
Functional programming

Lecture 02 – Functions 101

(version: 2025-10-06–21:56:18)

Stéphane Vialette

stephane.vialette@univ-eiffel.fr

Laboratoire d’Informatique Gaspard-Monge, UMR CNRS 8049,

Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Conditional

Conditional

Pattern matching

Lambdas

let and where

Some functions

1

Conditional expressions

For processing conditions, the if-then-else syntax was defined

in Haskell98.

if <condition> then <true-value> else <false-value>

if is an expression (which is converted to a value) and not a

statement (which is executed) as in many imperative languages.

As a consequence, the else is mandatory in Haskell. Since if is

an expression, it must evaluate to a result whether the condition is

true or false, and the else ensures this.

2

Conditional expressions

abs :: Int -> Int

abs n = if n >= 0 then n else -n

signum :: Int -> Int

signum n = if n < 0 then -1

else if n == 0 then 0 else 1

describeLetter :: Char -> String

describeLetter c = if c >= 'a' && c <= 'z'

then "Lower case"

else if c >= 'A' && c <= 'Z'

then "Upper case"

else "Not an ASCII letter"

3

Conditional expressions

addOneIfEven1 :: Integral a => a -> a

addOneIfEven1 n = if even n then n+1 else n

addOneIfEven2 :: Integral a => a -> a

addOneIfEven2 n = n + if even n then 1 else 0

addOneIfEven3 :: Integral a => a -> a

addOneIfEven3 n = (if even n then (+ 1) else (+ 0)) n

addOneIfEven4 :: Integral a => a -> a

addOneIfEven4 n = (if even n then (+ 1) else id) n

4

Conditional expressions

Remember that

isNullLength :: Foldable t => t a -> Bool

isNullLength xs = if length xs == 0 then True else False

is nothing but

isNullLength :: Foldable t => t a -> Bool

isNullLength xs = length xs == 0

or (as we we shall see soon . . . but not really better here!)

isNullLength :: Foldable t => t a -> Bool

isNullLength = (== 0) . length

5

Conditional expressions

Exercices

The function Data.Char.isSpace returns True for any Unicode

space character, and the control characters \t, \n, \r, \f and \v.

import Data.Char

hasSpace (x : xs) = if isSpace a then True

else hasSpace xs

Write hasSpace without if ... then ... else (hint: use

(||) :: Bool -> Bool -> Bool).

6

Guarded expressions

As an alternative to using conditional expressions, functions can

also be defined using guarded expressions, in which a sequence of

logical expressions called guards is used to choose between a

sequence of results of the same type.

• If the first guard is True, then the first result is chosen.

• Otherwise, if the second guard is True, then the second result

is chosen.

• And so on.

7

Guarded expressions

abs1 :: Int -> Int

abs1 n = if n >= 0 then n else -n

abs2 :: Int -> Int

abs2 n

| n >= 0 = n

| otherwise = -n

8

Guarded expressions

signum1 :: Int -> Int

signum1 n = if n < 0 then -1 else

if n == 0 then 0 else 1

signum2 :: Int -> Int

signum2 n

| n < 0 = -1

| n == 0 = 0

| otherwise = 1

8

Guarded expressions

describeLetter1 :: Char -> String

describeLetter1 c = if c >= 'a' && c <= 'z'

then "Lower case"

else if c >= 'A' && c <= 'Z'

then "Upper case"

else "Not an ASCII letter"

describeLetter2 :: Char -> String

describeLetter2 c

| c >= 'a' && c <= 'z' = "Lower case"

| c >= 'A' && c <= 'Z' = "Upper case"

| otherwise = "Not an ASCII letter"

8

Guarded expressions

fact :: (Eq t, Num t) => t -> t

fact n

| n == 0 = 1

| otherwise = n * fact (n-1)

mult :: (Eq t, Num t, Num a) => a -> t -> a

mult n m

| m == 0 = 0

| otherwise = n + mult n (m - 1)

9

Guarded expressions

-- Bad implementation:

fact :: Integer -> Integer

fact n

| n == 0 = 1

| n /= 0 = n * fact (n-1)

-- Slightly improved implementation:

fact :: Integer -> Integer

fact n

| n == 0 = 1

| otherwise = n * fact (n-1)

10

Pattern Matching

Exercices

Using guards, define a function

max4 :: Int -> Int -> Int -> Int > Int

that returns the maximum of four integers.

