
Functional programming

Lecture 03 – Lists

(version: 2025-10-20–22:33:56)

Stéphane Vialette

stephane.vialette@univ-eiffel.fr

Laboratoire d’Informatique Gaspard-Monge, UMR CNRS 8049,

Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

Lists

Lists

Enumerations

List comprehensions

Processing lists – basic functions (toolbox)

1

The anatomy of a list

• Lists are the workhorses of functional programming.

• Lists are inherently recursive.

• A list is either empty or an element followed by another list.

2

List notation

• The type [a] denotes lists of elements of type a.

• The empty list is denoted by [].

• We can have lists over any type but we cannot mix different

types in the same list

3

List notation

[] :: [a]

[undefined,undefined] :: [a]

[sin,cos,tan] :: Floating a => [a -> a]

[[1,2,3],[4,5]] :: Num a => [[a]]

[(+ 1),(* 2)] :: Num a => [a -> a]

[(1,'1',"1"),(2,'2',"2")] :: Num a => [(a, Char, String)]

["tea","for",2] not valid

4

List notation

• The operator (:) :: a -> [a] -> [a] (pronounced cons)

is the constructor for lists.

• Cons associates to the right.

• Cons is non-strict in both arguments.

• List notation, such as [1,2,3,4], is in fact an abbreviation

for the more basic form 1:2:3:4:[]

5

List notation

[1,2,3,4,5] ≡ 1:2:3:4:5:[]

(:)

1 (:)

2 (:)

3 (:)

4 (:)

5 []

6

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

7

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

λ > head [1,2,3,4]

1

λ > head (1:[2,3,4])

1

λ > head [1]

1

λ > head (1:[])

1

λ > head []

*** Exception: Prelude.head: empty list

7

First element

Data.List.head :: [a] -> a

head extracts the first element of a non-empty list.

head1 :: [a] -> []

head1 [] = error "*** Exception: head: empty list"

head1 (x : xs) = x

head2 :: [a] -> []

head2 [] = error "*** Exception: head: empty list"

head2 (x : _) = x

7

Except the first element

Data.List.tail :: [a] -> [a]

tail extracts the elements after the head of a non-empty list.

8

Except the first element

Data.List.tail :: [a] -> [a]

tail extracts the elements after the head of a non-empty list.

λ > tail [1,2,3,4]

[2,3,4]

λ > tail (1:[2,3,4])

[2,3,4]

λ > tail [1]

[]

λ > tail (1:[])

[]

λ > tail []

*** Exception: Prelude.tail: empty list

8

Except the first element

Data.List.tail :: [a] -> [a]

tail extracts the elements after the head of a non-empty list.

tail1 :: [a] -> []

tail1 [] = error "*** Exception: tail: empty list"

tail1 (x : xs) = xs

tail2 :: [a] -> []

tail2 [] = error "*** Exception: tail: empty list"

tail2 (_ : xs) = xs

8

Enumerations

Lists

Enumerations

List comprehensions

Processing lists – basic functions (toolbox)

9

Enumerating lists of integers

-- List of numbers 1,2,...,10.

[1..10]

-- Infinite list of numbers 1,2,...

[1..]

-- Empty list; ranges only go forwards.

[10..1]

-- Negative integers.

[0,-1..]

-- List from 1 to 10 by 2 = [1,3,5,7,9]

[1,3..10]

-- List from -1 to 10 by 4 = [-1,3,7]

[-1,3..10]

10

Enumerating lists of integers

λ > [1..10]

[1,2,3,4,5,6,7,8,9,10]

λ > [10..1]

[]

λ > [1..]

[1,2,3,4,5,6,7,8,9,... ^CInterrupted.

λ > [1,3..9]

[1,3,5,7,9]

λ > [1,3..0]

[]

11

Enumerating lists of integers

λ > [1..]

[1,2,3,4,5,6,7,8,9,... ^CInterrupted.

λ > let xs = [1..]

λ > head xs

1

λ > head (tail xs)

2

λ > tail xs

[2,3,4,5,6,7,8,9,... ^CInterrupted.

12

Enumerating lists of integers

λ > [10,8..0]

[10,8,6,4,2,0]

λ > [10,8..1]

[10,8,6,4,2]

λ > [5,3..]

[5,3,1,-1,-3,-5,-7,-9,... ^CInterrupted.

13

Enumerating lists of integers

Do not use floating point numbers in enumerations! Never ever!

