Functional programming
Lecture 03 — Lists
(version: 2025-10-20-22:33:56)

Stéphane Vialette
stephane.vialette@univ-eiffel.fr

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049,
Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Lists

Lists

The anatomy of a list

e Lists are the workhorses of functional programming.
e Lists are inherently recursive.

e A list is either empty or an element followed by another list.

List notation

e The type [a] denotes lists of elements of type a.
e The empty list is denoted by [].

e We can have lists over any type but we cannot mix different
types in the same list

List notation

(1 c: [al
[undefined,undefined] ;0 [al

[sin,cos,tan] :: Floating a => [a -> a]
([1,2,3],[4,5]1] :: Num a => [[a]]

[(+ 1),(x 2)] :: Num a => [a -> a]

[c,r1r,m1m),(2,'2',"2")] :: Num a => [(a, Char, String)]

["tea","for",2] not valid

List notation

The operator (:) :: a -> [a]l -> [a] (pronounced cons)
is the constructor for lists.

Cons associates to the right.

e Cons is non-strict in both arguments.

List notation, such as [1,2,3,4], is in fact an abbreviation
for the more basic form 1:2:3:4: []

List notation

[1,2,3,4,5] = 1:2:3:4:5:[]

/\
/\
/\
/\
/\

(]

First element

Data.List.head :: [a] —> a

head extracts the first element of a non-empty list.

First element

Data.List.head :: [a] -> a
head extracts the first element of a non-empty list.

A > head [1,2,3,4]

1

A > head (1:[2,3,4])

1

A > head [1]

1

A > head (1:[1)

1

A > head []

***x Exception: Prelude.head: empty list

First element

Data.List.head :: [a] —> a

head extracts the first element of a non-empty list.

headl :: [a] -> []
headl [] = error "x** Exception: head: empty list"
headl (x : xs) = x

head2 :: [a] —> []
head2 [] = error "xx* Exception: head: empty list"
head2 (x : _)

X

Except the first element

Data.List.tail :: [a] -> [al

tail extracts the elements after the head of a non-empty list.

Except the first element

Data.List.tail :: [a] -> [a]
tail extracts the elements after the head of a non-empty list.

A> tail [1,2,3,4]
[2,3,4]

A > tail (1:[2,3,4])
[2,3,4]

A > tail [1]

(]

A> tail (1:[1)

(]

A > tail []

**x Exception: Prelude.tail: empty list

Except the first element

Data.List.tail :: [a] -> [al

tail extracts the elements after the head of a non-empty list.

taill :: [a] -> []
taill [] = error "x** Exception: tail: empty list"
taill (x : xs) = xs

tail2 :: [a]l -> []
tail2 [] = error "x** Exception: tail: empty list"
tail2 (_ : xs) = xs

Enumerations

Enumerations

Enumerating lists of integers

-- List of numbers 1,2,...,10.
[1..10]

-— Infinite list of numbers 1,2,...

[1..]

-— Empty list; ranges only go forwards.
[10..1]

-— Negative integers.
[0,-1..1]

-- List from 1 to 10 by 2 = [1,3,5,7,9]
[1,3..10]

-- List from -1 to 10 by 4 = [-1,3,7]
[-1,3..10]
10

Enumerating lists of integers

A> [1..10]

[1,2,3,4,5,6,7,8,9,10]

A > [10..1]

(]

A> [1..]

[1,2,3,4,5,6,7,8,9,... “CInterrupted.
A> [1,3..9]

[1,3,5,7,9]

A> [1,3..0]

(]

11

Enumerating lists of integers

A> [1..]

[1,2,3,4,5,6,7,8,9,... “Clnterrupted.
A> let xs = [1..]

A > head xs

1

A > head (tail xs)

2

A > tail xs

[2,3,4,5,6,7,8,9,... “Clnterrupted.

12

Enumerating lists of integers

A > [10,8..0]

[10,8,6,4,2,0]

A> [10,8..1]

[10,8,6,4,2]

A> [5,3..]

[5,3,1,-1,-3,-5,-7,-9,... “CInterrupted.

13

Enumerating lists of integers

Do not use floating point numbers in enumerations! Never ever!

A> [0.1,0.3..1]
[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

A> [1,0.6..0]

[1.0,0.6,0.19999999999999996]

A> [1,4/3..2]
[1.0,1.3333333333333333,1.6666666666666665,1.9999999999999998]
A> [5,13/3..3]
[5.0,4.333333333333333,3.666666666666666,2.999999999999999]

14

Enumerating lists of integers

Do not expect too much!

