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High-order functions

• A function that takes a function as an argument or returns a

function as a result is called a high-order function.

• Because the term curried already exists for returning functions

as results, the ther high-order is often just used for taking

functions as arguments.

• Using high-order functions considerably increases the power of

Haskell by allowing common programming patterns to be

encapsulated as functions within the language itself.
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Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]

filter applied to a predicate and a list, returns the list of those

elements that satisfy the predicate.
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Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]

filter applied to a predicate and a list, returns the list of those

elements that satisfy the predicate.

λ > filter even [1..10]

[2,4,6,8,10]

λ > filter (\x -> x `mod` 2 == 0) [1..10]

[2,4,6,8,10]

λ > filter (\x -> even x && odd x) [1..10]

[]

λ > filter (\_ -> True) [1..10]

[1,2,3,4,5,6,7,8,9,10]

λ > filter (\_ -> False) [1..10]

[]
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Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]

filter applied to a predicate and a list, returns the list of those

elements that satisfy the predicate.

λ > filter (\x -> x > 5) [1,5,2,6,3,7,4,8]

[6,7,8]

λ > filter (> 5) [1,5,2,6,3,7,4,8]

[6,7,8]

λ > filter (\x -> x <= 5) [1,5,2,6,3,7,4,8]

[1,5,2,3,4]

λ > filter (<= 5) [1,5,2,6,3,7,4,8]

[1,5,2,3,4]

3



Filtering

Data.List.filter :: (a -> Bool) -> [a] -> [a]

filter applied to a predicate and a list, returns the list of those

elements that satisfy the predicate.

-- recursive

filter1 :: (a -> Bool) -> [a] -> [a]

filter1 _ [] = []

filter1 p (x : xs)

| p x = x : filter1 p xs

| otherwise = filter1 p xs

-- with a list comprehension

filter2 :: (a -> Bool) -> [a] -> [a]

filter2 p xs = [x | x <- xs, p x]

3



Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.
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Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

λ > map (*2) [1..5]

[2,4,6,8,10]

λ > map even [1..5]

[False,True,False,True,False]

λ > map (\x -> 2*x) [1..5] -- == map (2*) [1..5]

[2,4,6,8,10]

λ > map (\x -> [x]) [1..5]

[[1],[2],[3],[4],[5]]

λ > map (\x -> replicate x x) [1..5]

[[1],[2,2],[3,3,3],[4,4,4,4],[5,5,5,5,5]]
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Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

λ > map (map (* 2)) [[1,2,3],[4,5,6],[7,8,9]]

[[2,4,6],[8,10,12],[14,16,18]]

λ > map (filter even) [[1,2,3],[4,5,6],[7,8,9]]

[[2],[4,6],[8]]

λ > map length [[1,2,3],[4,5,6],[7,8,9]]

[3,3,3]

λ > map (take 2) [[1,2,3],[4,5,6],[7,8,9]]

[[1,2],[4,5],[7,8]]
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Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs.

-- recursive

map1 :: (a -> b) -> [a] -> [b]

map1 _ [] = []

map1 f (x : xs) = f x : map1 f xs

-- with a list comprehension

map2 :: (a -> b) -> [a] -> [b]

map1 f xs = [f x | x <- xs]
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Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.
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Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

M =

1 2

3 4

5 6

 M ′ =

1 2 0 0 0 0 0

3 4 0 0 0 0 0

5 6 0 0 0 0 0



m = [[1,2],

[3,4],

[5,6]]

m' = [[1,2,0,0,0,0,0],

[3,4,0,0,0,0,0],

[5,6,0,0,0,0,0]]
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Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

λ > m = [[1,2],[3,4],[5,6]]

λ > addExtraColumns 0 m

[[1,2],[3,4],[5,6]]

λ > addExtraColumns 1 m

[[1,2,0],[3,4,0],[5,6,0]]

λ > addExtraColumns 5 m

[[1,2,0,0,0,0,0],[3,4,0,0,0,0,0],[5,6,0,0,0,0,0]]
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Mapping – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

addExtraColumns1 :: Num a => Int -> [[a]] -> [[a]]

addExtraColumns1 k xss = map (++ replicate k 0) xss

addExtraColumns2 :: Num a => Int -> [[a]] -> [[a]]

addExtraColumns2 k xss = map (++ zs) xss

where

zs = replicate k 0
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Reversing

Exercice

Define a function nestedReverse which takes a list of strings as

its argument and reverses each element of the list and then

reverses the resulting list.

λ > nestedReverse ["in", "the", "end"]

["dne", "eht", "ni"].
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Inserting front

Exercice

Define a function atFront :: a -> [[a]] -> [[a]] which

takes an object and a list of lists and sticks the object at the front

of every component list.

