Functional programming
Lecture 02 — Functions 101
(version: 2025-10-06-21:56:18)

Stéphane Vialette
stephane.vialette@univ-eiffel.fr

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049,
Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Conditional

Conditional

Conditional expressions

For processing conditions, the if-then-else syntax was defined
in Haskell98.

if <condition> then <true-value> else <false-value>

if is an expression (which is converted to a value) and not a
statement (which is executed) as in many imperative languages.
As a consequence, the else is mandatory in Haskell. Since if is
an expression, it must evaluate to a result whether the condition is

true or false, and the else ensures this.

Conditional expressions

abs :: Int -> Int
abs n = if n >= 0 then n else -n

signum :: Int -> Int
signum n = if n < O then -1
else if n == 0 then 0 else 1

describeletter :: Char -> String

describeletter ¢ = if ¢ >= 'a' && c <= 'z'

then "Lower case"

else if ¢ >= "A' && c <= 'Z'
then "Upper case"

else "Not an ASCII letter"

Conditional expressions

addOneIfEvenl :: Integral a => a -> a

addOneIfEvenl n = if even n then n+l else n

addOneIfEven2 :: Integral a => a -> a

addOneIfEven2 n = n + if even n then 1 else O

addOneIfEven3 :: Integral a => a -> a
addOneIfEven3 n = (if even n then (+ 1) else (+ 0)) n

addOneIfEven4 :: Integral a => a -> a
addOneIfEven4 n = (if even n then (+ 1) else id) n

Conditional expressions

Remember that

isNullLength :: Foldable t => t a -> Bool
isNulllLength xs = if length xs == 0 then True else False

is nothing but

isNullLength :: Foldable t => t a -> Bool
isNullLength xs = length xs ==

or (as we we shall see soon ...but not really better here!)

isNullLength :: Foldable t => t a -> Bool
isNullLength = (== 0) . length

Conditional expressions

Exercices

The function Data.Char.isSpace returns True for any Unicode
space character, and the control characters \t, \n, \r, \f and \v.

import Data.Char

hasSpace (x : xs) = if isSpace a then True

else hasSpace xs

Write hasSpace without if ... then ... else (hint: use
(1) :: Bool -> Bool -> Bool).

Guarded expressions

As an alternative to using conditional expressions, functions can
also be defined using guarded expressions, in which a sequence of
logical expressions called guards is used to choose between a
sequence of results of the same type.

e If the first guard is True, then the first result is chosen.

e Otherwise, if the second guard is True, then the second result

is chosen.

e And so on.

Guarded expressions

absl :: Int -> Int

absl n = if n >= 0 then n else -n

abs2 :: Int -> Int
abs2 n
| n>=0

1]
=]

| otherwise -n

Guarded expressions

signuml :: Int -> Int
signuml n = if n < O then -1 else
if n == 0 then O else 1

signum2 :: Int -> Int

signum2 n

| n <0 = -1
| otherwise = 1

Guarded expressions

describeletterl :: Char -> String
describeletterl ¢ = if ¢ >= 'a' && c <= 'z'
then "Lower case"
else if ¢ >= '"A' && c <= 'Z'
then "Upper case"
else "Not an ASCII letter"

describeletter2 :: Char -> String

describeletter2 c

| ¢ > 'a' && c <= 'z' = "Lower case"
| ¢ > '"A'" && c <= 'Z' = "Upper case"
| otherwise = "Not an ASCII letter"

Guarded expressions

fact :: (Eq t, Num t) => t -> t
fact n

1

| otherwise = n * fact (n-1)

|n==

mult :: (Eq t, Num t, Num a) => a -> t -> a
mult n m

| m == =0

| otherwise = n + mult n (m - 1)

Guarded expressions

-— Bad implementation:

fact :: Integer -> Integer
fact n

| n==0-=1

| n /=0 =n * fact (n-1)

-— Slightly improved implementation:
fact :: Integer -> Integer
fact n

1
n * fact (n-1)

|n==

| otherwise

10

Pattern Matching

Exercices
Using guards, define a function
max4 :: Int -> Int -> Int -> Int > Int

that returns the maximum of four integers.

11

Pattern matching

Pattern matching

12

Pattern matching

Many functions have a simple and intuitive definition using pattern
matching, in which a sequence of syntactic expressions called
patterns is used to choose between a sequence of results of the

same type.