A> [1,2,4,8,16..100] -- exzpecting the powers of 2 !
<interactive>: error: parse error on input '..'

A> [2,3,5,7,11..101] -- expecting prime numbers
<interactive>: error: parse error on input '..'

A> [1,-2,3,-4..9] -- egpecting [1,-2,3,-4,5,-6,7,-8,9]
<interactive>: error: parse error on input '..'
A > [100,50,25..1] -- expecting [100,50,25,12.5,6.25,...]

<interactive>: error: parse error on input '..'

15

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A> ['a'..'z']
"abcdefghijklmnopgrstuvwxyz"
A > succ 'a'

b
A > pred 'z'

g

A> ['a',succ 'a', succ (succ 'a'), succ (succ (succ 'a'))]
"abcd"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A> ['A'..'Z']
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

A > succ 'A'

B

A > pred 'Z'

y

A> ['A',succ 'A', succ (succ 'A'), succ (succ (succ 'A'))]
"ABCD"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:
A> ['a','c'..'z"']
"acegikmogsuwy"

A> ['z','y'..'a']
"zyxwvutsrqponmlkjihgfedcba"
A> ['z','x'..'a']
"zxvtrpnljhfdb"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A > succ 'Z'

' [I

A > pred 'a'

A> ['A.'z']

" ABCDEFGHIJKLMNOPQRSTUVWXYZ [\\] "_~abcdefghijklmnopqrstuvwxyz"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,
but to members of yet another type class Enum.

Char is an instance of Enum:

A > fromEnum 'A'

65

A > toEnum 65 :: Char

A

A > [fromEnum ¢ | ¢ <- "ABCD"]
[65,66,67,68]

A > [toEnum i :: Char | i <- [65,66,67,68]]
"ABCD"

16

List comprehensions

List comprehensions

17

List comprehensions

Comprehensions are annotations in Haskell which are used to

produce new lists from existing ones

[f x | x <- xs]

e Everything before the pipe determines the output of the list
comprehension. It's basically what we want to do with the list

elements.
e Everything after the pipe | is the generator.

e A generator:
e (Generates the set of values we can work with.
e Binds each element from that set of values to x .
e Draw our elements from that set
(<= is pronounced "drawn from™).

18

List comprehensions

e Set (i.e., math) point of view.
(x?: x e N}

e Comprehensions (i.e., Haskell) point of view.

[x*x | x <= [1..]]

19

List comprehensions

A> [xxx | x <= [1..9]]
[1,4,9,16,25,36,49,64,81]

A> [xxx | x <= [1,3..9]]

[1,9,25,49,81]

A> [2°n | n <= [1..10]]
[2,4,8,16,32,64,128,256,512,1024]

A> [(-1)"(n+1) * n | n <= [1..10]]
[1,-2,3,-4,5,-6,7,-8,9,-10]

A> [100/n | n <= [1..10]]
[100.0,50.0,33.333333333333336,25.0,20.0,16.666666666666668,
14.285714285714286,12.5,11.11111111111111,10.0]

20

Many generators

A> [x | x <= [1]

(]

A> [(x,y) | x <= [1..3], y <= [1..3]]
[(1,1,(1,2),1,3),(2,1,(2,2),(2,3),(3,1),(8,2),(3,3)
A> [(x,y) | x <= [1..3], y <= [x..3]]
(1,1,t,2),0,3,02,2),(2,3),(3,3)]

A> [xxy | x <= [1..3], y <= [1..3]]

(1,2,3,2,4,6,3,6,9]

A>let n =2 in [x*y "mod” n | x <= [1..3], y <= [1..3]]
(t1,0,1,0,0,0,1,0,1]

21

A> [[1..n] | n <= [1..4]]

[f11,r01,21,I11,2,31,[1,2,3,4]11]

A> [[m..n] | m <= [1..4], n <= [1..4]]
(f11,01,21,01,2,31,[1,2,3,41,01,[2]1,[2,3]1,[2,3,4]1,[1, 1, 3],
[3,41,01,01,[01,[4]1]

A> [[m..n] | m<- [1..4], n <- [m..4]]
[f1,01,21,101,2,31,01,2,3,4]1,[2],[2,31,[2,3,4],[3]1, [3,4], [4]]
A> [[[m..n] | n <= m..3]] | m<- [1..3]]
(CC11,(01,2],01,2,3]1],0[2]1,[2,3]11,[C(3]]1]

A> [[[m..n] | n <= [1..3]1] | m <= [1..3]]
(reay,e,21,101,2,311,000,021,02,317, 00,01, (3]11]

22

Infinite lists

A> let xs = [] in [x | x <= xs] == xs

True

A> let xs = [1..1_000_000] in [x | x <- xs] == xs
True

A> let xs = [1..] in [x | x <~ xs8] == xs
“CInterrupted.