λ > atFront 7 [[1,2], [], [3]]

[[7,1,2], [7], [7,3]]

7



Filtering

Exercice

the function filter can be defined in terms of concat and map:

filter p = concat . map box

where

box x = ...

Complete this definition of filter by defining box.
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Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the

longest prefix (possibly empty) of xs of elements that satisfy p.
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Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the

longest prefix (possibly empty) of xs of elements that satisfy p.

λ > takeWhile (< 10) [1..20]

[1,2,3,4,5,6,7,8,9]

λ > takeWhile odd ([1,3..10] ++ [1..10])

[1,3,5,7,9,1]

λ > takeWhile even [1..10]

[]

λ > takeWhile (> 0) (map (`mod` 5) [1..10])

[1,2,3,4]
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Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the

longest prefix (possibly empty) of xs of elements that satisfy p.

takeWhile1 :: (a -> Bool) -> [a] -> [a]

takeWhile1 _ [] = []

takeWhile1 p (x : xs)

| p x = x : takeWhile1 p xs

| otherwise = []
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Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after

takeWhile p xs.

10



Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after

takeWhile p xs.

λ > dropWhile (< 10) [1..20]

[10,11,12,13,14,15,16,17,18,19,20]

λ > dropWhile odd ([1,3..10] ++ [1..10])

[2,3,4,5,6,7,8,9,10]

λ > dropWhile even [1..10]

[1,2,3,4,5,6,7,8,9,10]

λ > dropWhile (> 0) (map (`mod` 5) [1..10])

[0,1,2,3,4,0]

λ > dropWhile (< 3) (takeWhile (< 6) [1..10])

[3,4,5]
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Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after

takeWhile p xs.

dropWhile1 :: (a -> Bool) -> [a] -> [a]

dropWhile1 _ [] = []

dropWhile1 p (x : xs)

| p x = dropWhile1 p xs

| otherwise = x : xs

dropWhile2 :: (a -> Bool) -> [a] -> [a]

dropWhile2 _ [] = []

dropWhile2 p xs@(x : xs')

| p x = dropWhile2 p xs'

| otherwise = xs
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Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate creates an infinite list where the first item is calculated by

applying the function on the second argument, the second item by

applying the function on the previous result, and so on.

λ > iterate (\x -> x+1) 1 -- == iterate (+1) 1

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...

^C Interrupted.

λ > take 10 (iterate (\x -> x+1) 1)

[1,2,3,4,5,6,7,8,9,10]

λ > take 10 (iterate (+ 1) 1)

[1,2,3,4,5,6,7,8,9,10]

λ > takeWhile (< 10) (iterate (+ 1) 1)

[1,2,3,4,5,6,7,8,9]
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Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate1 :: (a -> a) -> a -> [a]

iterate1 f x = let y = f x in x : iterate1 f y

-- iterate1 f x = x : iterate1 f (f x)

iterate1 f x

= x : iterate1 (f x)

= x : f x : iterate1 (f (f x))

= x : f x : f (f x) : iterate1 (f (f (f x)))

= ...
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Iterating

Data.List.iterate :: (a -> a) -> a -> [a]

iterate2 :: (a -> a) -> a -> [a]

iterate2 f x = x : [f y | y <- iterate2 f x]

iterate2 f x

= x : [f y | y <- iterate2 f x]

= x : f x : [f y | y <- iterate2 f (f x)]

= x : f x : f (f x) : [f y | y <- iterate2 f (f (f x))]

= ...
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Zipping with functions

Data.List.zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith generalises zip by zipping with the function given as the

first argument, instead of a tupling function.

λ > zipWith (+) [0..4] [10..14]

[10,12,14,16,18]

λ > zipWith (\x y -> (x,y)) [1,2,3] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > zipWith (,) [1,2,3] ['a','b','c']

[(1,'a'),(2,'b'),(3,'c')]

λ > f x b = if b then x*10 else x

λ > zipWith f [1,2,3,4] [True,False,True,False]

[10,2,30,4]
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Zipping with functions

Data.List.zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith1 :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith1 _ [] _ = []

zipWith1 _ _ [] = []

zipWith1 f (x : xs) (y : ys) = f x y : zipWith1 f xs ys

zip2 :: [a] -> [b] -> [(a,b)]

zip2 = zipWith1 (,)
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Zipping with functions – In practice

Determine whether a list is in non-decreasing order.

nonDec1 :: Ord a => [a] -> Bool

nonDec1 [] = True

nonDec1 [_] = True

nonDec1 (x1 : x2 : xs) = x1 <= x2 && nonDec1 (x2 : xs)

nonDec2 :: Ord a => [a] -> Bool

nonDec2 [] = True

nonDec2 [_] = True

nonDec2 (x1 : xs@(x2 : _)) = x1 <= x2 && nonDec2 xs

nonDec3 :: Ord a => [a] -> Bool

nonDec3 xs = and $ zipWith (<=) xs (tail xs)
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Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.
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Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