λ > [0.1,0.3..1]

[0.1,0.3,0.5,0.7,0.8999999999999999,1.0999999999999999]

λ > [1,0.6..0]

[1.0,0.6,0.19999999999999996]

λ > [1,4/3..2]

[1.0,1.3333333333333333,1.6666666666666665,1.9999999999999998]

λ > [5,13/3..3]

[5.0,4.333333333333333,3.666666666666666,2.999999999999999]

14

Enumerating lists of integers

Do not expect too much!

λ > [1,2,4,8,16..100] -- expecting the powers of 2 !

<interactive>: error: parse error on input '..'

λ > [2,3,5,7,11..101] -- expecting prime numbers

<interactive>: error: parse error on input '..'

λ > [1,-2,3,-4..9] -- expecting [1,-2,3,-4,5,-6,7,-8,9]

<interactive>: error: parse error on input '..'

λ > [100,50,25..1] -- expecting [100,50,25,12.5,6.25,...]

<interactive>: error: parse error on input '..'

15

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > ['a'..'z']

"abcdefghijklmnopqrstuvwxyz"

λ > succ 'a'

'b'

λ > pred 'z'

'y'

λ > ['a',succ 'a', succ (succ 'a'), succ (succ (succ 'a'))]

"abcd"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > ['A'..'Z']

"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

λ > succ 'A'

'B'

λ > pred 'Z'

'Y'

λ > ['A',succ 'A', succ (succ 'A'), succ (succ (succ 'A'))]

"ABCD"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > ['a','c'..'z']

"acegikmoqsuwy"

λ > ['z','y'..'a']

"zyxwvutsrqponmlkjihgfedcba"

λ > ['z','x'..'a']

"zxvtrpnljhfdb"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > succ 'Z'

'['

λ > pred 'a'

'`'

λ > ['A'..'z']

"ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz"

16

Enumerating lists of characters

As a matter of fact, enumerations are not restricted to integers,

but to members of yet another type class Enum.

Char is an instance of Enum:

λ > fromEnum 'A'

65

λ > toEnum 65 :: Char

'A'

λ > [fromEnum c | c <- "ABCD"]

[65,66,67,68]

λ > [toEnum i :: Char | i <- [65,66,67,68]]

"ABCD"

16

List comprehensions

Lists

Enumerations

List comprehensions

Processing lists – basic functions (toolbox)

17

List comprehensions

Comprehensions are annotations in Haskell which are used to

produce new lists from existing ones

[f x | x <- xs]

• Everything before the pipe determines the output of the list

comprehension. It’s basically what we want to do with the list

elements.

• Everything after the pipe | is the generator.

• A generator:

• Generates the set of values we can work with.

• Binds each element from that set of values to x .

• Draw our elements from that set

(<- is pronounced ”drawn from”).

18

List comprehensions

• Set (i.e., math) point of view.

{x2 : x ∈ N}

• Comprehensions (i.e., Haskell) point of view.

[x*x | x <- [1..]]

19

List comprehensions

λ > [x*x | x <- [1..9]]

[1,4,9,16,25,36,49,64,81]

λ > [x*x | x <- [1,3..9]]

[1,9,25,49,81]

λ > [2^n | n <- [1..10]]

[2,4,8,16,32,64,128,256,512,1024]

λ > [(-1)^(n+1) * n | n <- [1..10]]

[1,-2,3,-4,5,-6,7,-8,9,-10]

λ > [100/n | n <- [1..10]]

[100.0,50.0,33.333333333333336,25.0,20.0,16.666666666666668,

14.285714285714286,12.5,11.11111111111111,10.0]

20

Many generators

λ > [x | x <- []]

[]

λ > [(x,y) | x <- [1..3], y <- [1..3]]

[(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)

λ > [(x,y) | x <- [1..3], y <- [x..3]]

[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

λ > [x*y | x <- [1..3], y <- [1..3]]

[1,2,3,2,4,6,3,6,9]

λ > let n = 2 in [x*y `mod` n | x <- [1..3], y <- [1..3]]

[1,0,1,0,0,0,1,0,1]

21

Many lists

λ > [[1..n] | n <- [1..4]]

[[1],[1,2],[1,2,3],[1,2,3,4]]

λ > [[m..n] | m <- [1..4], n <- [1..4]]

[[1],[1,2],[1,2,3],[1,2,3,4],[],[2],[2,3],[2,3,4],[],[],[3],

[3,4],[],[],[],[4]]

λ > [[m..n] | m <- [1..4], n <- [m..4]]

[[1],[1,2],[1,2,3],[1,2,3,4],[2],[2,3],[2,3,4],[3],[3,4],[4]]

λ > [[[m..n] | n <- [m..3]] | m <- [1..3]]

[[[1],[1,2],[1,2,3]],[[2],[2,3]],[[3]]]

λ > [[[m..n] | n <- [1..3]] | m <- [1..3]]

[[[1],[1,2],[1,2,3]],[[],[2],[2,3]],[[],[],[3]]]

22

Infinite lists

λ > let xs = [] in [x | x <- xs] == xs

True

λ > let xs = [1..1_000_000] in [x | x <- xs] == xs

True

λ > let xs = [1..] in [x | x <- xs] == xs

^CInterrupted.