11

Pattern matching

Conditional

Pattern matching

Lambdas

let and where

Some functions

12

Pattern matching

Many functions have a simple and intuitive definition using pattern

matching, in which a sequence of syntactic expressions called

patterns is used to choose between a sequence of results of the

same type.

The wildcard pattern _ matches any value.

• If the first pattern is matched, then the first result is chosen.

• Otherwise, if the second pattern is matched, then the second

result is chosen.

• And so on. . .

13

Pattern matching

-- conditional expression

not :: Bool -> Bool

not b = if b then False else True

-- guarded function

not :: Bool -> Bool

not b

| b = False

| otherwise = True

-- pattern matching

not :: Bool -> Bool

not False = True

not True = False

14

Pattern matching

(&&) :: Bool -> Bool -> Bool

True && True = True

True && False = False

False && True = False

False && False = False

(&&) :: Bool -> Bool -> Bool

True && True = True

_ && _ = False

(&&) :: Bool -> Bool -> Bool

True && b = b

False && _ = False

14

Pattern matching

guess :: Int -> String

guess 0 = "I am zero"

guess 1 = "I am one"

guess 2 = "I am two"

guess _ = "I am at least three"

-- be careful with the wildcard pattern !

guess :: Int -> String

guess _ = "I am at least three"

guess 0 = "I am zero"

guess 1 = "I am one"

guess 2 = "I am two"

14

Short circuiting

(&&) :: Bool -> Bool -> Bool

True && x = x

False && _ = False

λ > 1 `div` 0

*** Exception: divide by zero

λ > f x = x > 0 && x `div` 0 == 0

λ > f 1

*** Exception: divide by zero

λ > f (-1)

False

15

Short circuiting

(||) :: Bool -> Bool -> Bool

True && _ = True

_ && x = x

λ > 1 `div` 0

*** Exception: divide by zero

λ > g x = x > 0 || x `div` 0 == 0

λ > g 1

True

λ > g (-1)

*** Exception: divide by zero

15

Pattern matching – Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of

the same arity whose components all match the corresponding

patterns in order.

Functions fst and snd are defined in the module Data.Tuple:

λ > :type fst

fst :: (a, b) -> a

λ > fst (1,2)

1

λ > :type snd

snd :: (a, b) -> b

λ > snd (1,2)

2

16

Pattern matching – Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of

the same arity whose components all match the corresponding

patterns in order.

Functions fst and snd are defined in the module Data.Tuple:

fst :: (a, b) -> a

fst (x, _) = x

snd :: (a, b) -> b

snd (_, x) = x

16

Pattern matching – Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of

the same arity whose components all match the corresponding

patterns in order.

first3 :: (a, b, c) -> a

first3 (x, _, _) = x

second3 :: (a, b, c) -> b

second3 (_, x, _) = x

third3 :: (a, b, c) -> c

third3 (_, _, x) = x

16

Pattern matching – Tuple patterns

A tuple of patterns is itself a pattern, which matches any tuple of

the same arity whose components all match the corresponding

patterns in order.

first4 :: (a, b, c, d) -> a

first4 (x, _, _, _) = x

second4 :: (a, b, c, d) -> b

second4 (_, x, _, , _) = x

third4 :: (a, b, c, d) -> c

third4 (_, _, x, _) = x

fourth4 :: (a, b, c, d) -> d

fourth4 (_, _, _, x) = x

16

Pattern matching – List patterns

A list of patterns is itself a pattern, which matches any list of the

same length whose components all match the corresponding

patterns in order.

-- three characters beginning with the letter 'a'

test :: [Char] -> Bool

test ['a', _, _] = True

test _ = False

-- four characters ending with the letter 'z'

test :: [Char] -> Bool

test [_, _, _, 'z'] = True

test _ = False

17

Pattern matching – List patterns

A list of patterns is itself a pattern, which matches any list of the

same length whose components all match the corresponding

patterns in order.