The wildcard pattern _ matches any value.

o If the first pattern is matched, then the first result is chosen.

e Otherwise, if the second pattern is matched, then the second

result is chosen.

e And so on...

13

Pattern matching

-- conditional expression
not :: Bool —-> Bool
not b = if b then False else True

-— guarded function
not :: Bool -> Bool
not b
| b
| otherwise = True

False

-— pattern matching
not :: Bool —-> Bool
not False = True

not True = False

14

Pattern matching

(&%) :: Bool

True && True
True && False
False && True
False && False

(&%) :: Bool
True && True

&&

(&&) :: Bool

True && b
False && _

-> Bool -> Bool

True

False

False

False

-> Bool -> Bool
= True
False

-> Bool -> Bool
b
False

14

Pattern matching

guess :: Int -> String

guess 0 = "I am zero"

guess 1 = "I am one"

guess 2 = "I am two"

guess _ = "I am at least three"

-- be careful with the wildcard pattern !

guess :: Int -> String

guess _ = "I am at least three"
guess 0 = "I am zero"

guess 1 = "I am one"

guess 2 = "I am two"

14

Short circuiting

(&&) :: Bool -> Bool -> Bool
True && x = X
False && _ = False

A> 1 “div® 0

*** Exception: divide by zero
A> fx=x>0 & x “div- 0 =
A> £ 1

*** Exception: divide by zero
A> £ (-1)

False

]
o

15

Short circuiting

[GND) :: Bool -> Bool -> Bool
True && _ = True
&& x = X

A> 1 “div® 0

*** Exception: divide by zero
A> gx=x>0 || x “div® 0 =
A> g1

True

A> g (-1)

*** Exception: divide by zero

]
o

15

Pattern matching — Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of
the same arity whose components all match the corresponding
patterns in order.

Functions £st and snd are defined in the module Data.Tuple:

A > :type fst

fst :: (a, b) > a
A> fst (1,2)

1

A > :type snd

snd :: (a, b) -> b
A> snd (1,2)

2

16

Pattern matching — Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of
the same arity whose components all match the corresponding
patterns in order.

Functions £st and snd are defined in the module Data.Tuple:

fst :: (a, b) > a
fst (x,) =x

snd :: (a, b) > b

snd (_, x) = x

16

Pattern matching — Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of
the same arity whose components all match the corresponding
patterns in order.

first3 :: (a, b, c) > a
first3 (x, _, _) = x

second3 :: (a, b, ¢c) -=> b
second3 (_, x, _) =x

third3 :: (a, b, ¢c) -> ¢
thlI‘d3 (_,) X) = X

16

Pattern matching — Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of
the same arity whose components all match the corresponding
patterns in order.

first4 :: (a, b, c, d) —> a
firstd (x, _, _, _) =x
second4 :: (a, b, ¢, d) -> b
second4 (_, x, _, , _) =X
third4 :: (a, b, ¢, d) -> ¢
thirdd (_, _, x, _) =X

fourth4 :: (a, b, c, d) > d
fourth4 (_, _, _, x) =X

16

Pattern matching — List patterns

A list of patterns is itself a pattern, which matches any list of the
same length whose components all match the corresponding
patterns in order.

-— three characters beginning with the letter 'a'

test :: [Char] -> Bool

test ['a', _, _] = True

test _ = False

-— four characters ending with the letter 'z’
test :: [Char] -> Bool

test [_, _, _, 'z'] = True

test _ = False

17

Pattern matching — List patterns

A list of patterns is itself a pattern, which matches any list of the
same length whose components all match the corresponding
patterns in order.

These are two different functions

! !

-— three characters beginning with the letter 'a
test :: [Char] -> Bool

test ['a', _, _] = True

test _ = False

-— three characters beginning with the letter 'a'

test :: (Char, Char, Char) -> Bool
test ('a', _, _) = True
test = False

17

Pattern Matching

Exercices

Define a function intersperse' that takes an element and a list
and intersperses that element between the elements of the list.
The type definition should be

intersperse' :: a -> [a] -> [a]

A > intersperse' ',' ""

A > intersperse' ',' "a"

||a||

A > intersperse' ',' "abcd"

”a,b ,C, a"

A > intersperse' "--" ["a", "cd", "edf"]

[nau s n__n s ned" s n__n s "edf "]

18

Pattern Matching

Exercices
Define the function
intercalate' :: [a] -> [[al] -> [a]

The call intercalate' xs xss inserts the list xs in between the
lists in xss and concatenates the result.