λ > let xs = [1..] in [x | x <- tail xs] == xs

False

23

Predicates

• If we do not want to draw all elements from a list, we can add

a condition, a predicate.

• A predicate is a function which takes an element and returns a

boolean value.

[f x | x <- xs, p1 x, p2 x, ..., pn x]

24

Predicates

λ > [x*x | x <- [1..10], even x]

[4,16,36,64,100]

λ > [(x,x*x) | x <- [1..10], even x]

[(2,4),(4,16),(6,36),(8,64),(10,100)]

λ > [(x,x*x) | x <- [1..10], even x, x `mod` 3 /= 0]

[(2,4),(4,16),(8,64),(10,100)]

λ > [(x, y) | x <- [1..10], even x, y <- [x..10], odd y]

[(2,3),(2,5),(2,7),(2,9),(4,5),(4,7),(4,9),(6,7),(6,9),(8,9)]

λ > [x | x <- [1..100], even x, x `mod` 3 == 0, x `mod` 5 == 0]

[30,60,90]

25

Predicates and pattern matching

λ > [x | (x,1) <- [(x,y) | x <- [1..3], y <- [1..3]]]

[1,2,3]

λ > [x | (x,y) <- [(x,y) | x <- [1..3], y <- [1..3]], y<=2]

[1,1,2,2,3,3]

λ > [(x,y) | (x,y) <- [(x,y) | x <- [1..3], y <- [1..3]], x==y]

[(1,1),(2,2),(3,3)]

λ > [y | xys <- [[(x,x*2)] | x <- [1..6]], (2,y) <- xys]

[4]

λ > [y | xys <- [[(x,x*2)] | x <- [1..6]], (x,y) <- xys, even x]

[4,8,12]

26

Problem solving with list comprehensions

Compute the list [1,1+2,...,1+2+3+...+n].

-- assuming we don't know anything about Data.Foldable.sum

-- sums n = [sum [1..k] | k <- [1..n]]

sums :: (Num a, Enum a, Eq a) => a -> [a]

sums n = [f k | k <- [1..n]]

where

f 1 = 1

f k = k + f (k-1)

λ > sums 10

[1,3,6,10,15,21,28,36,45,55]

λ > [n*(n+1) `div` 2 | n <- [1..10]]

[1,3,6,10,15,21,28,36,45,55]

27

Problem solving with list comprehensions

Compute the list [1^2,1^2+2^2,...,1^2+2^2+3^2+...+n^2].

-- assuming we don't know anything about Data.Foldable.sum

-- sumsSq n = (map (sum . map (^2)) . tail . inits) [1..n]

sumsSq :: (Num a, Enum a, Eq a) => a -> [a]

sumsSq n = [f k | k <- [1..n]]

where

f 1 = 1

f k = k*k + f (k-1)

λ > sumsSq 10

[1,5,14,30,55,91,140,204,285,385]

λ > [n*(n+1)*(2*n+1) `div` 6 | n <- [1..10]]

[1,5,14,30,55,91,140,204,285,385]

28

Problem solving with list comprehensions

Compute the list of all positive intergers k ⩽ n such that k ̸≡ 0

(mod 2), k ̸≡ 0 (mod 3) , k ≡ 1 (mod 5) and k ≡ 0 (mod 7).

f :: Integral a => a -> [a]

f n = [k | k <- [1..n]

, odd k

, k `mod` 3 > 0

, k `mod` 5 == 1

, k `mod` 7 == 0]

λ > f 1000

[91,161,301,371,511,581,721,791,931]

29

Problem solving with list comprehensions

A Pythagorean triple consists of three positive integers a, b, and c,

such that a2 + b2 = c2. Compute all Pythagorean triples with

a < b < c ⩽ 15.

