Functional programming
Lecture 01 — First steps
(version: 2025-10-06-21:56:22)

Stéphane Vialette
stephane.vialette@univ-eiffel.fr

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049,
Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Indroduction

Indroduction

Genealogy of programming languages

Paradigms

Imperative

Dataflow

Main functional languages

Lisp, Common Lisp, Scheme, Racket, ...

Erlang, Elixir, ...
ML, Standard ML, Ocaml, F#, ...
Clojure, Scala, ...

Haskell, EIm, Miranda, Idris, Agda, ...

Haskell

»=-Haskell

Haskell

e Haskell is a compiled, statically typed, functional
programming language.

e It was created in the early 1990s as one of the first
open-source purely functional programming languages.

e It is named after the American logician Haskell Brooks Curry.

Characteristics of functional programming (haskell)

first class high-order | immutable
function function data
pyne recursion lists
function
lazy lambda pattern

evaluation expressions matching

Haskell landscape

The imperatives
e GHC: state-of-the-art, open source, compiler and interactive
environment for the functional language Haskell.
e GHCi: GHC's interactive environment.
e Hackage: Haskell community’s central package archive of

open source software.

https://www.haskell.org/ghc/
https://wiki.haskell.org/GHC/GHCi
https://hackage.haskell.org/

Haskell landscape

Testing Frameworks

e QuickCheck: powerful testing framework where test cases are
generated according to specific properties.

e HUnit: unit testing framework similar to JUnit.

e Hspec: a testing framework similar to RSpec with support for
QuickCheck and HUnit.

e The Haskell Test Framework, HTF: integrates both Hunit and
QuickCheck.

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/HUnit
https://hspec.github.io/
https://hackage.haskell.org/package/HTF

Haskell landscape

Ancillary Tools

e darcs: revision control system.

haddock: documentation system.

cabal: build system.

stack: build system.

hoogle: type-aware API search engine.

http://darcs.net/
https://haskell-haddock.readthedocs.io/en/latest/
https://www.haskell.org/cabal/
https://docs.haskellstack.org/en/stable/
https://hoogle.haskell.org/

Haskell landscape

Static Analysis Tools

e hlint: detect common style mistakes and redundant parts of
syntax, improving code quality.

e Sourcegraph: Haskell visualizer.

Dynamic Analysis Tools
e criterion: powerful benchmarking framework.

e hpc: check evaluation coverage of a haskell program, useful
for determining test coverage.

10

https://hackage.haskell.org/package/hlint
https://hackage.haskell.org/package/SourceGraph
https://hackage.haskell.org/package/criterion
http://web.archive.org/web/20090705020757/projects.unsafeperformio.com/hpc/

Haskell landscape

IDEs
e VSCodium
o IntelliJ
e Vim

o GNU Emacs

Haskell for Mac (commercial)

Sublime Text (free/commercial)

11

https://vscodium.com/
https://www.jetbrains.com/fr-fr/idea/
https://www.vim.org/
https://www.gnu.org/software/emacs/
http://haskellformac.com/
https://www.sublimetext.com/

Haskell books

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Real World

Simon Thompson OREILLY

THE HASKELL
SCHOOL OF
' MuUsIC

THINKING::

FUNCTIONALLY
with

DESIGN HASKELL

with HASKELL

PAUL HUDAK
RICHARD BIRD

12

Haskell books

Emﬁ e Haskel GET PROGRAMMING
ective rlaske!
o e HASKELL
M=Haskell

Programming

Concurrent
i Programming
Pure functional programming .
without fear or frustration 1mn Ha Sk ell

Purely Functional
Data Structures
Chris Ohasahi . £9pE

4
4
v
4
v
(44
v
4
4
4

Practical
Haskell

Al

X

44 Haskell High Performance

Programmin,
5ot el

X

X

13

Functional programming books

Structure and
Interpretation
of Computer
Programs.

a
0\

The Little Schemer

SOFTWARE
DESIGN FOR
FLEXIBILITY

- Programiming
A Gomar

LET OVER

LET OVER

anson and

ald Joy Sussman

DOUG

‘The Reasoned Schemer

COMMON

LAMBDA

LAMBDA

HOYTE

The Little Typer The Little Prover

Daniel . risdenan nd Carl xstlund

P
Pty
oty

14

Install and manage the Haskell toolchain with GHCup

GHCup Home Installation First steps User Guide Developer Guide About Q search) Edit on GitHub