A > intercalate' "--" []

nn

A > intercalate' "--" ["ab"]

Ilabll

A > intercalate' "--" ["ab", "cde", "fg"]

"ab--cde--fg"

A > intercalate' ["--"] [["ab"], ["cde"], ["fg"]1]

["ab" n__mn "cde" n__n "fg"]

A > intersperse' "--" ["ab", "cde", "fg"] -- cf previous ezercice

["ab","——","cde","——","fg"] 19

Lambdas

Lambdas

20

Pattern matching — Lambda expression

e An anonymous function is a function without a name.

e It is a Lambda abstraction and might look like this:
\x -> x + 1.

That backslash is Haskell's way of expressing a A and is supposed
to look like a Lambda .. .if one has enough imagination!

A> type (\x —> x+1)

(\x -> x+1) :: Num a => a -> a
A> (\x -> x+1) 2
3

21

Pattern matching — Lambda expression

The definition

add :: Int -> Int -> Int -> Int
add x yz=x+y + z

can be understood as meaning

add :: Int -> Int -> Int -> Int
add = \x > (\y > (\z > x +y + 2))

which makes precise that add is a function that takes an integer x
and returns a function which in turn takes another integer y and
returns a function which in turn takes another integer z and
returns the result x+y+z.

22

Pattern matching — Lambda expression

A-expressions are useful when defining functions that returns
function as results by their very nature, rather than a consequence

of currying.

const :: a -> b -> a

const x _ = X

-- emphasis const :: a => (b -> a)
const :: a -> b -> a

const x = _ —> x

23

Pattern matching — Lambda expression

A closure (the opposite of a combinator) is a function that makes
use of free variables in its definition. It closes around some portion

of its environment.

f :: Num a => a -> a -> a

fx=\y >x+y

f returns a closure, because the variable x, which is bounded
outside of the lambda abstraction is used inside its definition.

A> g=1£f1
A> g
3
A> g3
4
A> g4

N

24

Pattern Matching

Exercices

Consider the function

f:: (a->a->b) >(Mm->b->c) ->a->a->c
f=\ghzxy->(x"g x) h (y g v

Explain the following session.

A> f (+) (x) 25

40

A> f (x) (+) 25

29

A> let ol = (+); 02 = (*) in f ol 02 2 5
40

A> let o= (+) in f 0 0 2 5

14

A> f (\Nxy >x+2xy) (\xy >x-y) 25

e 25

Pattern Matching

Exercices

Explain the following functions:

g :: Int -> Int
g=\x > x *x

h :: Int -> Int
\x —> g (g x)

=3
Il

i :: Int -> Int
ix=h (h %)

26

Pattern matching — Operator sections

e Functions such as + that are written between their two
arguments are called section

e Any operator can be converted into a curried function by
enclosing the name of the operator in parentheses, such as
(+) 1 2.

e More generally, if o is an operator, then expression of the form
(0), (x o) and (o y) are called sections whose meaning as
functions can be formalised using A-expressions as follows:

(@ =\x > Ny > xo07y))
(xo0) =\y >xo0y
(oy) =\x >xo0y

27

Pattern matching — Operator sections

(+) is the addition function \x -> (\y -> x+y).

(1 +) is the successor function \y -> 1+y.

(1 /) is the reciprocation function \y -> 1/y.

(x 2) is the doubling function \x -> x*2.

(/ 2) is the halving function \x -> x/2.

28

IIgEHHHiEiIII

Exercices

Explain the following functions:

f :: [Char] -> [Char]

f = (IIAH ++)

g [Char] -> [Char]

g = (++ uzn)

h [Char] -> [Char]

h=\x > f (g x)

i [Char] -> [Charl]

i=\x —>g (f x)

Do we have h xs == i xs for every string xs?

29

let and where

let and where

30

Pattern matching — Bindings

e A where clause is used to divide the more complex logic or
calculation into smaller parts, which makes the logic or
calculation easy to understand and handle

e A where clause is bound to a surrounding syntactic construct,
like the pattern matching line of a function definition.