-- naive implementation

pythT :: (Num a, Enum a, Eq a) => c -> [(a, a, a)]

pythT n = [(a, b, c) | a <- [1..n]

, b <- [a+1..n]

, c <- [b+1..n]

, a*a + b*b == c*c]

λ > pythT 15

[(3,4,5),(5,12,13),(6,8,10),(9,12,15)]

30

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2s :: Num a => [a]

p2s = [2*p2 | p2 <- 1 : p2s]

λ > take 11 p2s

[2,4,8,16,32,64,128,256,512,1024,2048]

λ > head (drop 120 p2s)

2658455991569831745807614120560689152

31

Problem solving with list comprehensions

Compute the infinite list of the powers of 2.

p2s :: Num a => [a]

p2s = [2*p2 | p2 <- 1 : p2s]

1 : 2*1 : p2s

1 : 2*1 : 2*2*1 : p2s

1 : 2*1 : 2*2*1 : 2*2*2*1 : p2s

1 : 2*1 : 2*2*1 : 2*2*2*1 : 2*2*2*2*1 : p2s

...

31

Problem solving with list comprehensions

Compute the infinite list of all binary strings.

binaries :: [String]

binaries = [b : bs | bs <- "" : binaries, b <- ['0','1']]

λ > take 11 binaries

["0","1","00","10","01","11","000","100","010","110","001"]

λ > head (drop 10000000 binaries)

"01000001011010010001100"

32

Problem solving with list comprehensions

Compute the infinite list of all binary strings (think about).

binaries' :: [String]

binaries' = [b : bs | b <- ['0','1'], bs <- "" : binaries']

λ > take 6 binaries'

["0","00","000","0000","00000","000000"]

λ > head (drop 20 binaries')

"000000000000000000000"

33

Problem solving with list comprehensions

Exercice

A positive integer is perfect if it equals the sum of its divisors,

excluding the number itself. Using list comprehensions define the

two functions

divisors :: Int -> [Int]

perfects :: Int -> [Int]

that returns the list of all proper divisors of a given integer

(function divisors) and the list of all perfect numbers up to a

given limit function perfects. For example:

λ > [divisors n | n <- [1..10]]

[[],[1],[1],[1,2],[1],[1,2,3],[1],[1,2,4],[1,3],[1,2,5]]

λ > perfects 500

[6,28,496]
34

Problem solving with list comprehensions

Exercice

Consider, the following session

λ > [x | x <- [1..10], even x]

[2,4,6,8,10]

λ > [x | x <- [1..], x <= 10 && even x]

[2,4,6,8,10

^C Interrupted.

λ > [x | x <- [1..], even x && x <= 10]

[2,4,6,8,10

^C Interrupted.

Comment.

35

Processing lists – basic functions

(toolbox)

Lists

Enumerations

List comprehensions

Processing lists – basic functions (toolbox)

36

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,

e.g., x `elem` xs. For the result to be False, the list must be

finite; True, however, results from an element equal to x found at

a finite index of a finite or infinite list.

37

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,

e.g., x `elem` xs. For the result to be False, the list must be

finite; True, however, results from an element equal to x found at

a finite index of a finite or infinite list.

λ > 2 `elem` [1..5] -- == elem 2 [1..5]

True

λ > 8 `elem` [1..5] -- == elem 8 [1..5]

False

37

Finding

Data.List.elem :: (Eq a) => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form,

e.g., x `elem` xs. For the result to be False, the list must be

finite; True, however, results from an element equal to x found at

a finite index of a finite or infinite list.

elem1 :: Eq a => a -> [a] -> Bool

elem1 _ [] = False

elem1 x' (x : xs)

| x == x' = True

| otherwise = elem1 x' xs

elem2 :: Eq a => a -> [a] -> Bool

elem2 _ [] = False

elem2 x' (x : xs) = x == x' || elem2 x' xs 37

Repeating

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has

that element.

38

Repeating

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has

that element.

λ > repeat 'a'

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

^C Interrupted.

λ > repeat "a" -- i.e. repeat ['a']

["a","a","a","a","a","a","a","a"...

^C Interrupted.

38

Repeating

Data.List.repeat :: a -> [a]

repeat takes an element and returns an infinite list that just has

that element.

repeat1 :: a -> [a]

repeat1 x = x : repeat1 x

repeat2 :: a -> [a]

repeat2 x = [x | n <- [1 ..]]

repeat3 :: a -> [a]

repeat3 x = [x | _ <- [1 ..]]

repeat4 :: Enum a => a -> [a]

repeat4 x = [x,x..]

38

Taking

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

39

Taking

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

λ > take 10 [1..20]

[1,2,3,4,5,6,7,8,9,10]

λ > take 10 [1..] -- infinite list

[1,2,3,4,5,6,7,8,9,10]

λ > take 20 [1..10] -- short list

[1,2,3,4,5,6,7,8,9,10]

λ > take 0 [1..]