These are two different functions

-- three characters beginning with the letter 'a'

test :: [Char] -> Bool

test ['a', _, _] = True

test _ = False

-- three characters beginning with the letter 'a'

test :: (Char, Char, Char) -> Bool

test ('a', _, _) = True

test _ = False

17

Pattern Matching

Exercices

Define a function intersperse' that takes an element and a list

and intersperses that element between the elements of the list.

The type definition should be

intersperse' :: a -> [a] -> [a]

λ > intersperse' ',' ""

""

λ > intersperse' ',' "a"

"a"

λ > intersperse' ',' "abcd"

"a,b,c,d"

λ > intersperse' "--" ["a", "cd", "edf"]

["a","--","cd","--","edf"]

18

Pattern Matching

Exercices

Define the function

intercalate' :: [a] -> [[a]] -> [a]

The call intercalate' xs xss inserts the list xs in between the

lists in xss and concatenates the result.

λ > intercalate' "--" []

""

λ > intercalate' "--" ["ab"]

"ab"

λ > intercalate' "--" ["ab", "cde", "fg"]

"ab--cde--fg"

λ > intercalate' ["--"] [["ab"], ["cde"], ["fg"]]

["ab","--","cde","--","fg"]

λ > intersperse' "--" ["ab", "cde", "fg"] -- cf previous exercice

["ab","--","cde","--","fg"] 19

Lambdas

Conditional

Pattern matching

Lambdas

let and where

Some functions

20

Pattern matching – Lambda expression

• An anonymous function is a function without a name.

• It is a Lambda abstraction and might look like this:

\x -> x + 1.

That backslash is Haskell’s way of expressing a λ and is supposed

to look like a Lambda . . . if one has enough imagination!

λ > :type (\x -> x+1)

(\x -> x+1) :: Num a => a -> a

λ > (\x -> x+1) 2

3

21

Pattern matching – Lambda expression

The definition

add :: Int -> Int -> Int -> Int

add x y z = x + y + z

can be understood as meaning

add :: Int -> Int -> Int -> Int

add = \x -> (\y -> (\z -> x + y + z))

which makes precise that add is a function that takes an integer x

and returns a function which in turn takes another integer y and

returns a function which in turn takes another integer z and

returns the result x+y+z.

22

Pattern matching – Lambda expression

λ-expressions are useful when defining functions that returns

function as results by their very nature, rather than a consequence

of currying.

const :: a -> b -> a

const x _ = x

-- emphasis const :: a -> (b -> a)

const :: a -> b -> a

const x = _ -> x

23

Pattern matching – Lambda expression

A closure (the opposite of a combinator) is a function that makes

use of free variables in its definition. It closes around some portion

of its environment.

f :: Num a => a -> a -> a

f x = \y -> x + y

f returns a closure, because the variable x, which is bounded

outside of the lambda abstraction is used inside its definition.

λ > g = f 1

λ > g 2

3

λ > g 3

4

λ > g 4

5
24

Pattern Matching

Exercices

Consider the function

f :: (a -> a -> b) -> (b -> b -> c) -> a -> a -> c

f = \g h x y -> (x `g` x) `h` (y `g` y)

Explain the following session.

λ > f (+) (*) 2 5

40

λ > f (*) (+) 2 5

29

λ > let o1 = (+); o2 = (*) in f o1 o2 2 5

40

λ > let o = (+) in f o o 2 5

14

λ > f (\ x y -> x + 2*y) (\x y -> x - y) 2 5

-9 25

Pattern Matching

Exercices

Explain the following functions:

g :: Int -> Int

g = \x -> x * x

h :: Int -> Int

h = \x -> g (g x)

i :: Int -> Int

i x = h (h x)

26

Pattern matching – Operator sections

• Functions such as + that are written between their two

arguments are called section

• Any operator can be converted into a curried function by

enclosing the name of the operator in parentheses, such as

(+) 1 2.