A> let xs = [1..] in [x | x <= tail xs] == xs
False

23

IIiIHHH%HH%II

e If we do not want to draw all elements from a list, we can add

a condition, a predicate.

e A predicate is a function which takes an element and returns a

boolean value.

[f x | x <-xs, pl x, p2 x, ..., pn x]

24

|IliHHHHE%HH%II

A> [x*x | x <- [1..10], even x]

[4,16,36,64,100]

A> [(x,x*x) | x <- [1..10], even x]
[(2,4),(4,16),(6,36),(8,64),(10,100)]

A> [(x,x*x) | x <- [1..10], even x, x “mod~ 3 /= 0]
[(2,4),(4,16),(8,64),(10,100)]

A> [(x, y) | x <= [1..10], even x, y <= [x..10], odd y]
[2,3,@,5,2,7,(2,9,4,5),4,7),4,9,6,7),(6,9),(8,9]
A> [x | x <= [1..100], even x, x "mod™ 3 == 0, x "mod™ 5 == 0]
[30,60,90]

25

Predicates and pattern matching

A> x| (x,1) <= [(x,y) | x <= [1..3], y <= [1..3]]]

[1,2,3]

A> x| x,y) <= [x,y) | x <= [1..3], y <= [1..3]1, y<=2]
[1,1,2,2,3,3]

A> [&x,y) | x,y) <= [x,y) | x <= [1..3], y <= [1..3]], x==y]
[(1,1),02,2),(3,3)]

A> [y | xys <= [[(x,x*¥2)] | x <= [1..6]1], (2,y) <- xys]

[4]

A> [y | xys <= [[(x,x*2)] | x <= [1..6]], (x,y) <- xys, even x]
[4,8,12]

26

Problem solving with list comprehensions

Compute the list [1,1+2,...,1+2+3+...+n].

-- assuming we don't know anything about Data.Foldable.sum
-— sums n = [sum [1..k] | k <= [1..n]]

sums :: (Num a, Enum a, Eq a) => a -> [a]
sums n = [f k | k <= [1..n]]
where
f1=1
fk=%k+f (k-1)
A > sums 10

[1,3,6,10,15,21,28,36,45,55]
A> [n*(n+1) “div: 2 | n <- [1..10]]
[1,3,6,10,15,21,28,36,45,55]

27

Problem solving with list comprehensions

Compute the list [172,172+272,...,172+4272+4372+. . .+n"2].

-- assuming we don't know anything about Data.Foldable.sum

-- sumsSq n = (map (sum . map ("2)) . tail . inits) [1..n]

sumsSq :: (Num a, Enum a, Eq a) => a -> [al
sumsSq n = [f k | k <= [1..n]]
where
f1=1

f k =kxk + f (k-1)

A > sumsSq 10
[1,5,14,30,55,91,140,204,285,385]

A > [nx(n+1)*(2*n+1) “div> 6 | n <- [1..10]]
[1,5,14,30,55,91,140,204,285,385]

28

Problem solving with list comprehensions

Compute the list of all positive intergers k < n such that kK #Z 0
(mod 2), k20 (mod 3) , k=1 (mod 5) and k =0 (mod 7).

f :: Integral a => a -> [a]
fn=1[k | k<= [1..n]

, odd k

, k "mod™ 3 > O

, kK "mod® 5 ==

, k “mod> 7 == 0]

A> £ 1000
[91,161,301,371,511,581,721,791,931]

29

Problem solving with list comprehensions

A Pythagorean triple consists of three positive integers a, b, and c,
such that a® 4+ b?> = ¢2. Compute all Pythagorean triples with
a< b<c<15.