[]

λ > take (-1) [1..] -- negative integer

[]

39

Taking

Data.List.take :: Int -> [a] -> [a]

take takes a certain number of elements from a list.

take1 :: (Ord t, Num t) => t -> [a] -> [a]

take1 _ [] = []

take1 n (x : xs)

| n <= 0 = []

| otherwise = x : take1 (n-1) xs

take2 :: (Eq t, Num t) => t -> [a] -> [a]

take2 _ [] = []

take2 0 _ = []

take2 n (x : xs) = x : take2 (n-1) xs

39

Dropping

Data.List.drop :: Int -> [a] -> [a]

drop drops a certain number of elements from a list.

40

Dropping

Data.List.drop :: Int -> [a] -> [a]

drop drops a certain number of elements from a list.

λ > drop 10 [1..20]

[11,12,13,14,15,16,17,18,19,20]

λ > drop 10 [1..] -- infinite list

[11,12,13,14,15,16,17,18,19,20,...

^C Interrupted.

λ > drop (-1) [1..4] -- negative integer

[1,2,3,4]

λ > drop 20 [1..10] -- short list

[]

40

Dropping

Data.List.drop :: Int -> [a] -> [a]

drop drops a certain number of elements from a list.

drop1 :: (Ord t, Num t) => t -> [a] -> [a]

drop1 _ [] = []

drop1 n (x : xs)

| n > 0 = drop1 (n-1) xs

| otherwise = x : xs

drop2 :: (Ord t, Num t) => t -> [a] -> [a]

drop2 _ [] = []

drop2 n xs@(_: xs')

| n > 0 = drop2 (n-1) xs'

| otherwise = xs

40

Taking and Dropping – In practice

Define a function that rotates the elements of a list n places to the

left, wrapping around at the start of the list, and assuming that

the integer argument n is between zero and the length of the list.

For example:

λ > rotate 0 [1..8]

[1,2,3,4,5,6,7,8]

λ > rotate 1 [1..8]

[2,3,4,5,6,7,8,1]

λ > rotate 4 [1..8]

[5,6,7,8,1,2,3,4]

41

Taking and Dropping – In practice

Define a function that rotates the elements of a list n places to the

left, wrapping around at the start of the list, and assuming that

the integer argument n is between zero and the length of the list.

rotate1 :: Int -> [a] -> [a]

rotate1 0 xs = xs

rotate1 _ [] = []

rotate1 n (x : xs) = rotate1 (n-1) (xs ++ [x])

rotate2 :: Int -> [a] -> [a]

rotate2 n xs = drop n xs ++ take n xs

41

Accumulating

Exercice

Is this implementation correct ?

rotate3 :: Int -> [a] -> [a]

rotate3 = go []

where

go acc 0 xs = xs ++ reverse acc

go acc n [] = go [] n (reverse acc)

go acc n (x : xs) = go (x : acc) (n-1) xs

Hint: it is not !

42

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that

has several repetitions of the same element.

43

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that

has several repetitions of the same element.

λ > replicate 10 1

[1,1,1,1,1,1,1,1,1,1]

λ > replicate 10 [1]

[[1],[1],[1],[1],[1],[1],[1],[1],[1],[1]]

λ > replicate 0 1

[]

λ > replicate (-1) 1

[]

43

Replicating

Data.List.replicate :: Int -> a -> [a]

replicate takes an Int and some element and returns a list that

has several repetitions of the same element.

replicate1 :: (Num t, Ord t) => t -> a -> [a]

replicate1 n x

| n <= 0 = []

| otherwise = x : replicate1 (n-1) x

replicate2 :: (Ord t, Num t) => t -> a -> [a]

replicate2 n x = take n (repeat x)

replicate3 :: (Ord t, Num t) => t -> a -> [a]

replicate3 n = take n . repeat

43

Suffixing

Data.List.tails :: [a] -> [[a]]

tails returns all final segments of the argument, longest first.

44

Suffixing

Data.List.tails :: [a] -> [[a]]

tails returns all final segments of the argument, longest first.

λ > tails [1..4]

[[1,2,3,4],[2,3,4],[3,4],[4],[]]

λ > tails []

[[]]

λ > tails [1..]

^C Interrupted.

λ > head (tails [1..])

^C Interrupted.