M =

1 2

3 4

5 6

 M ′ =

1 2 0 0 0 0 0

3 4 0 0 0 0 0

5 6 0 0 0 0 0



m = [[1,2],

[3,4],

[5,6]]

m' = [[1,2,0,0,0,0,0],

[3,4,0,0,0,0,0],

[5,6,0,0,0,0,0]]

14



Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

λ > m = [[1,2],[3,4],[5,6]]

λ > addExtraColumns 0 m

[[1,2],[3,4],[5,6]]

λ > addExtraColumns 1 m

[[1,2,0],[3,4,0],[5,6,0]]

λ > addExtraColumns 5 m

[[1,2,0,0,0,0,0],[3,4,0,0,0,0,0],[5,6,0,0,0,0,0]]
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Zipping with functions – In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

addExtraColumns1 :: Num a => Int -> [[a]] -> [[a]]

addExtraColumns1 k xss = map (++ zs) xss

where

zs = replicate k 0

addExtraColumns2 :: Num a => Int -> [[a]] -> [[a]]

addExtraColumns2 k xss = zipWith (++) xss zss

where

zss = repeat (replicate k 0)
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Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1−

1

3
+

1

5
−

1

7
+

1

9
− . . .
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Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1−

1

3
+

1

5
−

1

7
+

1

9
− . . .

approxPi1 k = 4 * sum (take k xs)

where

ss = [(-1)^n | n <- [0..]]

xs = zipWith (*) ss (map (1/) (iterate (+2) 1))

approxPi2 k = 4 * sum (take k xs)

where

ss = 1 : [(-1)*s | s <- ss]

xs = zipWith (*) ss (map (1/) (iterate (+2) 1))
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Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1−

1

3
+

1

5
−

1

7
+

1

9
− . . .

λ > pi

3.141592653589793

λ > let k = 10 in approxPi1 k

3.0418396189294032

λ > let k = 100 in approxPi1 k

3.1315929035585537

λ > let k = 10000 in approxPi1 k

3.1414926535900345
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Zipping with functions – In practice

The Leibniz formula for π, named after Gottfried Leibniz, states

that
π

4
= 1−

1

3
+

1

5
−

1

7
+

1

9
− . . .

λ > ks = iterate (*10) 1

λ > mapM_ print (take 8 [pi / approxPi1 k | k <- ks])

0.7853981633974483

1.0327936535639899

1.0031931832582315

1.0003184111600008

1.0000318320017856

1.0000031831090173

1.0000003183099935

1.00000003183099
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η-conversion

An eta conversion (also written η-conversion) is adding or

dropping of abstraction over a function.

The following two values are equivalent under η-conversion:

\x -> someFunction x

and

someFunction

Converting from the first to the second would constitute an

η-reduction, and moving from the second to the first would be an

eta-expansion.

The term η-conversion can refer to the process in either direction.
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η-conversion

f :: T1 -> T2 -> T3

f t1 t2 = g t1 t2

f :: T1 -> T2 -> T3

f t1 = g t1

f :: T1 -> T2 -> T3

f = g

η-reduction

η-reduction
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The composition operator

The high-order library operator . returns the composition of two

function as a single function

(.) :: (b -> c) -> (a -> b) -> (a -> c)

f . g = \x -> f (g x)

f . g, which is read as f composed with g, is the function that

takes an argument x, applies the function g to this argument, and

applies the function f to the result.
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The composition operator

Composition can be used to simplify nested function applications,

by reducing parentheses ans avoiding the need to explicitly refer to

the initial argument.
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The composition operator

Composition can be used to simplify nested function applications,

by reducing parentheses ans avoiding the need to explicitly refer to

the initial argument.

odd1 :: Integral a => a -> Bool

odd1 n = not (even n)

odd2 :: Integral a => a -> Bool

odd2 n = (not . even) n

-- i.e., odd2 = \x -> not (even n)

odd3 :: Integral a => a -> Bool

odd3 = not . even
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The composition operator

Composition can be used to simplify nested function applications,

by reducing parentheses ans avoiding the need to explicitly refer to

the initial argument.

twice1 :: (a -> a) -> a -> a

twice1 f x = f (f x)

twice2 :: (a -> a) -> a -> a

twice2 f x = (f . f) x -- i.e., twice2 = \x -> f (f x)

twice3 :: (a -> a) -> a -> a

twice3 f = f . f
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The composition operator

Composition is associative

f . (g . h) = f . g . h

for any functions f, g and h of the appropriate types.