I\ GHCup

GHCup is the main installer for the general purpose language Haskell

To install on Linux, macOS, FreeBSD or WSL2

run the following in a terminal (as a non-root user):

curl —proto ‘=https' —tlsv1.2 -sSf https://get-ghcup.haskell.org | sh

What doss this do? - | don't ke cur 1 - Show all lattorms

Need help? Check the Troubleshooting section or ask on # IRC., @ Discord,, [maws or reporta bug. f

15

Haskell

Haskell can be used both as a compiled language and through an

interpreter.

Programs can be compiled into efficient executables using the
Glasgow Haskell Compiler (GHC), which ensures strong type
checking and high performance.

At the same time, Haskell offers an interactive environment called
GHCi (the Glasgow Haskell Compiler interactive), which acts as an

interpreter.

With GHCi, developers can quickly test code snippets, experiment
with functions, and explore ideas without compiling an entire
program. This dual approach makes Haskell both practical for
rapid prototyping and powerful for building production-ready

applications.
16

A taste of haskell : Multiplying elements

fact :: (Eq a, Num a) => a -> a

fact n = if n == 0 then 1 else n * fact (n-1)

17

A taste of haskell : Multiplying elements

fact :: (Eq a, Num a) => a -> a
fact n = if n == 0 then 1 else n * fact (n-1)

A > fact O

1

A > fact 1

1

A > fact 3

6

A > fact 5

120

A > fact 40
815915283247897734345611269596115894272000000000

17

A taste of haskell : Multiplying elements

fact :: (Eq a, Num a) => a -> a

fact n = if n == 0 then 1 else n * fact (n-1)

fact 3

= { applying function fact }
3 * fact 2

= { applying function fact }
3 * 2 x fact 1

= { applying function fact }
3 % 2 *x 1 % fact O

= { applying function fact }
3% 2x1x*1

= { applying function (+) 1}
6 x 1 % 1

= { applying function (+) }
6 x 1

= { applying function (+) 1}
6

17

A taste of haskell : Summing elements

sum :: Num a => [a] -> a
sum [] =0

sum (x : xs) = x + sum Xs

18

A taste of haskell : Summing elements

sum :: Num a => [a] -> a

sum [] =0

sum (x : xs) X + sum Xs

A> sum []

0

A> sum [1]

1

A> sum [1,2,3,4,5]

15
A> sum [sum [1,2],sum [3,4], 5]
15
A> sum [1,2] + sum [sum [3,4],5]
15

18

A taste of haskell : Summing elements

sum :: Num a => [a] -> a

sum [] =0

sum (x : xs) X + sum Xs

sum [1,2,3]
= { applying function sum }
sum [2,3]
applying function sum }
2 + sum [3]
applying function sum }
2 + 3 + sum []
applying function sum }
2+3+0
applying function (+) }
3+0
applying function (+) }
0
applying function (+) }

T T T T T T

18

A taste of haskell : Sorting lists

gSort :: Ord a => [a]l -> [a]

gSort []1 = []

gSort (x : xs) = gSort smaller ++ [x] ++ gSort larger
where

smaller = [x'

]
—
"

larger

19

A taste of haskell : Sorting lists

gSort :: Ord a => [a]l -> [a]

gSort []1 = []

gSort (x : xs) = gSort smaller ++ [x] ++ gSort larger
where

smaller = [x' |

[x' |

<- xs, x' <= x]

X
x!

larger <- xs, x' > x]

A > gSort []

(1

A > gSort [1]

[1]

A > gSort [1,2,3,4,5]
[1,2,3,4,5]

A > gSort [4,1,3,5,2]
[1,2,3,4,5]

A > gSort [4,-1,3,5,-2]

(-2,-1,3,4,5]
19

A taste of haskell : Sorting lists

gSort :: Ord a => [a] -> [a]
gSort []1 = []
gSort (x : xs) = gSort smaller ++ [x] ++ gSort larger

where

smaller = [x' | x' <- xs, x' <= x]
larger = [x' | x' <= xs, x' > x]
gSort [x]

