!']

"Haskell!"

λ > 'H' : ['a','s','k','e','l','l','!']

"Haskell!"

λ > 'H' : "askell!"

"Haskell!"

λ > 'H' : 'a' : 's' : 'k' : 'e' : 'l' : 'l' : '!' : []

"Haskell!"

25

GHCi

Command Meaning

:load name load script name

:reload reload current script

:set editor name set editor to name

:edit name edit script name

:edit edit current script

:type expr show type of expr

:? show all commands

:quit quit GHCi

. . .

26

GHCi

λ > :type 1

1 :: Num a => a

λ > :type 2.5

2.5 :: Fractional a => a

λ > :type 5/2

5/2 :: Fractional a => a

λ > :type 5 `div` 2

5 `div` 2 :: Integral a => a

λ > :type pi

pi :: Floating a => a

27

GHCi

λ > :type 1+2

1+2 :: Num a => a

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > :type (1 +)

(1 +) :: Num a => a -> a

λ > :type (+ 1)

(+ 1) :: Num a => a -> a

28

GHCi

λ > :type 2.5

2.5 :: Fractional a => a

λ > :type 5/2

5/2 :: Fractional a => a

λ > :type (/)

(/) :: Fractional a => a -> a -> a

λ > :type (/ 2)

(/ 2) :: Fractional a => a -> a

29

GHCi

λ > :type pi

pi :: Floating a => a

λ > :type sqrt 2

sqrt 2 :: Floating a => a

λ > :type cos

cos :: Floating a => a -> a

30

GHCi (defining our first function)

λ > fact n = if n == 0 then 1 else n * fact (n-1)

λ > :type fact

fact :: (Eq a, Num a) => a -> a

λ > fact 5

120

λ > fact 0

1

λ > fact 5.0

120.0

λ > fact 2.5

^CInterrupted.

31

GHCi

λ > f = fact

λ > :type f

f :: (Eq a, Num a) => a -> a

λ > f 5

120

λ > f (f 3)

720

32

Basic functions

Exercice

The binomial coefficient
(
n
k

)
can be computed by the multiplicative

formula

(
n

k

)
=

n × (n − 1)× · · · × (n − k + 1)

k × (k − 1)× · · · × 1

which using factorial notation can be compactly expressed as(
n

k

)
=

n!

k! (n − k)!

Write implementations for computing
(
n
k

)
.

33

GHCi

λ > 'a'

'a'

λ > :type 'a'

'a' :: Char

λ > 'abc'

error: Syntax error on 'abc'

λ > 'a' : "bc"

"abc"

λ > :type (:)

(:) :: a -> [a] -> [a]

34

GHCi

λ > "abc"

"abc"

λ > :type "abc"

"abc" :: String

λ > "abc" ++ "def"

"abcdef"

λ > :type (++)

(++) :: [a] -> [a] -> [a]

35

Types

Indroduction

First steps

Types

Classes

36

Basic concepts

• In Haskell every expression must have a type.

• A type is a collection of related values.

• We use the notation v :: T to mean that v is a value in the

type T.

Example

True :: Bool

False :: Bool

not :: Bool -> Bool

(&&) :: Bool -> Bool -> Bool

(||) :: Bool -> Bool -> Bool

37

Basic types

• Bool - Logical values.

• Char - Single characters.

• String - Strings of characters.

• Int - Fixed-precision integers.

• Integer - Arbitrary-precision integers.

• Float - Since-precision floating-point numbers.

• Double - Double-precision floating-point numbers.

38

List types

• A list is a sequence of elements of the same type, with the

elements being enclosed in square parentheses and separated

by commas.

• We write [T] for the type of all lists whose elements have

type T.

• The number of elements in a list is called its length.

• The list [] of length zero is called the empty list.

• [] and [[]] (and [[[]]], [[[[]]]], . . .) are different lists.

39

List types

λ > :type []

[] :: [a]

λ > :type [1,2,3,4,5]

[1,2,3,4,5] :: Num a => [a]

λ > :type ['a', 'b', 'c', 'd']

['a', 'b', 'c', 'd'] :: [Char]

λ > :type ["ab", "cd", "ef", "gh"]

["ab", "cd", "ef", "gh"] :: [String]

λ > :type "ab" == :type "cd"

error: parse error on input ':'

40

List types

λ > :type [cos, sin]

[cos, sin] :: Floating a => [a -> a]

λ > :type [1, 'a']

error: No instance for (Num Char) arising from the literal '1'

λ > :type [[1],[2,3],[4,5,6]]

[[1],[2,3],[4,5,6]] :: Num a => [[a]]

λ > :type [[[1]],[[2,3],[4,5,6]]]

[[[1]],[[2,3],[4,5,6]]] :: Num a => [[[a]]]

41

List types – List constructor

[] is a type constructor taking one type argument a and returning

the type [] a, which is also permitted to be written as [a].