44

Suffixing

Data.List.tails :: [a] -> [[a]]

tails returns all final segments of the argument, longest first.

tails1 :: [a] -> [[a]]

tails1 [] = [[]]

tails1 (x : xs) = (x : xs) : tails1 xs

tails2 :: [a] -> [[a]]

tails2 [] = [[]]

tails2 xs@(_: xs') = xs : tails2 xs'

44

Rotating

Exercice

define the function

tails' :: [a] -> [[a]]

that returns all final segments of the argument, shortest first.

λ > tails' []

[[]]

λ > tails' [1,2,3]

[[],[3],[2,3],[1,2,3]]

λ > tails' [1,2,3,4]

[[],[4],[3,4],[2,3,4],[1,2,3,4]]

45

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must

be finite.

46

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must

be finite.

λ > reverse [1..5]

[5,4,3,2,1]

λ > reverse []

[]

λ > reverse [1..]

^C Interrupted.

46

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must

be finite.

-- inefficient because of (++)

reverse1 :: [a] -> [a]

reverse1 [] = []

reverse1 (x : xs) = reverse1 xs ++ [x]

-- using an accumulator is much more efficient

reverse2 :: [a] -> [a]

reverse2 = go []

where

go acc [] = acc

go acc (x : xs) = go (x :acc) xs 46

Reversing

Data.List.reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must

be finite.

We shall see soon that an implementation for reverse can be both

short and efficient.

reverse3 :: [a] -> [a]

reverse3 = foldl (flip (:)) []

λ > :type flip

flip :: (a -> b -> c) -> b -> a -> c

46

Cutting last

Data.List.init :: [a] -> [a]

init returns all the elements of a list except the last one. The list

must be non-empty.

47

Cutting last

Data.List.init :: [a] -> [a]

init returns all the elements of a list except the last one. The list

must be non-empty.

λ > init [1,2,3,4]

[1,2,3]

λ > init [1]

[]

λ > init []

*** Exception: Prelude.init: empty list

47

Cutting last

Data.List.init :: [a] -> [a]

init returns all the elements of a list except the last one. The list

must be non-empty.

init1 :: [a] -> [a]

init1 [] = error "*** Exception: init': empty list"

init1 [_] = []

init1 (x : xs) = x : init1 xs

-- with functors and Maybe type

safeInit :: [a] -> Maybe [a]

safeInit [] = Nothing

safeInit [_] = Just []

safeInit (x : xs) = (x :) <$> safeInit xs

47

Prefixing

Data.List.inits :: [a] -> [[a]]

inits returns all initial segments of the argument, shortest first.

48

Prefixing

Data.List.inits :: [a] -> [[a]]

inits returns all initial segments of the argument, shortest first.

λ > inits [1..4]

[[],[1],[1,2],[1,2,3],[1,2,3,4]]

λ > inits [1]

[[],[1]]

λ > inits []

[[]]

λ > inits [1..]

[[],[1],[1,2],[1,2,3],[1,2,3,4],...^C Interrupted.

λ > take 4 (inits [1..])

[[],[1],[1,2],[1,2,3]]

48

Prefixing

Data.List.inits :: [a] -> [[a]]

inits returns all initial segments of the argument, shortest first.

inits1 :: [a] -> [[a]]

inits1 [] = [[]]

inits1 xs = inits1 (init xs) ++ [xs]

inits2 :: [a] -> [[a]]

inits2 = reverse . go

where

go [] = [[]]

go xs = xs : go (init xs)

48

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that

element between the elements of the list.

49

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that

element between the elements of the list.

λ > intersperse ',' ['a','b','c','d']

"a,b,c,d"

λ > intersperse 0 [1,2,3,4]

[1,0,2,0,3,0,4]

λ > intersperse [0] [[1,2],[3,4],[5,6]]

[[1,2],[0],[3,4],[0],[5,6]]

49

Interspersing

Data.List.intersperse :: a -> [a] -> [a]

intersperse takes an element and a list and intersperses that

element between the elements of the list.

intersperse1 :: a -> [a] -> [a]

intersperse1 _ [] = []

intersperse1 _ [x] = [x]

intersperse1 y (x : xs) = x : y : intersperse1 y xs

49

Concatening

Data.List.concat :: [[a]] -> [a]

concat concatenates a list of lists.

50

Concatening

Data.List.concat :: [[a]] -> [a]

concat concatenates a list of lists.

λ > concat [[1,2],[3,4],[5,6]]

[1,2,3,4,5,6]

λ > concat [[1,2]]

[1,2]

λ > concat [[]]

[]

λ > concat []

[]

50

Concatening

Data.List.concat :: [[a]] -> [a]

concat concatenates a list of lists.