e A where clause is a syntactic construct

31

Pattern matching — Bindings

bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height

| weight / height ~ 2 <= 18.5 = "Underweight"

| weight / height ~ 2 < 25.0 = "Healthy weight"

| weight / height = 2 < 30.0 = "Overweight"

| otherwise = "QObese"
bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height

| bmi <= 18.5 = "Underweight"

| bmi < 25.0 = "Healthy weight"

| bmi < 30.0 = "Overweight"

| otherwise = "Obese"

where

bmi = weight / height ~ 2

32

Pattern matching — Bindings

bmiTell :: (RealFloat a) => a -> a -> String
bmiTell weight height

| bmi <= underweight
| bmi < healthy

"Underweight"
"Healthy weight"

| bmi < overweight = "Overweight"
| otherwise = "QObese"
where

bmi = weight / height ~ 2

underweight = 18.5

healthy = 25

overweight = 30

33

Pattern matching — Bindings

e A let binding binds variables anywhere and is an expression
itself, but its scope is tied to where the let expression appears.

e if a let binding is defined within a guard, its scope is local and
it will not be available for another guard.

e A let binding can take global scope overall pattern-matching
clauses of a function definition if it is defined at that level.

34

Pattern matching — Bindings

cylinder :: (RealFloat a) => a -> a -> a
cylinder r h =
let sideArea = 2 * pi * r * h
topArea = pi * r "2

in sideArea + 2*topArea

35

Pattern matching — Bindings

A> let zoot X y z = X*y + z
A > :type zoot

zoot :: Num a => a -> a -> a -> a

A> zoot 3 9 2

29

A > let boot x y z = x*y + z in boot 3 9 2
29

A > :type boot
<interactive>: error:

o Variable not in scope: boot

36

Pattern matching — Bindings

A> leta=1; b=2in a + b

3

A> leta=1; b=a+2ina+ b
4

A> let a=1; a=2in a

<interactive>:: error:

Conflicting definitions for 'a'
A> let a =1; b = 2+a; ¢ = 3+a+b in (a, b, c)
(1,3,7)

37

Pattern matching — Bindings

A> let a =1 in let a = 2; b = 3+a in b

5

A> let a =1 in let a = a+2 in let b = 3+a in b
“CInterrupted.

A> let f x y =x+y+l in f 3 5

9

A> let f xy=xty; gx=1%fx (xt1) in g 5

11

38

Pattern matching — Bindings

dist :: Floating a => (a, a) -> (a, a) -> a
dist (x1,y1) (x2,y2) =
let xdist = x2 - x1
ydist = y2 - yi1

sqQr z = z*z

in sqrt ((sqr xdist) + (sqr ydist))

dist :: Floating a => (a, a) -> (a, a) -> a
dist (x1,y1) (x2,y2) = sqrt ((sqr xdist) + (sqr ydist))
where
xdist = x2 - x1
ydist = y2 - yi1
sSqr z = z*z

39

Pattern matching — Bindings

We can pattern match with let bindings. E.g., we can dismantle a
tuple into components and bind the components to names.

A> f xyz=1let (sx,sy,sz) = (x*x,y*y,z*z) in (sx,sy,sz)
A> £f123

(1,4,9)

A> g xy=1let (sx,.) = (x*x,y*y) in sx

A> g2
4

A> h x = let ((sx,cx),qx) = ((x*x,x*x*x),x*x*x*x) in (sx,cx,qx)
A> h 2

(4,8,16)

w

40

Pattern matching — Bindings

let bindings are expressions.

A> 1 + let x = 2 in xX*x

5

A> (let x = 2 in x*x) + 1

5

A> (let (x,y,z) = (1,2,3) in x+y+z) * 100
600

A> (let x =2 in (+ x)) 3

5

A> let x=3 in x*x + let x=4 in X*x

25

41

Some functions

Some functions

42

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!l, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!l, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFactl :: Int -> Int
dblFactl n = go n
where
go 0 =1
go m
| pm
| otherwise = go (m-1)

m * go (m-1)

where

pm= (even n & even m) || (odd n && odd m)

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!l, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFact2 :: Int -> Int
dblFact2 n = go n
where
go 0 =1
go m
| pm
| otherwise = go (m-1)

m * go (m-1)

where
nParity2 = n “mod™ 2
pm=m mod 2 == nParity2

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!l, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFact3 :: Int -> Int

dblFact3 0 = 1
dblFact3 1 = 1
dblFact3 n = n * dblFact3 (n-2)

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by
n!l, is the product of all the integers from 1 up to n that have the
same parity (odd or even) as n

dblFact4 :: Int —-> Int
dblFact4 n = product [n,n-2..1]

43

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved
problems in mathematics. It concerns sequences of integers in
which each term is obtained from the previous term as follows:
Up_1/2 if u,—1 is even
u, =

" | 3us1+1 if upy is odd
For instance, starting with n = 19, one gets the sequence
19,58, 29, 88,44,22,11,34,17,52, 26,13, 40, 20, 10, 5,16, 8,4, 2, 1.