λ > :info []

type [] :: * -> *

data [] a = [] | a : [a]

λ > :kind []

[] :: * -> *

λ > :type []

[] :: [a]

λ > :type [[]]

[[]] :: [[a]]

λ > :type [[[]]]

[[[]]] :: [[[a]]]

42

List types – List constructor

[] is a type constructor taking one type argument a and returning

the type [] a, which is also permitted to be written as [a].

λ > :info []

type [] :: * -> *

data [] a = [] | a : [a]

λ > :kind []

[] :: * -> *

λ > :type []

[] :: [a]

λ > :type [[]]

[[]] :: [[a]]

λ > :type [[[]]]

[[[]]] :: [[[a]]]

42

List types – Cons operator

The : operator is known as the cons operator and is used to

prepend a head element to a list.

(:) :: a -> [a] -> [a]

λ > [1,2,3]

[1,2,3]

λ > 1:[2,3]

[1,2,3]

λ > 1:2:[3]

[1,2,3]

λ > 1:2:3:[]

[1,2,3]

43

List types – Cons operator

The : operator is known as the cons operator and is used to

prepend a head element to a list.

(:) :: a -> [a] -> [a]

λ > [1,2,3]

[1,2,3]

λ > 1:[2,3]

[1,2,3]

λ > 1:2:[3]

[1,2,3]

λ > 1:2:3:[]

[1,2,3]

43

List types

Exercise

Which of these are valid Haskell, and why?

[1,2,3,[]]

[1,[2,3],4]

[[1,2,3],[]]

44

List types

Exercise

Which of these are valid Haskell, and which are not? Rewrite in

comma and bracket notation.

[]:[[1,2,3],[4,5,6]]

[]:[]

[]:[]:[]

[1]:[]:[]

["hi"]:[1]:[]

45

List types

Exercice

Can Haskell have lists of lists of lists? Why or why not?

Exercise

Why is the following list invalid in Haskell?

[[1,2],3,[4,5]]

46

Tuple types

• A tuple is a sequence of components of possibly different

types, with the components being enclosed in round

parentheses and separated by commas.

• We write (T1, T2, ..., Tn) for the type of all tuples

whose i-th component have type Ti for any 1 ⩽ i ⩽ n.

• The number of elements in a tuple is called its arity.

• The tuple () of arity zero is called the empty tuple.

• Tuple of arity one are not permitted.

47

Tuple types

λ > :type ()

() :: ()

λ > :type (1,'a')

(1,'a') :: Num a => (a, Char)

λ > :type (1,2,'a',"abc")

(1,2,'a',"abc") :: (Num a, Num b) => (a, b, Char, String)

λ > :type (sqrt, 'a')

(sqrt, 'a') :: Floating a => (a -> a, Char)

λ > :type (1, ('a', "cd"))

(1, ('a', "cd")) :: Num a => (a, (Char, String))

48

Tuple types

λ > :type (1, ('a', "cd"))

(1, ('a', "cd")) :: Num a => (a, (Char, String))

λ > :type (1, [cos, sin])

(1, [cos, sin]) :: (Floating a1, Num a2) => (a2, [a1 -> a1])

λ > :type (1)

(1) :: Num a => a

λ > let t = (1,2) in (t, 3)

((1,2),3)

λ > let t = (1,t)

error: Couldn't match expected type 'b' with actual type '(a, b)'

49

Tuple types

Exercise

Which of these are valid Haskell, and why?

1 : (2,3)

(2,4) : (2,3)

(2,4) : []

[(2,4),(5,5),('a','b')]

([2,4],[2,4,5])

50

Function types

• A function is a mapping of one type to results of another type.

• We write T1 -> T2 for the type of all functions that map

arguments of type T1 to results of type T2.

• There is no restriction that function must be total on their

argument type.

51

Function types

λ > :type not

not :: Bool -> Bool

λ > :type even -- parity predicate (see also odd)

even :: Integral a => a -> Bool

λ > :type mod -- modulo

mod :: Integral a => a -> a -> a

λ > add x y = x+y

λ > :type add

add :: Num a => a -> a -> a

λ > add' (x,y) = x+y

λ > :type add'

add' :: Num a => (a, a) -> a

52

Curried functions

• Currying is the process of transforming a function that takes

multiple arguments in a tuple as its argument, into a function

that takes just a single argument and returns another function

which accepts further arguments, one by one, that the original

function would receive in the rest of that tuple.

• The function arrow -> in type is assumed to associate to the

right.