sumSqrEven1 :: Integral a => [a] -> a

sumSqrEven1 xs = sum (map (^2) (filter even xs))

sumSqrEven2 :: Integral a => [a] -> a

sumSqrEven2 xs = (sum . map (^2) . filter even) xs

sumSqrEven3 :: Integral a => [a] -> a

sumSqrEven3 = sum . map (^2) . filter even
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The composition operator

Composition also has an identity, given by the identity function:

id :: a -> a

id = \x -> x

For any function f:

id . f = f

f . id = f
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The composition operator

Composition also has an identity, given by the identity function:

λ > f = head . id

λ > f [1,2,3,4]

1

f = head . id

= \x -> head (id x)

= \x -> head x

= head
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The composition operator

Composition also has an identity, given by the identity function:

λ > g = id . head

λ > g [1,2,3,4]

1

g = id . head

= \x -> id (head x)

= \x -> head x

= head
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The composition operator

Composition also has an identity, given by the identity function:

λ > :type take

take :: Int -> [a] -> [a]

λ > f = take . id

λ > f 3 [1..10]

[1,2,3]

f = take . id

= \x -> take (id x)

= \x -> take x -- :: Int -> ([a] -> [a])

= take
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The composition operator

Composition also has an identity, given by the identity function:

λ > :type take

take :: Int -> [a] -> [a]

λ > g = id . take

λ > g 3 [1..10]

[1,2,3]

g = id . take

= \x -> id (take x)

= \x -> take x -- :: Int -> ([a] -> [a])

= take
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Composition

Be sure to understand the following:

λ > ((+1) . (+1)) 1

3

λ > ((+) . (+1)) 100 10

111

λ > ((++) . (++ " ")) "hello" "world!"

"hello world!"
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Composition

Be sure to understand the following:

λ > trim = let f = reverse . dropWhile (== ' ') in f . f

λ > :type trim

trim :: [Char] -> [Char]

λ > trim " ab cd ef g hi "

"ab cd ef g hi"
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Composition (difficult !)

Explain :

λ > f = (\x y z -> x) . (\a b -> a*b)

λ > f 1 2 3 4

4

λ > g = (\x y z -> y) . (\a b -> a*b)

λ > g 1 2 3 4

<interactive>: error:

Could not deduce (Num t0)

...
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The function application operator

The $ is an operator for function application.

($) :: (a -> b) -> a -> b

f $ x = f x

All this does is apply a function. So, f $ x exactly equivalent to

f x:

λ > head $ [1,2,3,4]

1

λ > tail $ [1,2,3,4]

[2,3,4]

λ > map (+ 1) $ [1,2,3,4]

[2,3,4,5]
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The function application operator

This seems utterly pointless, until you look beyond the type.

λ > :info ($)

($) :: (a -> b) -> a -> b -- Defined in ‘GHC.Base’

infixr 0 $

This little note holds the key to understanding the ubiquity of ($):

infixr 0.

• infixr tells us it’s an infix operator with right associativity.

• 0 tells us it has the lowest precedence possible.

In contrast, normal function application (via white space)

• is left associative and

• has the highest precedence possible (10).
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The function application operator

Compare

λ > take 10 "Haskell " ++ "rocks!"

"Haskell rocks!"

λ > (take 10 "Haskell ") ++ "rocks!"

"Haskell rocks!"

with

λ > take 10 $ "Haskell " ++ "rocks!"

"Haskell ro"

λ > take 10 ("Haskell " ++ "rocks!")

"Haskell ro"
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The function application operator

One pattern where you see the dollar sign used sometimes is

between a chain of composed functions and an argument being

passed to (the first of) those.

λ > sum . drop 3 . take 5 [1..10]

error.

λ > sum . drop 3 . take 5 $ [1..10]

9

λ > (sum . drop 3 . take 5) [1..10]

9

λ > sum . drop 3 $ take 5 [1..10]

9

28



The function application operator

Function application.

λ > map (\f -> f 2) [(* i) | i <- [1,2,3,4,5]]

[2,4,6,8,10]

λ > map 2 [(* i) | i <- [1,2,3,4,5]]

error.

λ > map ($ 2) [(* i) | i <- [1,2,3,4,5]]

[2,4,6,8,10]

λ > map ($ 2) [f i | f <- [(*),(+)], i <- [1,2,3,4,5]]

[2,4,6,8,10,3,4,5,6,7]
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And a curiosity

$ is just an identity function for . . . functions.

($) :: (a -> b) -> a -> b

:: (a -> b) -> (a -> b)

id :: a -> a

:: (a -> b) -> (a -> b) -- for a ~ a -> b

λ > (sum . drop 3 . take 5) [1..10]

9

λ > sum . drop 3 $ take 5 [1..10]

9

λ > (sum . drop 3) `id` take 5 [1..10]

9

λ > id (sum . drop 3) (take 5 [1..10])

9
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And a curiosity

$ is just an identity function for . . . functions.