= { applying function gSort }
gSort [] ++ [x] ++ gSort []
= { applying function gSort }
0 ++ [x] ++ [
{ applying function ++ (twice) }
[x]

19

A taste of haskell : Sorting lists

gSort :: Ord a => [a]l -> [a]

gSort []1 = []

gSort (x : xs) = gSort smaller ++ [x] ++ gSort larger
where

smaller = [x' |

[x' |

x' <- xs8, x' <= x]
X]

larger <- xs, x' > x]

gSort [3,5,1,4,2]
= { applying function gSort }
gSort [1,2] ++ [3] ++ gSort [5,4]
= { applying function qSort (twice) }
(gqSort [] ++ [1] ++ gSort [2]) ++ [3] ++ (gSort [4] ++ [5] ++ gSort [])
{ applying function qSort (four times) }
([++ [11 ++ [2]) ++ [3] ++ ([4] ++ [5] ++ [1)
= { applying function ++ (four times) }
[1,2] ++ [3] ++ [4,5]
{ applying function ++ (twice) }
[1,2,3,4,5]

19

First steps

First steps

20

A>

A>

A>

A>

A>

A>
1.5

1+2+3

1+2x%x3

(1 +2) 3

2-3+4

2 - (3 + 4)

2 %3/ 4

21

A> 2 % pi
6.283185307179586
A> (1 + sqrt 5) / 2
1.618033988749895

A> log 2
0.6931471805599453

A > abs (-3)

3

22

A> 27374 —- == 27(3°4)

2417851639229258349412352

A> (273)74

4096

A > ceiling 2.6 -- the least integer not less than 2.6
3

A > floor 2.6 -- the greatest integer not greater 2.6
2

A > round 2.6 -- round to nearest integer

3

A> (sin pi)~2 + (cos pi)~2

1.0

23

GHCi

A> x =42
A> x+l
43

A> x
42

A> let
43

A> let x
2

A> x =1
A> x = x+1
A> x
“CInterrupted.
A> y = y+l
A>y
“CInterrupted.

42 in x+1

o]
]

1 in let x = 2 in x

24

A > "Haskell!"

"Haskell!"

A > :type "Haskell!"

"Haskell!" :: String

A > "Haskell" ++ " " ++ "programming"

"Haskell programming"

A> [IHI 'a','s','k'",'e",'1"',']" 1!1]
"Haskell!"

)\> 'H' - [lal tg! Tk tet '] 1] l!l]
"Haskell!"

A> 'H' : "askell!"

"Haskell!"

A> 'H' : 'a' : 's' : 'k' : 'e' : '1'
"Haskell!"

(]

25

Command Meaning
:1load name load script name
:reload reload current script

:set editor name
:edit name

redit

:type expr

.7

:quit

set editor to name
edit script name
edit current script
show type of expr
show all commands
quit GHCi

26

A> :type 1

1 :: Num a => a

A> :type 2.5

2.5 :: Fractional a => a
A> :type 5/2

5/2 :: Fractional a => a

A> :type 5 “div™ 2

5 “div’ 2 :: Integral a => a
A > :type pi

pi :: Floating a => a

27

A > :type 1+2

1+2 :: Num a => a

A> :type (+)

(+) :: Num a => a -> a —> a
A> :type (1 +)

(1 +#) :: Num a => a -> a

A > :type (+ 1)

(+ 1) :: Num a => a -> a

28

A> :type 2.5

2.5 :: Fractional a => a

A > :type 5/2

5/2 :: Fractional a => a

A> :type (/)

(/) :: Fractional a => a -> a -> a
A> :type (/ 2)

(/ 2) :: Fractional a => a -> a

29

A> :type pi
pi
A > :type sqrt 2

sqrt 2 ::

:: Floating a => a

Floating a => a

A > :type cos

cos

:: Floating a => a -> a

30

GHCi (defining our first function)

A> fact n = if n == 0 then 1 else n * fact (n-1)

A > :type fact

fact :: (Eq a, Num a) => a -> a
A > fact 5

120

A > fact O

1

A > fact 5.0

120.0

A > fact 2.5

“CInterrupted.