-— natve implementation
pythT :: (Num a, Enum a, Eq a) => ¢ -> [(a, a, a)]
pythT n = [(a, b, ¢) | a <= [1..n]

, b <— [a+1..n]

, ¢ <— [b+1..n]

, axa + bxb == cx*c]

A > pythT 15
[(3,4,5),(5,12,13),(6,8,10),(9,12,15)]

30

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2s :: Num a => [a]
p2s = [2%p2 | p2 <= 1 : p2s]

A > take 11 p2s
[2,4,8,16,32,64,128,256,512,1024,2048]
A > head (drop 120 p2s)
2658455991569831745807614120560689152

31

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2s :: Num a => [a]
p2s = [2%p2 | p2 <= 1 : p2s]

1 : 2%x1 : p2s
1 : 2%1 : 2%2x1 : p2s
1 0 2%1 @ 2%2%1 : 2%2%2x1 : p2s

1 0 2%1 @ 2%2%1 @ 2%2%2x%1 : 2%2%2%2%1 : p2s

31

Problem solving with list comprehensions

Compute the infinite list of all binary strings.

binaries :: [String]

binaries = [b : bs | bs <- "" : binaries, b <- ['0','1']]

A > take 11 binaries
[”0","1","OO","10","01","11","OOO",”100","010”,"110","OOl"]
A > head (drop 10000000 binaries)

"01000001011010010001100"

32

Problem solving with list comprehensions

Compute the infinite list of all binary strings (think about).

binaries' :: [String]

binaries' = [b : bs | b <- ['0','1'], bs <- "" : binaries'.

A > take 6 binaries'

[lloll s IIOOII s IIOOOII s IIOOOOII s IIOOOOOII , n OOOOOOII]
A > head (drop 20 binaries')
"000000000000000000000"

8BS

Problem solving with list comprehensions

Exercice

A positive integer is perfect if it equals the sum of its divisors,
excluding the number itself. Using list comprehensions define the

two functions

divisors :: Int -> [Int]
perfects :: Int -> [Int]

that returns the list of all proper divisors of a given integer
(function divisors) and the list of all perfect numbers up to a
given limit function perfects. For example:

A > [divisors n | n <- [1..10]]
ta,r431,043,01,21,1041,101,2,31, 11, [1,2,4]1,[1,3],[1,2,5]]
A > perfects 500

[6,28,496] 9

Problem solving with list comprehensions

Exercice
Consider, the following session

A> [x | x <= [1..10], even x]
[2’4,6’8,10]

A> [x | x <= [1..], x <= 10 && even x]
[2,4,6,8,10

“C Interrupted.

A> [x | x <- [1..], even x && x <= 10]
[2,4,6,8,10

“C Interrupted.

Comment.

BH

Processing lists — basic functions
(toolbox)

Processing lists — basic functions (toolbox)

36

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,
e.g., x “elem” xs. For the result to be False, the list must be
finite; True, however, results from an element equal to x found at
a finite index of a finite or infinite list.

37

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,
e.g., x “elem” xs. For the result to be False, the list must be
finite; True, however, results from an element equal to x found at
a finite index of a finite or infinite list.

A> 2 “elem” [1..5] -- == elem 2 [1..5]
True
A> 8 “elem” [1..5] -- == elem 8 [1..5]
False

37

Data.List.elem ::

elem is the list membership predicate, usually written in infix form,
e.g., x “elem” xs. For the result to be False, the list must be

finite; True, however, results from an element equal to x found at

a finite index of a finite or infinite list.

eleml :: Eq a
eleml _ []

eleml x' (x
| X == X'
| otherwise

elem2 :: Eq a
elem2 _ []

elem2 x' (x

=> a -> [a] -> Bool
= False

: Xs)

= True

= eleml x' xs

=> a -> [a] -> Bool

= False

:xs) =x == x' || elem2 x' xs

(Eq a) => a -> [a] -> Bool

37

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has
that element.

38

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has
that element.

A > repeat 'a'

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa. . .

“C Interrupted.

A n n —_— y ! !
> repeat "a i.e. repeat ['a']

[llall s llall s Ilall , Ilall , llall s IIaII s llall s Ilall .

“C Interrupted.

38

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has
that element.

repeatl :: a -> [a]
repeatl x = x : repeatl x

repeat2 :: a -> [a]
repeat2 x = [x | n <~ [1 ..]]

repeat3 :: a —> [a]
repeat3 x = [x | _ <= [1 ..]]
repeatd4 :: Enum a => a -> [a]

repeatd x = [x,x..]
38

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

39

Data.List.take :: Int -> [a] -> [a]
take takes a certain number of elements from a list.