The type

T1 -> T2 -> T3 -> ... -> Tn

means

T1 -> (T2 -> (T3 -> (... -> Tn)...))

53

Curried functions

The type

T1 -> T2 -> T3

means

T1 -> (T2 -> T3)

54

Curried functions

The type

T1 -> T2 -> T3 -> T4

means

T1 -> (T2 -> (T3 -> T4))

54

Curried functions

The type

T1 -> T2 -> T3 -> T4 -> T5

means

T1 -> (T2 -> (T3 -> (T4 -> T5)))

54

Curried functions

Multiplying three integers

-- mult :: Int -> (Int -> (Int -> Int))

mult :: Int -> Int -> Int -> Int

mult x y z = x*y*z

55

Curried functions

Multiplying three integers

-- mult :: Int -> (Int -> (Int -> Int))

mult :: Int -> Int -> Int -> Int

mult x y z = x*y*z

λ > mult 2 3 4 -- mult 2 3 4 == ((mult 2) 3) 4

24

λ > :type mult 2

mult 2 :: Int -> Int -> Int

λ > :type mult 2 3

mult 2 3 :: Int -> Int

λ > :type mult 2 3 4

mult 2 3 4 :: Int

55

Curried functions

Multiplying three integers

-- mult :: Int -> (Int -> (Int -> Int))

mult :: Int -> Int -> Int -> Int

mult x y z = x*y*z

λ > mult2 = mult 2

λ > mult3 = mult2 3

λ > mult3 4

24

λ > :type mult2

mult2 :: Int -> Int -> Int

λ > :type mult3

mult3 :: Int -> Int

55

Curried functions

Exercice

uncurry is a function that undoes currying; that is, it converts a

function of two arguments into a function that takes a pair as its

only argument.

uncurry :: (a -> b -> c) -> (a, b) -> c

Write implementations for uncurry.

Exercise

curry is is the opposite of uncurry.

curry :: ((a, b) -> c) -> a -> b -> c

Write implementations for curry.

56

Polymorphic types

• Parametric polymorphism refers to when the type of a value

contains one or more (unconstrained) type variables, so that

the value may adopt any type that results from substituting

those variables with concrete types.

• For example, the function id :: a -> a contains an

unconstrained type variable a in its type, and so can be used in

a context requiring Char -> Char or Integer -> Integer

or (Bool -> Bool) -> (Bool -> Bool) or any of a

literally infinite list of other possibilities.

• The empty list [] :: [a] belongs to every list type.

57

Polymorphic types

λ > length []

0

λ > length [1,3,5,7,2,4,6,8]

8

λ > length ["Huey","Dewey","Louie"]

3

λ > length [sin, cos, tan]

3

58

Polymorphic types

λ > :type length

length :: Foldable t => t a -> Int

λ > :info length

type Foldable :: (* -> *) -> Constraint

class Foldable t where

length :: t a -> Int

...

-- Defined in 'Data.Foldable'

59

Classes

Indroduction

First steps

Types

Classes

60

Overloaded types

• A type that contains one or more class constraints is called

overloaded.

• Class constraints are written in the form C a, where C is the

name of the class and a is a type variable.

61

Overloaded types

λ > 1 + 2

3

λ > :type 1

1 :: Num a => a

λ > :type 1 + 2

1 + 2 :: Num a => a

λ > 1.0 + 2.0

3.0

λ > :type 1.0

1.0 :: Fractional a => a

λ > :type 1.0 + 2.0

1.0 + 2.0 :: Fractional a => a

λ > sqrt 2 + sqrt 3

3.1462643699419726

λ > :type sqrt 2

sqrt 2 :: Floating a => a

λ > :type sqrt 2 + sqrt 3

sqrt 2 + sqrt 3 :: Floating a => a

62

Overloaded types

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > :type (-)

(-) :: Num a => a -> a -> a

λ > :type (*)

(*) :: Num a => a -> a -> a

λ > :type (/)

(/) :: Fractional a => a -> a -> a

λ > :type sqrt

sqrt :: Floating a => a -> a

63

Basic classes

• A class is collection of types that support certain overloaded

operations called methods.

• Haskell provides a number of basic classes that are built-in to

the language.

64

Haskell classes

65

Basic classes

Eq – Equality types

This class contains types whose values can be compared for equality

and inequality using the following two methods:

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

All the basic types Bool, Char, String, Int, Integer, Float and

Double are instances of the Eq class.