31

A> f = fact

A> :type f

f :: (Eq a, Num a) => a -> a
A> £ 5

120

A> £ (f 3)

720

32

Basic functions

Exercice

The binomial coefficient (Z) can be computed by the multiplicative

formula

n\ nx(n—1)x---x(n—k+1)
<k>_ kx (k—1)x---x1

which using factorial notation can be compactly expressed as

n\ n!
<k> ~ k!'(n—k)!

Write implementations for computing (Z)

B

A> 'a'

lal

A> :type 'a'

'a' :: Char

A > ‘'abc'

error: Syntax error on 'abc'
)\ > 'a' : "bc"

Ilabcll

A> :type (@)
(:) :: a-> [a] -> [a]

34

A > "abc"
"abc"

A > :type "abc"

"abc" :: String
A > "abc" ++ "def"
"abcdef"

A > :type (++)
(++) :: [a] -> [a] -> [a]

35

Types

Types

36

Basic concepts

e In Haskell every expression must have a type.

e A type is a collection of related values.

e We use the notation v :: T to mean that v is a value in the
type T.
Example
True :: Bool
False :: Bool
not :: Bool -> Bool
(&&) :: Bool -> Bool -> Bool
(1) :: Bool -> Bool -> Bool

37

e Bool - Logical values.

e Char - Single characters.

e String - Strings of characters.

e Int - Fixed-precision integers.

e Integer - Arbitrary-precision integers.

e Float - Since-precision floating-point numbers.

e Double - Double-precision floating-point numbers.

38

A list is a sequence of elements of the same type, with the

elements being enclosed in square parentheses and separated
by commas.

o We write [T] for the type of all lists whose elements have
type T.

e The number of elements in a list is called its length.
e The list [] of length zero is called the empty list.
e [1and [[1] (and [L[111, [LLC111], ...) are different lists.

39

A> :type []

0 :: [al

A> :type [1,2,3,4,5]

[1,2,3,4,5] :: Num a => [a]

A> :type ['a', 'b', 'c', 'd']
[ta', 'b', 'c', 'd'] :: [Char]

A> :type ["ab", "cd", "ef", "gh"]
["ab", "cd", "ef", "gh"] :: [String]
A > :type "ab" == :type "cd"

error: parse error on input ':'

40

A > :type [cos, sin]

[cos, sin] :: Floating a => [a -> a]

A> :type [1, 'a']

error: No instance for (Num Char) arising from the literal '1'
A> :type [[1]1,[2,3]1,[4,5,6]1]

[[1]1,[2,3],[4,5,6]1]1 :: Num a => [[a]]

A> :type [[[11]1,[[2,3],[4,5,6]]1]

[Cr111,002,31,04,5,6111 :: Num a => [[[al]]

41

List types — List constructor

[] is a type constructor taking one type argument a and returning
the type [1 a, which is also permitted to be written as [a].

42

List types — List constructor

[] is a type constructor taking one type argument a and returning
the type [1 a, which is also permitted to be written as [a].

A > :info []
type [1 :: * —> %
data [] a =[] | a : [a]

A > :kind []
[T :: % > %
A> :type []
[0 :: [a]

A> :type [[1]
(011 :: [[al]
A> :type [[[]]]
[L011] :: [CC2]]]

42

List types — Cons operator

The : operator is known as the cons operator and is used to
prepend a head element to a list.

(:) :: a-> [a] -> [a]

43

List types — Cons operator

The : operator is known as the cons operator and is used to
prepend a head element to a list.

(:) :: a-> [a] -> [a]

A> [1,2,3]
[1,2,3]
A> 1:[2,3]
[1,2,3]
A> 1:2:[3]
[1,2,3]
A> 1:2:3:[]
[1,2,3]

43

Exercise
Which of these are valid Haskell, and why?

[1,2,3,[1]
[1,[2,3],4]

[[1,2,3],[1]

44

Exercise

Which of these are valid Haskell, and which are not? Rewrite in
comma and bracket notation.

(1:01,2,31,[4,5,6]]
(1:0]

(1:01:0]

(11:01:100
("hi"]:[1]:[]

45

Exercice

Can Haskell have lists of lists of lists? Why or why not?