($) :: (a -> b) -> a -> b

:: (a -> b) -> (a -> b)

id :: a -> a

:: (a -> b) -> (a -> b) -- for a ~ a -> b

λ > (sum . drop 3 . take 5) [1..10]

9

λ > sum . drop 3 $ take 5 [1..10]

9

λ > (sum . drop 3) `id` take 5 [1..10]

9

λ > id (sum . drop 3) (take 5 [1..10])

9 30



Origami programming

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit
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Folding

• In functional programming, fold is a family of higher order

functions that process a data structure in some order and

build a return value.

• This is as opposed to the family of unfold functions which

take a starting value and apply it to a function to generate a

data structure.

• A fold deals with two things:

1. a combining function, and

2. a data structure.

The fold then proceeds to combine elements of the data

structure using the function in some systematic way.
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Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x : xs) = f x (foldr f z xs)

:

1 :

2 :

3 :

4 :

5 []

f

1 f

2 f

3 f

4 f

5 z

foldr f z
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Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x : xs) = f x (foldr f z xs)

foldr (+) 0 [1,2,3,4]

= (+) 1 (foldr (+) 0 [2,3,4]

= (+) 1 ((+) 2 (foldr (+) 0 [3,4])

= (+) 1 ((+) 2 ((+) 3 (foldr (+) 0 [4])

= (+) 1 ((+) 2 ((+) 3 ((+) 4 (foldr (+) 0 [])

= (+) 1 ((+) 2 ((+) 3 ((+) 4 0) -- stop recursion

= (+) 1 ((+) 2 ((+) 3 4)

= (+) 1 ((+) 2 7)

= (+) 1 9

= 10
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Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x : xs) = f x (foldr f z xs)

foldr (:) [] [1,2,3,4]

= (:) 1 (foldr (:) [] [2,3,4]

= (:) 1 ((:) 2 (foldr (:) [] [3,4])

= (:) 1 ((:) 2 ((:) 3 (foldr (:) [] [4])

= (:) 1 ((:) 2 ((:) 3 ((:) 4 (foldr (:) [] [])

= (:) 1 ((:) 2 ((:) 3 ((:) 4 []) -- stop recursion

= (:) 1 ((:) 2 ((:) 3 4:[])

= (:) 1 ((:) 2 3 : 4 : [])

= (:) 1 (2 : 3 : 4 : [])

= 1 : 2 : 3 : 4 : [] -- [1,2,3,4]
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Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x : xs) = f x (foldr f z xs)

let f x acc = [x] : acc in foldr f [] [1,2,3,4]

= f 1 (foldr f [] [2,3,4]

= f 1 (f 2 (foldr f [] [3,4]))

= f 1 (f 2 (f 3 (foldr f [] [4])))

= f 1 (f 2 (f 3 (f 4 (foldr f [] []))))

= f 1 (f 2 (f 3 (f 4 []))) -- stop recursion

= f 1 (f 2 (f 3 [4] : []))

= f 1 (f 2 [3] : [4] : [])

= f 1 ([2] : [3] : [4] : [])

= [1] : [2] : [3] : [4] : [] -- [[1],[2],[3],[4]]
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Folding right

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x : xs) = f x (foldr f z xs)

let f x acc = acc ++ [x] in foldr f [] [1,2,3,4]

= f 1 (foldr f [] [2,3,4]

= f 1 (f 2 (foldr f [] [3,4]))

= f 1 (f 2 (f 3 (foldr f [] [4])))

= f 1 (f 2 (f 3 (f 4 (foldr f [] []))))

= f 1 (f 2 (f 3 (f 4 []))) -- stop recursion

= f 1 (f 2 (f 3 ([] ++ [4])))

= f 1 (f 2 ([] ++ [4] ++ [3]))

= f 1 ([] ++ [4] ++ [3] ++ [2])

= [] ++ [4] ++ [3] ++ [2] ++ [1] -- [4,3,2,1]
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Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

:

1 :

2 :

3 :

4 :

5 []

f

f

f

f

f

z 1

2

3

4

5

foldl f z
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Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

foldl (+) 0 [1,2,3,4]

= foldl (+) ((+) 0 1) [2,3,4]

= foldl (+) ((+) ((+) 0 1) 2) [3,4]

= foldl (+) ((+) ((+) ((+) 0 1) 2) 3) [4]

= foldl (+) ((+) ((+) ((+) ((+) 0 1) 2) 3) 4) []

= ((+) ((+) ((+) ((+) 0 1) 2) 3) 4) -- stop recursion

= ((+) ((+) ((+) 1 2) 3) 4)

= ((+) ((+) 3 3) 4)

= ((+) 6 4)