A > take 10 [1..20]
[1’2,3’4,5’6’7,8’9,10]

A > take 10 [1..] -- infinite list
[1’233)4:5:6’7,8)9:10]
A > take 20 [1..10] -- short list

[1,2,3,4,5,6,7,8,9,10]

A> take 0 [1..]

(]

A > take (-1) [1..] -- negative integer
(]

39

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

takel :: (Ord t, Num t) => t -> [a] -> [a]
takel _ []1 = []
takel n (x : xs)

| n <=0 =[]

| otherwise = x : takel (n-1) xs

take2 :: (Eq t, Num t) => t -> [a] —> [a]
take2 _ [] =[]

take2 0 _ = [

take2 n (x : xs) = x : take2 (n-1) xs

39

Dropping

Data.List.drop :: Int -> [a] -> [al]

drop drops a certain number of elements from a list.

40

Dropping

Data.List.drop :: Int -> [a] -> [al]
drop drops a certain number of elements from a list.

A > drop 10 [1..20]
[11,12,13,14,15,16,17,18,19,20]

A > drop 10 [1..] -- infinite list
[11,12,13,14,15,16,17,18,19,20, . ..

“C Interrupted.

A > drop (-1) [1..4] -- negative integer
[1,2,3,4]

A > drop 20 [1..10] -- short list

]

40

Dropping

Data.List.drop :: Int -> [a] -> [al]

drop drops a certain number of elements from a list.

dropl :: (Ord t, Num t) => t -> [a] -> [a]
dropl _ [1 = []
dropl n (x : xs)

[n>0

| otherwise = x : xs

dropl (n-1) xs

drop2 :: (Ord t, Num t) => t -> [a] —> [a]
drop2 _ [1 = []
drop2 n xs@(_: xs')

[n>0 = drop2 (n-1) xs'

| otherwise = xs

40

Taking and Dropping — In practice

Define a function that rotates the elements of a list n places to the
left, wrapping around at the start of the list, and assuming that
the integer argument n is between zero and the length of the list.

For example:

A > rotate 0 [1..8]
[1,2,3,4,5,6,7,8]
A > rotate 1 [1..8]
[2,3,4,5,6,7,8,1]
A > rotate 4 [1..8]
[5,6,7,8,1,2,3,4]

41

Taking and Dropping — In practice

Define a function that rotates the elements of a list n places to the

left, wrapping around at the start of the list, and assuming that

the integer argument n is between zero and the length of the list.

rotatel
rotatel
rotatel
rotatel

rotate?2 ::

rotate?2

Int

xs
(]
(x :

Int

-> [a] -> [a]
= xs
=[]

xs) = rotatel (n-1) (xs ++ [x])

-> [a] -> [a]

drop n xs ++ take n xs

41

Accumulating

Exercice

Is this implementation correct ?

rotate3 :: Int -> [a] -> [a]
rotate3 = go []

where

g0 acc 0 xs Xs ++ reverse acc

go acc n [] go [l n (reverse acc)

go accn (x : xs) = go (x : acc) (n-1) xs

Hint: it is not !

42

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that
has several repetitions of the same element.

43

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that
has several repetitions of the same element.

A > replicate 10 1

[t,1,1,1,1,1,1,1,1,1]

A > replicate 10 [1]

(041, 041,041, 041, €43, €43, €13, (17, [17, [11]
A > replicate 0 1

(]

A > replicate (-1) 1

]

43

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that
has several repetitions of the same element.

replicatel :: (Num t, Ord t) => t -> a —> [al]
replicatel n x
| n <=0 =[]

| otherwise = x : replicatel (n-1) x

replicate2 :: (Ord t, Num t) => t -> a -> [a]
replicate2 n x = take n (repeat x)

replicate3 :: (Ord t, Num t) => t -> a —-> [al]
replicate3 n = take n . repeat

43

Data.List.tails :: [a] -> [[a]l]

tails returns all final segments of the argument, longest first.

44

Data.List.tails :: [a] -> [[all]
tails returns all final segments of the argument, longest first.

A > tails [1..4]
([1,2,3,4],[2,3,41,[3,4]1, [4], [1]
A > tails []

(11

A > tails [1..]

“C Interrupted.

A > head (tails [1..])

“C Interrupted.