Exercise

Why is the following list invalid in Haskell?

([1,21,3,[4,5]]

46

Tuple types

A tuple is a sequence of components of possibly different
types, with the components being enclosed in round
parentheses and separated by commas.

We write (T1, T2, ..., Tn) for the type of all tuples
whose i-th component have type Ti for any 1 <7 < n.

The number of elements in a tuple is called its arity.
The tuple () of arity zero is called the empty tuple.

Tuple of arity one are not permitted.

47

Tuple types

A> :type O

O 0

A> :type (1,'a')

(1,'a') :: Num a => (a, Char)
A> :type (1,2,'a',"abc")

(1,2,'a',"abc") :: (Num a, Num b) => (a, b, Char, String)
A > :type (sqrt, 'a')
(sqrt, 'a') :: Floating a => (a -> a, Char)

A> :type (1, ('a', "cd"))
(1, ('a', "cd")) :: Num a => (a, (Char, String))

48

Tuple types

A> :type (1, ('a', "cd"))
(1, ('a', "cd")) :: Num a => (a, (Char, String))
A> :type (1, [cos, sin])

(1, [cos, sin]) :: (Floating al, Num a2) => (a2, [al -> all])
A> :type (1)

(1) :: Num a => a

A> let t = (1,2) in (t, 3)

((1,2),3)

A> let t = (1,t)
error: Couldn't match expected type 'b' with actual type '(a, b)'

49

Tuple types

Exercise
Which of these are valid Haskell, and why?

1: (2,3

(2,4) : (2,3)

(2,4) : [1
[(2,4),(,5),('a','d")]

([2,4],[2,4,5])

50

Function types

e A function is a mapping of one type to results of another type.

e We write T1 -> T2 for the type of all functions that map
arguments of type T1 to results of type T2.

e There is no restriction that function must be total on their

argument type.

51

Function types

A > :type not

not :: Bool -> Bool

A > :type even -- parity predicate (see also odd)
even :: Integral a => a -> Bool
A > :type mod -- modulo

mod :: Integral a => a -> a -> a
A> add x y = xty

A > :type add

add :: Num a => a -> a -> a

A> add' (x,y) = xty

A > :type add'

add' :: Num a => (a, a) -> a

52

Curried functions

e Currying is the process of transforming a function that takes
multiple arguments in a tuple as its argument, into a function
that takes just a single argument and returns another function
which accepts further arguments, one by one, that the original
function would receive in the rest of that tuple.

e The function arrow => in type is assumed to associate to the

right.

The type

T1 -> T2 > T3 > ... -=> Tn

means

TL > (T2 > (T3 > (... => Tn)...))

53

Curried functions

The type
T1 -> T2 -> T3
means

T1 -> (T2 -> T3)

54

Curried functions

The type
Tl -> T2 -> T3 -> T4
means

T1 -> (T2 -> (T3 -> T4))

54

Curried functions

The type
T1 -> T2 -> T3 -> T4 -> TH
means

T1 -> (T2 -> (T3 -> (T4 -> T5)))

54

Curried functions

Multiplying three integers

-— mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int

mult x y z = x¥y*z

55

Curried functions

Multiplying three integers

-— mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int

mult x y z = x¥y*z

A> mult 2 3 4 - mult 2 3 4 == ((mult 2) 3) 4
24

A > :type mult 2
mult 2 :: Int -> Int -> Int

A> :type mult 2 3
mult 2 3 :: Int -> Int

A> :type mult 2 3 4
mult 2 3 4 :: Int

55

Curried functions

Multiplying three integers

-— mult :: Int -> (Int -> (Int -> Int))
mult :: Int -> Int -> Int -> Int

mult x y z = x¥y*z

A > mult2 = mult 2

A > mult3 = mult2 3

A > mult3 4
24

A > :type mult2
mult2 :: Int -> Int -> Int

A > :type mult3
mult3 :: Int -> Int

55

Curried functions

Exercice

uncurry is a function that undoes currying; that is, it converts a
function of two arguments into a function that takes a pair as its
only argument.

uncurry :: (a -> b -> ¢c) -> (a, b) -> ¢

Write implementations for uncurry.