= 10
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Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

let fC acc x = x : acc in foldl fC [] [1,2,3,4]

= foldl fC (fC [] 1) [2,3,4]

= foldl fC (fC (fC [] 1) 2) [3,4]

= foldl fC (fC (fC (fC [] 1) 2) 3) [4]

= foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) []

= (fC (fC (fC (fC [] 1) 2) 3) 4) -- stop recursion

= (fC (fC (fC 1 : [] 2) 3) 4)

= (fC (fC 2 : 1 : [] 3) 4)

= (fC 3 : 2 : 1 : [] 4)

= 4 : 3 : 2 : 1 : [] -- [4,3,2,1]
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Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

let fC acc x = [x]: acc in foldl fC [] [1,2,3,4]

= foldl fC (fC [] 1) [2,3,4]

= foldl fC (fC (fC [] 1) 2) [3,4]

= foldl fC (fC (fC (fC [] 1) 2) 3) [4]

= foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) []

= (fC (fC (fC (fC [] 1) 2) 3) 4) -- stop recursion

= (fC (fC (fC [1] : [] 2) 3) 4)

= (fC (fC [2] : [1] : [] 3) 4)

= (fC [3] : [2] : [1] : [] 4)

= [4] : [3] : [2] : [1] : [] -- [[4],[3],[2],[1]]
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Folding left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs

let fC acc x = acc ++ [x] in foldl fC [] [1,2,3,4]

= foldl fC (fC [] 1) [2,3,4]

= foldl fC (fC (fC [] 1) 2) [3,4]

= foldl fC (fC (fC (fC [] 1) 2) 3) [4]

= foldl fC (fC (fC (fC (fC [] 1) 2) 3) 4) []

= (fC (fC (fC (fC [] 1) 2) 3) 4) -- stop recursion

= (fC (fC (fC [] ++ [1] 2) 3) 4)

= (fC (fC [] ++ [1] ++ [2] 3) 4)

= (fC [] ++ [1] ++ [2] ++ [3] 4)

= [] ++ [1] ++ [2] ++ [3] ++ [4] -- [1,2,3,4]
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Folding

f

1 f

2 f

3 f

4 f

5 z

foldr f z

f

f

f

f

f

z 1

2

3

4

5

foldl f z
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Removing duplicates

Exercice

The function remDups removes adjacent duplicates from a list.

λ > remDups [1,2,2,3,3,3,1,1]

[1,2,3,1]

Define remDups using foldr. Give another definition using foldl.
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Folding integers

Exercice

The fold on integers (let’s call it foldI) can be defined as follows:

foldI :: (a -> a) -> a -> Int -> a

foldI _ q 0 = q

foldI f q i = f . foldI f q $ pred i

Define the functions add, mult and exp in terms of foldI. Of

course, you’re not allowed to use (+) and (*).
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Curried functions & friends

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit
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Currying

Currying is the process of transforming a function that takes

multiple arguments in a tuple as its argument, into a function that

takes just a single argument and returns another function which

accepts further arguments, one by one, that the original function

would receive in the rest of that tuple.

f :: a -> b -> c -- i.e. f :: a -> (b -> c)

is the curried form of

g :: (a, b) -> c

In Haskell, all functions are considered curried: That is, all

functions in Haskell take just one argument.
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Currying / uncurrying

f :: a -> b -> c -- i.e. f :: a -> (b -> c)

g :: (a, b) -> c

You can convert these two types in either directions with the

Prelude functions curry and uncurry:

curry :: ((a, b) -> c) -> a -> b -> c

uncurry :: (a -> b -> c) -> (a, b) -> c

We have:

f = curry g

g = uncurry f
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Currying / uncurrying

f :: a -> b -> c -- i.e. f :: a -> (b -> c)

g :: (a, b) -> c

You can convert these two types in either directions with the

Prelude functions curry and uncurry:

curry :: ((a, b) -> c) -> a -> b -> c

uncurry :: (a -> b -> c) -> (a, b) -> c

Both forms are equally expressive. It holds:

f x y = g (x,y)
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Uncurrying

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > add1 = (+) 1

λ > :type add1

add1 :: Num a => a -> a

λ > add1 2

3

λ > :type uncurry (+)

uncurry (+) :: Num a => (a, a) -> a

λ > uncurry (+) (1,2)

3

λ > uncurry (+) 1

error.
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Uncurrying

λ > zipWith (+) [0..4] [10..14]

[10,12,14,16,18]

λ > :type (+)

(+) :: Num a => a -> a -> a

λ > :type map

map :: (a -> b) -> [a] -> [b]

λ > zip [0..4] [10..14]

[(0,10),(1,11),(2,12),(3,13),(4,14)]

λ > map (\(x,y) -> x+y) $ zip [0..4] [10..14]

[10,12,14,16,18]

λ > map (uncurry (+)) $ zip [0..4] [10..14]

[10,12,14,16,18]
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Currying

λ > :type fst

fst :: (a, b) -> a

λ > fst (1,2)

1

λ > fst 1

error.