44

Data.List.tails :: [a] -> [[a]l]

tails returns all final segments of the argument, longest first.

tailsl :: [a] -> [[a]]
tails1l [1 = [[]1]
tailsl (x : xs) = (x : xs) : tailsl xs

tails2 :: [a] -> [[a]l]
tails2 [1 = [[1]

tails2 xs@(_: xs') = xs : tails2 xs'

44

Exercice

define the function

tails' :: [a] -> [[a]]

that returns all final segments of the argument, shortest first.

A > tails' []

[r11

A > tails' [1,2,3]

L 5 3 5 (2,81 4 [, 2,31

A > tails' [1,2,3,4]
[[1,[41,(3,4],[2,3,4],[1,2,3,4]]

45

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must
be finite.

46

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must
be finite.

A > reverse [1..5]
[5,4,3,2,1]

A > reverse []

(]

A > reverse [1..]
“C Interrupted.

46

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must
be finite.

-- 4nefficient because of (++)
reversel :: [a] -> [a]
reversel [] = []

reversel (x : xs) = reversel xs ++ [x]

-— using an accumulator is much more efficient
reverse2 :: [a] -> [a]
reverse2 = go []

where

go acc [] = acc

go acc (x : xs) = go (x :acc) xs 46

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must
be finite.

We shall see soon that an implementation for reverse can be both
short and efficient.

reverse3 :: [a] -> [a]
reverse3d = foldl (flip (:)) []

A > :type flip
flip :: (a -=>b > ¢c) > b > a > ¢

46

Cutting last

Data.List.init :: [a] -> [al

init returns all the elements of a list except the last one. The list
must be non-empty.

47

Cutting last

Data.List.init :: [a] -> [al

init returns all the elements of a list except the last one. The list
must be non-empty.

A> init [1,2,3,4]
[1,2,3]

A > init [1]

(]

A > init []

***x Exception: Prelude.init: empty list

47

Cutting last

Data.List.init :: [a] -> [al

init returns all the elements of a list except the last one. The list

must be non-empty.

initl :: [a] -> [a]
init1l []
initl [_]

initl (x : xs)

error "x** Exception: init': empty list"
(]

X : initl xs

-— wtth functors and Maybe type
safeInit :: [a] -> Maybe [a]

safeInit []
safeInit [_]

safeInit (x : xs)

Nothing
Just []
(x :) <$> safelnit xs

47

Data.List.inits :: [a]l -> [[all

inits returns all initial segments of the argument, shortest first.

48

Data.List.inits :: [a] -> [[al]
inits returns all initial segments of the argument, shortest first.

A > inits [1..4]

[, r3,r01,23,01,2,31,11,2,3,411]

A > inits [1]

(01, [11]

A > inits []

(11l

A > inits [1..]
[ma,rl,r1,23,01,2,31,[01,2,3,4],...°C Interrupted.
A > take 4 (inits [1..1)

[,r03,01,21,01,2,311

48

Data.List.inits :: [a] -> [[al]
inits returns all initial segments of the argument, shortest first.
inits1 :: [a]l -> [[all

inits1l [] (1]

initsl xs initsl (init xs) ++ [xs]

inits2 :: [a] -> [[a]l
inits2 = reverse . go

where
go [1 = [[1]
go xs = xs : go (init xs)

48

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that
element between the elements of the list.

49

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that
element between the elements of the list.

A > intersperse ',' ['a','b','c','d"]
"a,b,c,d"

A > intersperse 0 [1,2,3,4]
[1,0,2,0,3,0,4]

A > intersperse [0] [[1,2],[3,4],[5,6]]
[[1,2],[0],[3,4],[0],[5,6]]

49

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that
element between the elements of the list.

interspersel :: a -> [a] -> [a]
interspersel _ [] = []
interspersel _ [x] = [x]

interspersel y (x : xs) X : y : interspersel y xs

49

Data.List.concat :: [[al]l -> [al

concat concatenates a list of lists.

50

Data.List.concat :: [[al]l -> [al

concat concatenates a list of lists.

A > concat [[1,2]1,[3,4]1,[5,6]1]
[1,2,3,4,5,6]

A > concat [[1,2]]

[1,2]

A > concat [[]]

(]

A > concat []

(]

50

IIHiHHHHHEIHHEII

Data.List.concat :: [[al]l -> [al

concat concatenates a list of lists.