Exercise
curry is is the opposite of uncurry.
curry :: ((a, b) ->¢c) ->a ->b > ¢

Write implementations for curry.
56

Polymorphic types

e Parametric polymorphism refers to when the type of a value
contains one or more (unconstrained) type variables, so that
the value may adopt any type that results from substituting
those variables with concrete types.

e For example, the function id :: a -> a contains an
unconstrained type variable a in its type, and so can be used in
a context requiring Char -> Char or Integer -> Integer
or (Bool -> Bool) -> (Bool -> Bool) or any of a
literally infinite list of other possibilities.

e The empty list [J :: [a] belongs to every list type.

57

Polymorphic types

A > length []
A > length [1,3,5,7,2,4,6,8]
A > length ["Huey","Dewey","Louie"]

A > 1length [sin, cos, tan]

58

Polymorphic types

A > :type length
length :: Foldable t => t a -> Int

A > :info length
type Foldable :: (* -> *) -> Constraint
class Foldable t where

length :: t a -> Int

-— Defined in 'Data.Foldable’

59

Classes

Classes

60

Overloaded types

e A type that contains one or more class constraints is called
overloaded.

e Class constraints are written in the form C a, where C is the
name of the class and a is a type variable.

61

Overloaded types

A> 1+ 2 A> 1.0 + 2.0

3 3.0

A> :type 1 A> :type 1.0

1 :: Num a => a 1.0 :: Fractional a => a

A> :type 1 + 2 A> :type 1.0 + 2.0

1 +2 :: Num a => a 1.0 + 2.0 :: Fractional a => a

A> sqrt 2 + sqrt 3
3.1462643699419726

A > :type sqrt 2
sqrt 2 :: Floating a => a

A > :type sqrt 2 + sqrt 3
sqrt 2 + sqrt 3 :: Floating a => a

62

Overloaded types

A > :type (+)

(#) :: Num a => a -> a -> a
:type (=)
(=) :: Numa=>a->a->a

A > :type (%)

(¥*) :: Numa =>a -> a -> a
A> :type (/)
(/) :: Fractional a => a -> a -> a

A > :type sqrt
sqrt :: Floating a => a -> a

63

Basic classes

e A class is collection of types that support certain overloaded
operations called methods.

e Haskell provides a number of basic classes that are built-in to

the language.

64

Haskell classes

Eq Show
All except All except
10, (->) 10, (->)
Ord Num
All except Int, Integer,

10, IOError, (-»)

L

Enum Real
(), Bool, Char, Ordering, Int, Integer,
Int, Integer, Float, Double Float, Double

N

Integral RealFrac Floating
Float, Double Float, Double

Int, Integer

N/

RealFloat
Float, Double

Float, Double

Fractional
Float, Double

Read Functor
All except 10, [1, (->), (b),
10, (->) Maybe, Either
Bounded Applicative

Int, Char, Bool, (),
Ordering, tuples

10, [1, (-2),
Maybe, Either

|

Monad
10, [1, (->),
Maybe, Either

65

Basic classes

Eq — Equality types
This class contains types whose values can be compared for equality
and inequality using the following two methods:
class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool
All the basic types Bool, Char, String, Int, Integer, Float and
Double are instances of the Eq class.

66

Basic classes

Eq — Equality types
A > True == True

True

A>'a' == 'b'
False

A > "abc" == "abc"
True

A> 2.5 == 5.2
False

66

Basic classes

Eq — Equality types

A> (ta', 1) == ('b', 1)

False

A> (1, 2, 3) =, 2)

error: Couldn't match expected type: (a0, b0, cO) with actual
type: (al, bl)

A> [1,2,3] == [1,2,3,4]

False

A > cos == cos
error: No instance for (Eq (Double -> Double)) arising from a

use of '=='

66

Basic classes

Ord — Ordered types
This class contains types that are instances of the equality class Eq,
but in addition these values are totally ordered, and as such can be

compared using the following six methods:

class Eq a => Ord a where

(<) :: a->a -> Bool
(<=) :: a -> a -> Bool
(>) :: a->a -> Bool
(>=) :: a -> a -> Bool
min :: a -> a -> a
max :: a ->a -> a

All the basic types Bool, Char, String, Int, Integers, Float and
Double are instances of the Ord class.