66

Basic classes

Eq – Equality types

λ > True == True

True

λ > 'a' == 'b'

False

λ > "abc" == "abc"

True

λ > 2.5 == 5.2

False

66

Basic classes

Eq – Equality types

λ > ('a', 1) == ('b', 1)

False

λ > (1, 2, 3) == (1, 2)

error: Couldn't match expected type: (a0, b0, c0) with actual

type: (a1, b1)

λ > [1,2,3] == [1,2,3,4]

False

λ > cos == cos

error: No instance for (Eq (Double -> Double)) arising from a

use of '=='

66

Basic classes

Ord – Ordered types

This class contains types that are instances of the equality class Eq,

but in addition these values are totally ordered, and as such can be

compared using the following six methods:

class Eq a => Ord a where

(<) :: a -> a -> Bool

(<=) :: a -> a -> Bool

(>) :: a -> a -> Bool

(>=) :: a -> a -> Bool

min :: a -> a -> a

max :: a -> a -> a

All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Ord class.

67

Basic classes

Ord – Ordered types

λ > False < True

True

λ > "elegant" < "elephant"

True

λ > "a" < "ab"

True

λ > 'b' > 'a'

True

λ > [1,2,3] <= [1,2]

False

λ > [] < [1]

True

67

Basic classes

Ord – Ordered types

λ > (1,2) < (1,3)

True

λ > (1,2,3) < (1,1)

error: Couldn't match expected type: (a0, b0, c0) with actual

type: (a1, b1)

λ > [True] < [False,False]

False

λ > (False,False) <= (False,True)

True

67

Basic classes

Ord – Ordered types

λ >

λ > min ('a',2) ('a',1)

('a',1)

λ > max ('a',2) ('a',1)

('a',2)

λ > sin < cos

error: No instance for (Ord (Double -> Double)) arising from a

use of '<'

λ > (1, sin) > (2, cos)

error: No instance for (Ord (Double -> Double)) arising from a

use of '>'

67

Basic classes

Show – Showable types

This class contains types that can be converted into strings of char-

acters using the following method:

class Show a where

show :: a -> String

All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Show class.

68

Basic classes

Show – Showable types

λ > show True

"True"

λ > show 'a'

"'a'"

λ > show "abc"

"\"abc\""

λ > show [1,2,3]

"[1,2,3]"

λ > show (1, True, [1,2,3])

"(1,True,[1,2,3])"

68

Basic classes

Read – Readable types

This class is dual to Read and contains types whose values can be

converted from string of characters using the following method:

class Read a where

read :: String -> a

All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Read class.

69

Basic classes

Read – Readable types

λ > read "False" :: Bool

False

λ > read "'a'" :: Char

'a'

λ > read "\"abc\"" :: String

"abc"

λ > read "[1,2,3]" :: [Int]

[1,2,3]

λ > read "(1, True, [1,2,3])" :: (Int, Bool, [Int])

(1,True,[1,2,3])

69

Basic classes

Num – Numeric types

This class contains types whose values are numeric, and as such can

be processed using the following six methods:

class Num a where

(+) :: a -> a -> a

(-) :: a -> a -> a

(*) :: a -> a -> a

negate :: a -> a

abs :: a -> a

signum :: a -> a

Note that the Num class does not provide a division method.

70

Basic classes

Num – Numeric types

λ > 1+2

3

λ > 1-2

-1

λ > 1.0+2.0

3.0

λ > 2*3

6

λ > 2.0*3.0

6.0

70

Basic classes

Num – Numeric types

λ > negate 3.0

-3.0

λ > negate (-2)

2

λ > abs(-1.5)

1.5

λ > signum 3

1

λ > signum (-3)

-1

70

Basic classes

Integral – Integral types

This class contains types that are instances of the numeric class Num,

but in addition whose values are integers, and as such support the

method of integer division and integer remainder:

class (Real a, Enum a) => Integral a where

div :: a -> a -> a

mod :: a -> a -> a

71

Basic classes

Integral – Integral types

λ > div 7 2

3

λ > 7 `div` 2

3

λ > 8 `div` 2

4

λ > 7 `mod` 2

1

λ > 8 `mod` 2

0

71

Basic classes

Integral – Integral types

λ > (-7) `div` 2

-4

λ > (-7) `div` (-2)

3

λ > (-7) `mod` 2

1

λ > (-7) `mod` (-2)

-1

71

Basic classes

Fractional – Fractional types

This class contains types that are instances of the numeric class Num,

but in addition whose values are non-integral, and as such support

the method of integer fractional division and fractional reciprocation:

class Num a => Fractional a where

(/) :: a -> a -> a

recip :: a -> a -> a

The basic types Float and Double are instances of the Fractional

class.

72

Basic classes

Fractional – Fractional types

λ > 7.0 / 2.0

3.5

λ > 2.0 / 7.0

0.2857142857142857

λ > recip 2.0

0.5

λ > recip 1.0

1.0

72

	Indroduction
	First steps
	Types
	Classes