-— recursive
concatl :: [[al] -> [a]
concatl [] = [

concatl (xs : xss) xs ++ concatl xss

-— with a list comprehension
concat2 :: [[al]l -> [al

concat? xss = [x | xs <- xss, x <- xs]

50

Intercalating

Data.List.intercalate :: [a] -> [[a]l] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

51

Intercalating

Data.List.intercalate :: [a] -> [[a]l] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

A > intercalate [0] [[1,2],[3,4],[5,6]]
[1,2,0,3,4,0,5,6]

A > intercalate [0] [[1,2]]

[1,2]

A > intercalate [0] []

(]

A > intercalate " -> " ["taskl","task2","task3"]
"taskl -> task2 -> task3"

51

Intercalating

Data.List.intercalate :: [a] -> [[a]l] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

intercalatel :: [a] -> [[al]l -> [a]
intercalatel _ (] = [
intercalatel _ [xs] = Xs

intercalatel xs' (xs: xss) = xs ++
xs' ++

intercalatel xs' xss

intercalate2 :: [a] -> [[al]l —> [al

intercalate2 xs xss = concat (intersperse xs xss)

51

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

52

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

A> zip [1,2,3] ['a','b','c']
[(1,'a"),(2,'0"),(3,'c")]

A> zip [1,2,3,4] ['a','b','c']
[1,'a"),(2,'0"),(3,'c")]

A> zip [1,2,3] ['a','b','c','d"]
[(1,'a"),(2,'0"),(3,'c")]

52

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.
zipl :: [a] -> [b] -> [(a, b)]

zipl [] _ =[]

zipl _ (] =[]
zipl (x : xs) (y : ys) = (x,y) : zipl xs ys

52

Zipping — In practice

Index a list from a given integer.

A> index O ['a'..'f']
[€0,'a"),(1,'0'),(2,'c'),(3,'d"),(4,'e"),(5,'£")]

A> index 1 ['a'..'f']
[(1,'a"),(2,'v"),(3,'c"),(4,'d"),(5,'e"),(6,'f")]

A > index (2710) ['a'..'e']

[(1024,'a'), (1025, 'b'), (1026, 'c'), (1027,'d"'), (1028, 'e')]
A > index2 (-10) ['a'..'f']
[(-10,'a"'),(-9,'b"),(-8,'c"'),(-7,'d"),(-6,'e"),(-5,'f")]

53

Zipping — In practice

Index a list from a given integer.

indexl :: Num a => a -> [b] -> [(a, b)]
index1 [] = [

indexl n (x : xs) = (n, x) : indexl (n+1) xs

index2 :: Enum a => a -> [b] -> [(a, Db)]
index2

[=}

xs = zip [n..] xs

index3 :: Enum a => a -> [b] -> [(a, Db)]

index3 n = zip [n..] -- eta reduction

53

Zipping — In practice

Implementing take with zip.

take3 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]
take3 n xs = go (zip xs [1..])
where
go ((x, 1) : xis)
| i <=n = x : go xis

| otherwise = []

take4 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]
take4 n xs = go (zip xs [1..])
where
go ((x, i) : xis)
| i <=n = x : go xis
| otherwise = []
54

Zipping — In practice

Implementing take with zip.

-— don't do this!!!

-— anfinite computation: a predicate does mot stop
-- the infintte enumeration (we are just skipping
-- values again and again).

take5 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

takeb n xs = [x | (x, 1) <= zip xs [1..], i <= n]

-- not better!

take5 :: Int -> [a] -> [a]

takeb n xs = [x | (x, 1) <- zip xs [1..nxs], i <= n]
where

nxs = length xs

54

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be
True only for finite lists

55

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be

True only for finite lists

A > and []

True

A > and [True]

True

A > and [False]

False

A > and (take 100 (repeat True) ++ [False])

False

55

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be
True only for finite lists

andl :: [Bool] -> Bool

andl [] = True
andl (False : _) = False
andl (True : bs) = andl bs

and2 :: [Bool] -> Bool
and2 []
and2 (b : bs)

True
b &% and2 bs

55

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True
only for finite lists

56

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True
only for finite lists

A > or []

False

A > or [True]

True

A > or (take 100 (repeat False))

False

A > or (take 100 (repeat False) ++ [Truel)

True

56

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True
only for finite lists

orl :: [Bool] -> Bool

orl [] = False
orl (True : _) = True
orl (False : bs) = orl bs

or2 :: [Bool] -> Bool
or2 []
or2 (b : bs)

False
b || or2 bs

56

maximum :: [a] -> a

maximum returns the largest element of a non-empty structure.
(minimum returns the smallest element of a non-empty structure).