λ > type curry fst

curry fst :: a -> b -> a

λ > f = curry fst 1

λ > :type f

f :: Num a => b -> a

λ > f 2

1
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Currying

λ > add p = fst p + snd p

λ > :type add

add :: Num a => (a, a) -> a

λ > add (1,2)

3

λ > add1 = curry add 1

λ > :type add1

add1 :: Num a => a -> a

λ > add1 2

3
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Flipping

flip :: (a -> b -> c) -> b -> a -> c

evaluates the function flipping the order of arguments

λ > (/) 1 2

0.5

λ > foldr (++) [] ["A","B","C","D"]

"ABCD"

λ > foldr (flip (++)) [] ["A","B","C","D"]

"DCBA"

λ > foldr (:) [] ['a'..'d']

"abcd"

λ > foldr (flip (:)) [] ['a'..'d']

error.
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Flipping

flip :: (a -> b -> c) -> b -> a -> c

evaluates the function flipping the order of arguments

λ > (/) 1 2

0.5

λ > foldr (++) [] ["A","B","C","D"]

"ABCD"

λ > foldr (flip (++)) [] ["A","B","C","D"]

"DCBA"

λ > foldr (:) [] ['a'..'d']

"abcd"

λ > foldr (flip (:)) [] ['a'..'d']

error.

54



Flipping

flip :: (a -> b -> c) -> b -> a -> c

evaluates the function flipping the order of arguments

flip1 :: (a -> b -> c) -> b -> a -> c

flip1 f x y = f y x

flip2 :: (a -> b -> c) -> b -> a -> c

flip2 f = \x -> \y -> f y x
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Flipping – Use cases

λ > foldr (:) [] [1..4]

[1,2,3,4]

λ > foldl (flip (:)) [] [1..4]

[4,3,2,1]

λ > foldl (-) 100 [1..4] -- (((100-1)-2)-3)-4

90

λ > foldr (-) 100 [1..4] -- 1-(2-(3-(4-100)))

98

λ > foldl (flip (-)) 100 [1..4] -- 4-(3-(2-(1-100)))

102

λ > foldr (flip (-)) 100 [1..4] -- (((100-4)-3)-2)-1

90
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Constant

const :: a -> b -> a

const x y always evaluates to x, ignoring its second argument.

λ > const 1 2

1

λ > const (2/3) (1/0)

0.6666666666666666

λ > const take drop 5 [1..10]

[1,2,3,4,5]

λ > foldr (\_ acc -> 1 + acc) 0 [1..10]

10

λ > foldr (const (1+)) 0 [1..10]

10
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Constant

const :: a -> b -> a

const x y always evaluates to x, ignoring its second argument.

const1 :: a -> b -> a

const1 x _ = x

const2 :: a -> b -> a

const2 = \x -> \_ -> x

56



Fun with flipping and constant

curry id = \x y -> id (x, y) -- def. curry

= \x y -> (x, y) -- def. id

= \x y -> (,) x y -- desugar

= \x -> (,) x -- eta reduction

= (,) -- eta reduction

λ > curry id 1 2

(1,2)

λ > (,) 1 2

(1,2)
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Fun with flipping and constant

uncurry const = \(x, y) -> const x y -- def. uncurry

= \(x, y) -> x -- def. const

= fst -- def. fst

λ > uncurry const (1, 2)

1

λ > fst (1, 2) -- from Data.Tuple (in Prelude)

1

57



Fun with flipping and constant

uncurry (flip const)

= \(x, y) -> (flip const) x y -- def. uncurry

= \(x, y) -> const y x -- def. flip

= \(x, y) -> y -- def. const

= snd -- def. snd

λ > uncurry (flip const) (1, 2)

2

λ > snd (1, 2) -- from Data.Tuple (in Prelude)

2
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Fun with flipping and constant

uncurry (flip (,))

= \(x, y) -> (flip (,)) x y -- def. uncurry

= \(x, y) -> (,) y x -- def. flip

= \(x, y) -> (y, x) -- desugar

λ > uncurry (flip (,)) (1, 2)

(2,1)

λ > import Data.Tuple

λ > :type swap

swap :: (a, b) -> (b, a)

λ > swap (1, 2)

(2,1)
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Processing lists – revisit

High-order functions

Origami programming

Curried functions & friends

Processing lists – revisit
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Rotations – revisit

Produce all rotations of a list.