• More generally, if o is an operator, then expression of the form

(o), (x o) and (o y) are called sections whose meaning as

functions can be formalised using λ-expressions as follows:

(o) = \x -> (\y -> x o y))

(x o) = \y -> x o y

(o y) = \x -> x o y

27

Pattern matching – Operator sections

• (+) is the addition function \x -> (\y -> x+y).

• (1 +) is the successor function \y -> 1+y.

• (1 /) is the reciprocation function \y -> 1/y.

• (* 2) is the doubling function \x -> x*2.

• (/ 2) is the halving function \x -> x/2.

28

Sections

Exercices

Explain the following functions:

f :: [Char] -> [Char]

f = ("A" ++)

g :: [Char] -> [Char]

g = (++ "Z")

h :: [Char] -> [Char]

h = \x -> f (g x)

i :: [Char] -> [Char]

i = \x -> g (f x)

Do we have h xs == i xs for every string xs?
29

let and where

Conditional

Pattern matching

Lambdas

let and where

Some functions

30

Pattern matching – Bindings

• A where clause is used to divide the more complex logic or

calculation into smaller parts, which makes the logic or

calculation easy to understand and handle

• A where clause is bound to a surrounding syntactic construct,

like the pattern matching line of a function definition.

• A where clause is a syntactic construct

31

Pattern matching – Bindings

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| weight / height ^ 2 <= 18.5 = "Underweight"

| weight / height ^ 2 < 25.0 = "Healthy weight"

| weight / height ^ 2 < 30.0 = "Overweight"

| otherwise = "Obese"

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| bmi <= 18.5 = "Underweight"

| bmi < 25.0 = "Healthy weight"

| bmi < 30.0 = "Overweight"

| otherwise = "Obese"

where

bmi = weight / height ^ 2
32

Pattern matching – Bindings

bmiTell :: (RealFloat a) => a -> a -> String

bmiTell weight height

| bmi <= underweight = "Underweight"

| bmi < healthy = "Healthy weight"

| bmi < overweight = "Overweight"

| otherwise = "Obese"

where

bmi = weight / height ^ 2

underweight = 18.5

healthy = 25

overweight = 30

33

Pattern matching – Bindings

• A let binding binds variables anywhere and is an expression

itself, but its scope is tied to where the let expression appears.

• if a let binding is defined within a guard, its scope is local and

it will not be available for another guard.

• A let binding can take global scope overall pattern-matching

clauses of a function definition if it is defined at that level.

34

Pattern matching – Bindings

cylinder :: (RealFloat a) => a -> a -> a

cylinder r h =

let sideArea = 2 * pi * r * h

topArea = pi * r ^2

in sideArea + 2*topArea

35

Pattern matching – Bindings

λ > let zoot x y z = x*y + z

λ > :type zoot

zoot :: Num a => a -> a -> a -> a

λ > zoot 3 9 2

29

λ > let boot x y z = x*y + z in boot 3 9 2

29

λ > :type boot

<interactive>: error:

o Variable not in scope: boot

36

Pattern matching – Bindings

λ > let a = 1; b = 2 in a + b

3

λ > let a = 1; b = a + 2 in a + b

4

λ > let a = 1; a = 2 in a

<interactive>:: error:

Conflicting definitions for 'a'

λ > let a = 1; b = 2+a; c = 3+a+b in (a, b, c)

(1,3,7)

37

Pattern matching – Bindings

λ > let a = 1 in let a = 2; b = 3+a in b

5

λ > let a = 1 in let a = a+2 in let b = 3+a in b

^CInterrupted.

λ > let f x y = x+y+1 in f 3 5

9

λ > let f x y = x+y; g x = f x (x+1) in g 5

11

38

Pattern matching – Bindings

dist :: Floating a => (a, a) -> (a, a) -> a

dist (x1,y1) (x2,y2) =

let xdist = x2 - x1

ydist = y2 - y1

sqr z = z*z

in sqrt ((sqr xdist) + (sqr ydist))

dist :: Floating a => (a, a) -> (a, a) -> a

dist (x1,y1) (x2,y2) = sqrt ((sqr xdist) + (sqr ydist))

where

xdist = x2 - x1

ydist = y2 - y1

sqr z = z*z

39

Pattern matching – Bindings

We can pattern match with let bindings. E.g., we can dismantle a

tuple into components and bind the components to names.