A > maximum []

%% Exception: Prelude.maximum: empty list
A > maximum [1]

1

A > maximum [4,3,7,1,8,6,2,3,5]

8

A > maximum [2,3,1,4,3,1,2,4]

4

57

maximum :: [a] -> a

maximuml :: Ord a => [a] —> a

maximuml [] error "empty list"
maximuml [x] = x

let m = maximuml xs

maximuml (x : xs)

in if m > x then m else x

maximum? :: Ord a => [a] -> a

maximum?2 [] error "empty list"

maximum? [x] X

maximum?2 (x : xs) max x (maximum2 xs)

A > :type max
max :: Ord a => a -> a > a

57

maximum :: [a] -> a
maximum3 :: Ord a => [a] —> a
maximum3 [] = error "empty list"

maximum3 (x : XS) = gO X XS

where
go m [] =m
gom (x' : xs')
| x' >m = go x' xs'

| otherwise = gom xs'

57

Data.List.delete :: [a] -> a

delete removes the first occurrence of the specified element from
its list argument.

A > delete 1 [1..10]
[2,3,4,5,6,7,8,9,10]

A > delete 5 [1..10]
[1,2,3,4,6,7,8,9,10]

A > delete 11 [1..10]
[1,2,3,4,5,6,7,8,9,10]

A > delete 3 [1,1,2,2,3,3,4,4,5,5]
[1,1,2,2,3,4,4,5,5]

58

Data.List.delete :: [a] -> a

deletel :: Eq a => a -> [a] -> [a]

deletel _ [1 = []

deletel x (x' : xs) = if x == x'
then xs

else x' : delete x xs

delete2 :: Eq a => a -> [a] —> [a]
delete2 x [1 = []
delete2 x (x' : xs)

ke

| x == x! = X8

| otherwise delete2 x xs

58

Write the function deleteAll :: Ord a => [a] -> [a] that

removes all occurrence of the specified element from its list
argument.

A > deleteAll O (intersperse O [1..9])
[1,2,3,4,5,6,7,8,9]

A > deleteAll 10 (intersperse 0 [1..9])
(t+,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9]

59

sort :: Ord a => [a] -> [a]

60

sort :: Ord a => [a] -> [a]
A > sort []
(]

A > sort [1,4,2,3,5,1,3,2,5,4]
[1,1,2,2,3,3,4,4,5,5]
A> let n = 10000 in sort [1..n] == [1..n]

True

60

sort :: Ord a => [a] -> [al]
sortl :: Ord a => [a] -> [a]
sortl [] =[]
sortl (x : xs) = sortl ys ++ [x] ++ sortl zs
where
ys = [y | y <= xs, y <= x]
zs = [z | z <- xs, z > x]

60

sort :: Ord a => [a] -> [a]

sort2 :: Ord a => [a] -> [a]
sort2 [1 = []
sort2 [x] = [x]

sort2 xs = let (ys, zs) = split2 ([1, [1) xs
in merge (sort2 ys) (sort2 zs)
where
split2 yzs [] = yzs
split2 (ys, zs) [x] = (x : ys, zs)
split2 (ys, zs) (x : x' : xs) = split2 (x : ys, x' : zs8) xs
merge [] zZs = zS
merge ys [1 =ys
merge (y : ys) (z : zs)
| vy <=2z =y : merge ys (z : zs)

| otherwise =z : merge (y : ys) zs 60

sort :: Ord a => [a] -> [a]

-- tncognito foldr ;-) !
sort3 :: Ord a => [a] -> [a]
sort3 = go []

where

go acc [] acc

go acc (x : xs) = bubble x (go acc xs)

where
bubble x [1 = [x]
bubble x (y : xs)
| x <=y = x : bubble y xs

| otherwise = y : bubble x xs

60

sort :: Ord a => [a] -> [a]

-- stmple but inefficient
sort4 :: Ord a => [a] -> [a]

sortd [1 = []
sort4 xs = let (x, xs') = extractMin xs in x : sort4d xs'
where

extractMin xs = let x = minimum xs in (x, delete x xs8)

60

	Lists
	Enumerations
	List comprehensions
	Processing lists – basic functions (toolbox)