67

Basic classes

Ord — Ordered types
A > False < True

True

A > "elegant" < "elephant"
True

A> "a" < "ab"

True

A> 'b' > 'a'

True

A> [1,2,3] <= [1,2]
False

A> [1 < [1]

True

67

Basic classes

Ord — Ordered types
A> (1,2) < (1,3)
True

A> (1,2,3) < (1,1)
error: Couldn't match expected type: (a0, b0, cO) with actual
type: (al, bl)

A > [True] < [False,False]
False

A > (False,False) <= (False,True)
True

67

Basic classes

Ord — Ordered types

A>
A> min ('a',2) ('a',1)
(ta',1)

A> max ('a',2) ('a',1)

("a',2)

A > sin < cos

error: No instance for (Ord (Double -> Double)) arising from a
use of '<!'

A> (1, sin) > (2, cos)

error: No instance for (Ord (Double -> Double)) arising from a
use of '>'

67

Basic classes

Show — Showable types
This class contains types that can be converted into strings of char-
acters using the following method:
class Show a where
show :: a -> String
All the basic types Bool, Char, String, Int, Integers, Float and

Double are instances of the Show class.

68

Basic classes

Show — Showable types

A > show True
"True"

A > show 'a'

migtn

A > show "abc"
u\uabc\uu

A > show [1,2,3]
n [1,2,3] n

A > show (1, True, [1,2,3])
"(1,True, [1,2,3])"

68

Basic classes

Read — Readable types
This class is dual to Read and contains types whose values can be
converted from string of characters using the following method:
class Read a where

read :: String -> a
All the basic types Bool, Char, String, Int, Integers, Float and
Double are instances of the Read class.

69

Basic classes

Read — Readable types

A > read "False" :: Bool

False

A> read "'a'" :: Char

lal

A > read "\"abc\"" :: String

Ilabcll

A> read "[1,2,3]" :: [Int]

[1,2,3]

A> read "(1, True, [1,2,3])" :: (Int, Bool, [Int])

(1,True, [1,2,3])

69

Basic classes

Num — Numeric types
This class contains types whose values are numeric, and as such can

be processed using the following six methods:

class Num a where

(+) :: a->a->a
(=) ::a->a->a
(¥*) :: a->a->a
negate :: a -> a
abs i a > a
signum :: a -> a

Note that the Num class does not provide a division method.

70

Basic classes

Num — Numeric types

A> 142
3

A> 1-2

-1

A> 1.0+2.0
3.0

A > 2%3
6

A> 2.0%3.0
6.0

70

Basic classes

Num — Numeric types

A > negate 3.0
-3.0

A > negate (-2)
2

A > abs(-1.5)
1.5

A > signum 3
1

A > signum (-3)
-1

70

Basic classes

Integral — Integral types
This class contains types that are instances of the numeric class Num,
but in addition whose values are integers, and as such support the
method of integer division and integer remainder:
class (Real a, Enum a) => Integral a where

div :: a > a -> a

mod :: a -> a -> a

71

Basic classes

Integral — Integral types

A> div 7 2
3

A> 7 “dive 2
3

A> 8 “div™ 2
4
A> 7 “mod> 2
1

A> 8 “mod” 2
0

71

Basic classes

Integral — Integral types
A> (=7) “div™ 2

-4

A> (=7) “div™ (-2)

3

A> (=7) "mod” 2

1

A> (=7) “mod” (-2)

-1

71

Basic classes

Fractional — Fractional types
This class contains types that are instances of the numeric class Num,
but in addition whose values are non-integral, and as such support
the method of integer fractional division and fractional reciprocation:
class Num a => Fractional a where

(/) ::a->a->a

recip :: a -> a -> a
The basic types Float and Double are instances of the Fractional
class.

72

Basic classes

Fractional — Fractional types

A> 7.0/ 2.0
3.5

A> 2.0/ 7.0
0.2857142857142857

A > recip 2.0
0.5

A > recip 1.0
1.0

72

	Indroduction
	First steps
	Types
	Classes