λ > f x y z = let (sx,sy,sz) = (x*x,y*y,z*z) in (sx,sy,sz)

λ > f 1 2 3

(1,4,9)

λ > g x y = let (sx,_) = (x*x,y*y) in sx

λ > g 2 3

4

λ > h x = let ((sx,cx),qx) = ((x*x,x*x*x),x*x*x*x) in (sx,cx,qx)

λ > h 2

(4,8,16)

40

Pattern matching – Bindings

let bindings are expressions.

λ > 1 + let x = 2 in x*x

5

λ > (let x = 2 in x*x) + 1

5

λ > (let (x,y,z) = (1,2,3) in x+y+z) * 100

600

λ > (let x = 2 in (+ x)) 3

5

λ > let x=3 in x*x + let x=4 in x*x

25

41

Some functions

Conditional

Pattern matching

Lambdas

let and where

Some functions

42

Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact1 :: Int -> Int

dblFact1 n = go n

where

go 0 = 1

go m

| p m = m * go (m-1)

| otherwise = go (m-1)

where

p m = (even n && even m) || (odd n && odd m)

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact2 :: Int -> Int

dblFact2 n = go n

where

go 0 = 1

go m

| p m = m * go (m-1)

| otherwise = go (m-1)

where

nParity2 = n `mod` 2

p m = m `mod` 2 == nParity2

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact3 :: Int -> Int

dblFact3 0 = 1

dblFact3 1 = 1

dblFact3 n = n * dblFact3 (n-2)

43

Double factorial

The double factorial (or semifactorial of a number n, denoted by

n!!, is the product of all the integers from 1 up to n that have the

same parity (odd or even) as n

dblFact4 :: Int -> Int

dblFact4 n = product [n,n-2..1]

43

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved

problems in mathematics. It concerns sequences of integers in

which each term is obtained from the previous term as follows:

un =

un−1/2 if un−1 is even

3un−1 + 1 if un−1 is odd

For instance, starting with n = 19, one gets the sequence

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

44

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved

problems in mathematics. It concerns sequences of integers in

which each term is obtained from the previous term as follows:

un =

un−1/2 if un−1 is even

3un−1 + 1 if un−1 is odd

For instance, starting with n = 19, one gets the sequence

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

collatz1 1 = "win"

collatz1 n = collatz1 (if even n

then n `div` 2

else 3*n + 1)

44

Collatz conjecture

The Collatz conjecture is one of the most famous unsolved

problems in mathematics. It concerns sequences of integers in

which each term is obtained from the previous term as follows:

un =

un−1/2 if un−1 is even

3un−1 + 1 if un−1 is odd

For instance, starting with n = 19, one gets the sequence

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

collatz2 :: Integral a => a -> String

collatz2 1 = "win"

collatz2 n

| even n = collatz2 (n `div` 2)

| otherwise = collatz2 (3*n + 1)

44

Ackermann–Péter function

A(0, n) = n + 1

A(m + 1, 0) = A(m, 1)

A(m + 1, n + 1) = A(m,A(m + 1, n))

aP :: (Num a, Eq a, Num b, Eq b) => a -> b -> b

aP 0 n = n+1

aP m 0 = aP (m-1) 1

aP m n = aP (m-1) (aP m (n-1))

45

Prime numbers

A prime number (or a prime) is a natural number greater than 1

that is not a product of two smaller natural numbers.