44

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved
problems in mathematics. It concerns sequences of integers in
which each term is obtained from the previous term as follows:
Up_1/2 if u,—1 is even
u, =

" | 3us1+1 if upy is odd
For instance, starting with n = 19, one gets the sequence
19,58, 29, 88,44,22,11,34,17,52, 26,13, 40, 20, 10, 5,16, 8,4,2,1

collatzl 1
collatzl n

"Win"

collatzl (if even n
then n “div™ 2

else 3*n + 1)

44

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved
problems in mathematics. It concerns sequences of integers in
which each term is obtained from the previous term as follows:
Up_1/2 if u,—1 is even
u, =

" | 3us1+1 if upy is odd
For instance, starting with n = 19, one gets the sequence
19,58, 29, 88,44,22,11,34,17,52, 26,13, 40, 20, 10, 5,16, 8,4,2,1

collatz2 :: Integral a => a -> String
collatz2 1 = "win"
collatz2 n

| even n = collatz2 (n ~div™ 2)

| otherwise = collatz2 (3*n + 1)

44

Ackermann—Péter function

aP ::
aP O n
aPm O

aPmn

A(0, n) =n+1
A(m+1,0) =A(m,1)
Alm+1,n+1) = A(m,A(m+1,n))

(Num a, Eq a, Num b, Eq b) => a -> b -> b

= n+l
aP (m-1) 1
= aP (m-1) (aP m (n-1))

45

Prime numbers

A prime number (or a prime) is a natural number greater than 1
that is not a product of two smaller natural numbers.

-— very naive
isPrime :: Integral a => a -> Bool

isPrime 0 = False

isPrime 1 False

isPrime n = go 2

where
go k
| k >=n = True
| otherwise = n "mod™ k /= 0 && go (k+1)

46

Ping-pong programming

-— odd number predicate
is0dd :: (Eq a, Num a) => a -> Bool

is0Odd O = False
isOdd 1 = True
is0dd n = isEven (n-1)

-— even number predicate

isEven :: (Eq a, Num a) => a -> Bool

isEven O True
isEven 1 = False

is0dd (n-1)

isEven n

47

IIHHIiHHHHII

factl :: (Eq a, Num a) => a -> a
factl n = if n == 0 then 1 else n * factl (n-1)

fact2 :: (Eq a, Num a) => a -> a
fact2 n

| otherwise = n * fact2 (n-1)

48

IIHHIiHHHHII

fact3 :: (0rd a, Num a) => a -> a
fact3 = go 1
where
gomn
| m >n =1
| otherwise = m * go (m+1) n
fact4 :: (Eq t, Num t) => t > t
factd n=go 1 n
where
go acc 0 = acc
go acc m = go (acc*m) (m-1)

48

IIHHIiHHHHII

factb :: (Enum a, Num a) => a -> a
facts n = product [1..n]

48

Pascal triangle

1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

49

[e>To)
— M O = 3
I T N T
L NA NN ¢
QIO Y IFAE

— NS 0o

By

NN N 6 NG =
—

— o o = o =

N NN
S N

49

— »n o g v

>+<kil>

(v

)

49

NN N
NN A 25 NO N
— — —

— AN < 1O W0

NN N N N
— — N N

R TR o TR o R e B e IR e B o |

SN TN TN N N N
— —

n+1
k+1

(

Pascal’s relation

Pascal triangle

(o) =1

(o) =1 () =1

(=1 (=2 ()=1

()=1 (=3 ()=3 ()=1

(=1 ()=4 (=6 (=4 ()=1

(=1 (=5 (=10 (=10 ()=5 (5)=1

=1 (=5 (=15 (=20 (=20 ()=6 (5=1

pT :: (Num a, Ord a, Num b) => a -> a -> b

pT n k
| n==1 && k == =1
l k<1 | k>n =0
| otherwise = pT (n-1) (k-1) + pT (n-1) k

49

Recursion

Exercices

Consider the following functions :
fix :: (a > a) —> a

fix £ = £ (fix £)

fact :: Integer -> Integer
fact = fix (\ rn -> if n == 0 then 1 else n * r (n-1))

Explain :
A > fact 5

120

50

	Conditional
	Pattern matching
	Lambdas
	let and where
	Some functions