-- recursive

concat1 :: [[a]] -> [a]

concat1 [] = []

concat1 (xs : xss) = xs ++ concat1 xss

-- with a list comprehension

concat2 :: [[a]] -> [a]

concat2 xss = [x | xs <- xss, x <- xs]

50

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

51

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

λ > intercalate [0] [[1,2],[3,4],[5,6]]

[1,2,0,3,4,0,5,6]

λ > intercalate [0] [[1,2]]

[1,2]

λ > intercalate [0] []

[]

λ > intercalate " -> " ["task1","task2","task3"]

"task1 -> task2 -> task3"

51

Intercalating

Data.List.intercalate :: [a] -> [[a]] -> [a]

intercalate xs xss inserts the list xs in between the lists in

xss and concatenates the result.

intercalate1 :: [a] -> [[a]] -> [a]

intercalate1 _ [] = []

intercalate1 _ [xs] = xs

intercalate1 xs' (xs: xss) = xs ++

xs' ++

intercalate1 xs' xss

intercalate2 :: [a] -> [[a]] -> [a]

intercalate2 xs xss = concat (intersperse xs xss)

51

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

52

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

λ > zip [1,2,3] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > zip [1,2,3,4] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > zip [1,2,3] ['a','b','c','d']

[(1,'a'),(2,'b'),(3,'c')]

52

Zipping

Data.List.zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs.

zip1 :: [a] -> [b] -> [(a, b)]

zip1 [] _ = []

zip1 _ [] = []

zip1 (x : xs) (y : ys) = (x,y) : zip1 xs ys

52

Zipping – In practice

Index a list from a given integer.

λ > index 0 ['a'..'f']

[(0,'a'),(1,'b'),(2,'c'),(3,'d'),(4,'e'),(5,'f')]

λ > index 1 ['a'..'f']

[(1,'a'),(2,'b'),(3,'c'),(4,'d'),(5,'e'),(6,'f')]

λ > index (2^10) ['a'..'e']

[(1024,'a'),(1025,'b'),(1026,'c'),(1027,'d'),(1028,'e')]

λ > index2 (-10) ['a'..'f']

[(-10,'a'),(-9,'b'),(-8,'c'),(-7,'d'),(-6,'e'),(-5,'f')]

53

Zipping – In practice

Index a list from a given integer.

index1 :: Num a => a -> [b] -> [(a, b)]

index1 _ [] = []

index1 n (x : xs) = (n, x) : index1 (n+1) xs

index2 :: Enum a => a -> [b] -> [(a, b)]

index2 n xs = zip [n..] xs

index3 :: Enum a => a -> [b] -> [(a, b)]

index3 n = zip [n..] -- eta reduction

53

Zipping – In practice

Implementing take with zip.

take3 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

take3 n xs = go (zip xs [1..])

where

go ((x, i) : xis)

| i <= n = x : go xis

| otherwise = []

take4 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

take4 n xs = go (zip xs [1..])

where

go ((x, i) : xis)

| i <= n = x : go xis

| otherwise = []

54

Zipping – In practice

Implementing take with zip.

-- don't do this!!!

-- infinite computation: a predicate does not stop

-- the infinite enumeration (we are just skipping

-- values again and again).

take5 :: (Num a, Enum a, Ord a) => a -> [b] -> [b]

take5 n xs = [x | (x, i) <- zip xs [1..], i <= n]

-- not better!

take5 :: Int -> [a] -> [a]

take5 n xs = [x | (x, i) <- zip xs [1..nxs], i <= n]

where

nxs = length xs

54

Anding

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be

True only for finite lists

55

Anding

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be

True only for finite lists

λ > and []

True

λ > and [True]

True

λ > and [False]

False

λ > and (take 100 (repeat True) ++ [False])

False

55

Anding

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list, the result can be

True only for finite lists

and1 :: [Bool] -> Bool

and1 [] = True

and1 (False : _) = False

and1 (True : bs) = and1 bs

and2 :: [Bool] -> Bool

and2 [] = True

and2 (b : bs) = b && and2 bs

55

Oring

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True

only for finite lists

56

Oring

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True

only for finite lists

λ > or []

False

λ > or [True]

True

λ > or (take 100 (repeat False))

False

λ > or (take 100 (repeat False) ++ [True])

True

56

Oring

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list, the result can be True

only for finite lists

or1 :: [Bool] -> Bool

or1 [] = False

or1 (True : _) = True

or1 (False : bs) = or1 bs

or2 :: [Bool] -> Bool

or2 [] = False

or2 (b : bs) = b || or2 bs

56

Maximizing

maximum :: [a] -> a

maximum returns the largest element of a non-empty structure.