-- very naive

isPrime :: Integral a => a -> Bool

isPrime 0 = False

isPrime 1 = False

isPrime n = go 2

where

go k

| k >= n = True

| otherwise = n `mod` k /= 0 && go (k+1)

46

Ping-pong programming

-- odd number predicate

isOdd :: (Eq a, Num a) => a -> Bool

isOdd 0 = False

isOdd 1 = True

isOdd n = isEven (n-1)

-- even number predicate

isEven :: (Eq a, Num a) => a -> Bool

isEven 0 = True

isEven 1 = False

isEven n = isOdd (n-1)

47

Factorial

fact1 :: (Eq a, Num a) => a -> a

fact1 n = if n == 0 then 1 else n * fact1 (n-1)

fact2 :: (Eq a, Num a) => a -> a

fact2 n

| n == 0 = 1

| otherwise = n * fact2 (n-1)

48

Factorial

fact3 :: (Ord a, Num a) => a -> a

fact3 = go 1

where

go m n

| m > n = 1

| otherwise = m * go (m+1) n

fact4 :: (Eq t, Num t) => t -> t

fact4 n = go 1 n

where

go acc 0 = acc

go acc m = go (acc*m) (m-1)

48

Factorial

fact5 :: (Enum a, Num a) => a -> a

fact5 n = product [1..n]

48

Pascal triangle

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

49

Pascal triangle(
0
0

)
= 1(

1
0

)
= 1

(
1
1

)
= 1(

2
0

)
= 1

(
2
1

)
= 2

(
2
2

)
= 1(

3
0

)
= 1

(
3
1

)
= 3

(
3
2

)
= 3

(
3
3

)
= 1(

4
0

)
= 1

(
4
1

)
= 4

(
4
2

)
= 6

(
4
3

)
= 4

(
4
4

)
= 1(

5
0

)
= 1

(
5
1

)
= 5

(
5
2

)
= 10

(
5
3

)
= 10

(
5
4

)
= 5

(
5
5

)
= 1(

6
0

)
= 1

(
6
1

)
= 5

(
6
2

)
= 15

(
6
3

)
= 20

(
4
4

)
= 20

(
6
5

)
= 6

(
6
6

)
= 1

49

Pascal triangle(
0
0

)
= 1(

1
0

)
= 1

(
1
1

)
= 1(

2
0

)
= 1

(
2
1

)
= 2

(
2
2

)
= 1(

3
0

)
= 1

(
3
1

)
= 3

(
3
2

)
= 3

(
3
3

)
= 1(

4
0

)
= 1

(
4
1

)
= 4

(
4
2

)
= 6

(
4
3

)
= 4

(
4
4

)
= 1(

5
0

)
= 1

(
5
1

)
= 5

(
5
2

)
= 10

(
5
3

)
= 10

(
5
4

)
= 5

(
5
5

)
= 1(

6
0

)
= 1

(
6
1

)
= 5

(
6
2

)
= 15

(
6
3

)
= 20

(
4
4

)
= 20

(
6
5

)
= 6

(
6
6

)
= 1

Pascal’s relation (
n + 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)

49

Pascal triangle(
0
0

)
= 1(

1
0

)
= 1

(
1
1

)
= 1(

2
0

)
= 1

(
2
1

)
= 2

(
2
2

)
= 1(

3
0

)
= 1

(
3
1

)
= 3

(
3
2

)
= 3

(
3
3

)
= 1(

4
0

)
= 1

(
4
1

)
= 4

(
4
2

)
= 6

(
4
3

)
= 4

(
4
4

)
= 1(

5
0

)
= 1

(
5
1

)
= 5

(
5
2

)
= 10

(
5
3

)
= 10

(
5
4

)
= 5

(
5
5

)
= 1(

6
0

)
= 1

(
6
1

)
= 5

(
6
2

)
= 15

(
6
3

)
= 20

(
4
4

)
= 20

(
6
5

)
= 6

(
6
6

)
= 1

pT :: (Num a, Ord a, Num b) => a -> a -> b

pT n k

| n == 1 && k == 1 = 1

| k < 1 || k > n = 0

| otherwise = pT (n-1) (k-1) + pT (n-1) k
49

Recursion

Exercices

Consider the following functions :

fix :: (a -> a) -> a

fix f = f (fix f)

fact :: Integer -> Integer

fact = fix (\ r n -> if n == 0 then 1 else n * r (n-1))

Explain :

λ > fact 5

120

50

	Conditional
	Pattern matching
	Lambdas
	let and where
	Some functions