(minimum returns the smallest element of a non-empty structure).

λ > maximum []

*** Exception: Prelude.maximum: empty list

λ > maximum [1]

1

λ > maximum [4,3,7,1,8,6,2,3,5]

8

λ > maximum [2,3,1,4,3,1,2,4]

4

57

Maximizing

maximum :: [a] -> a

maximum1 :: Ord a => [a] -> a

maximum1 [] = error "empty list"

maximum1 [x] = x

maximum1 (x : xs) = let m = maximum1 xs

in if m > x then m else x

maximum2 :: Ord a => [a] -> a

maximum2 [] = error "empty list"

maximum2 [x] = x

maximum2 (x : xs) = max x (maximum2 xs)

λ > :type max

max :: Ord a => a -> a -> a

57

Maximizing

maximum :: [a] -> a

maximum3 :: Ord a => [a] -> a

maximum3 [] = error "empty list"

maximum3 (x : xs) = go x xs

where

go m [] = m

go m (x' : xs')

| x' > m = go x' xs'

| otherwise = go m xs'

57

Deleting

Data.List.delete :: [a] -> a

delete removes the first occurrence of the specified element from

its list argument.

λ > delete 1 [1..10]

[2,3,4,5,6,7,8,9,10]

λ > delete 5 [1..10]

[1,2,3,4,6,7,8,9,10]

λ > delete 11 [1..10]

[1,2,3,4,5,6,7,8,9,10]

λ > delete 3 [1,1,2,2,3,3,4,4,5,5]

[1,1,2,2,3,4,4,5,5]

58

Deleting

Data.List.delete :: [a] -> a

delete1 :: Eq a => a -> [a] -> [a]

delete1 _ [] = []

delete1 x (x' : xs) = if x == x'

then xs

else x' : delete x xs

delete2 :: Eq a => a -> [a] -> [a]

delete2 x [] = []

delete2 x (x' : xs)

| x == x' = xs

| otherwise = delete2 x xs

58

Deleting

Write the function deleteAll :: Ord a => [a] -> [a] that

removes all occurrence of the specified element from its list

argument.

λ > deleteAll 0 (intersperse 0 [1..9])

[1,2,3,4,5,6,7,8,9]

λ > deleteAll 10 (intersperse 0 [1..9])

[1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9]

59

Sorting

sort :: Ord a => [a] -> [a]

60

Sorting

sort :: Ord a => [a] -> [a]

λ > sort []

[]

λ > sort [1,4,2,3,5,1,3,2,5,4]

[1,1,2,2,3,3,4,4,5,5]

λ > let n = 10000 in sort [1..n] == [1..n]

True

60

Sorting

sort :: Ord a => [a] -> [a]

sort1 :: Ord a => [a] -> [a]

sort1 [] = []

sort1 (x : xs) = sort1 ys ++ [x] ++ sort1 zs

where

ys = [y | y <- xs, y <= x]

zs = [z | z <- xs, z > x]

60

Sorting

sort :: Ord a => [a] -> [a]

sort2 :: Ord a => [a] -> [a]

sort2 [] = []

sort2 [x] = [x]

sort2 xs = let (ys, zs) = split2 ([], []) xs

in merge (sort2 ys) (sort2 zs)

where

split2 yzs [] = yzs

split2 (ys, zs) [x] = (x : ys, zs)

split2 (ys, zs) (x : x' : xs) = split2 (x : ys, x' : zs) xs

merge [] zs = zs

merge ys [] = ys

merge (y : ys) (z : zs)

| y <= z = y : merge ys (z : zs)

| otherwise = z : merge (y : ys) zs 60

Sorting

sort :: Ord a => [a] -> [a]

-- incognito foldr ;-) !

sort3 :: Ord a => [a] -> [a]

sort3 = go []

where

go acc [] = acc

go acc (x : xs) = bubble x (go acc xs)

where

bubble x [] = [x]

bubble x (y : xs)

| x <= y = x : bubble y xs

| otherwise = y : bubble x xs

60

Sorting

sort :: Ord a => [a] -> [a]

-- simple but inefficient

sort4 :: Ord a => [a] -> [a]

sort4 [] = []

sort4 xs = let (x, xs') = extractMin xs in x : sort4 xs'

where

extractMin xs = let x = minimum xs in (x, delete x xs)

60

	Lists
	Enumerations
	List comprehensions
	Processing lists – basic functions (toolbox)