λ > rotate []

[[]]

λ > rotate [1]

[[1]]

λ > rotate [1,2]

[[2,1],[1,2]]

λ > rotate [1,2,3]

[[3,1,2],[2,3,1],[1,2,3]]

λ > rotate [1,2,3,4]

[[4,1,2,3],[3,4,1,2],[2,3,4,1],[1,2,3,4]]
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Rotations – revisit

Produce all rotations of a list.

shift1 :: [a] -> [a]

shift1 [] = []

shift1 (x : xs) = xs ++ [x]

rotate1 :: [a] -> [[a]]

rotate1 [] = [[]]

rotate1 xs@( _ : xs') = foldl f [xs] xs'

where

f acc@(xs'' : _) _ = shift1 xs'' : acc
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Rotations – revisit

Produce all rotations of a list.

import Data.List

rotate2 :: [a] -> [[a]]

rotate2 xs = init $ zipWith (++) (tails xs) (inits xs)

-- tails [1,2,3,4] = [[1,2,3,4], [2,3,4], [3,4], [4], []]

-- inits [1,2,3,4] = [[], [1], [1,2], [1,2,3], [1,2,3,4]]
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Rotations – revisit

Produce all rotations of a list.

λ > let xs = [1,2,3,4] in rotate1 xs == rotate2 xs

False

λ > rotate1 [1,2,3,4]

[[4,1,2,3],[3,4,1,2],[2,3,4,1],[1,2,3,4]]

λ > rotate2 [1,2,3,4]

[[1,2,3,4],[2,3,4,1],[3,4,1,2],[4,1,2,3]]
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Finding (revisit)

Data.List.elem is the list membership predicate, usually written

in infix form, e.g., x `elem` xs. For the result to be False, the

list must be finite; True, however, results from an element equal to

x found at a finite index of a finite or infinite list.

-- foldr

elem1 :: a -> [a] -> Bool

elem1 x' xs = foldr f False xs

where

f x b = x == x' || b
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Finding (revisit)

Data.List.elem is the list membership predicate, usually written

in infix form, e.g., x `elem` xs. For the result to be False, the

list must be finite; True, however, results from an element equal to

x found at a finite index of a finite or infinite list.

-- eta-reduction

elem2 :: a -> [a] -> Bool

elem2 x' = foldr f False

where

f x b = x == x' || b
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Finding (revisit)

Data.List.elem is the list membership predicate, usually written

in infix form, e.g., x `elem` xs. For the result to be False, the

list must be finite; True, however, results from an element equal to

x found at a finite index of a finite or infinite list.

-- using a lambda

elem3 :: a -> [a] -> Bool

elem3 x' = foldr (\x b -> x == x' || b) False
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Finding

Exercice

Define elem using

filter :: (a -> Bool) -> [a] -> [a]

but not

length :: [a] -> Int.
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Finding

Exercice

Notice that

λ > 10 `elem1` [1..]

True

λ > 10 `elem1` [11..]

^C Interrupted.

Explain the two results (keep in mind the implementation of

elem1).
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Filtering (revisit)

Data.List.filter, applied to a predicate and a list, returns the

list of those elements that satisfy the predicate.

filter3 :: (a -> Bool) -> [a] -> [a]

filter3 p xs = foldr f [] xs

where

f x acc

| p x = x : acc

| otherwise = acc
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Repeating (revisit)

Data.List.repeat takes an element and returns an infinite list

that just has that element.

repeat4 :: a -> [a]

repeat4 x = foldr (\_ acc -> x : acc) [] [1..]
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Repeating (revisit)

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.
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Repeating (revisit)

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.

maximum4 :: Ord a => [a] -> a

maximum4 [] = error "empty list"

maximum4 (x : xs) = foldr f x xs

where

f x m = if x > m then x else m

maximum5 :: Ord a => [a] -> a

maximum5 [] = error "empty list"

maximum5 (x : xs) = foldr max x xs
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Repeating (revisit)

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.

maximum6 :: Ord a => [a] -> a

maximum6 [] = error "empty list"

maximum6 xs = foldl1 max xs

maximum7 :: Ord a => [a] -> a

maximum7 [] = error "empty list"

maximum7 xs = foldr1 max xs
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Remove duplicate

Data.List.nub :: Eq a => [a] -> [a]

The nub function removes duplicate elements from a list. In

particular, it keeps only the first occurrence of each element.

nub1 :: Eq a => [a] -> [a]

nub1 [] = []

nub1 (x : xs) = x : nub1 (filter (\y -> x /= y) xs)

nub2 :: Eq a => [a] -> [a]

nub2 [] = []

nub2 (x : xs) = x : nub2 xs'

where

xs' = filter (/= x) xs
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Remove duplicate

Data.List.nub :: Eq a => [a] -> [a]

The nub function removes duplicate elements from a list. In

particular, it keeps only the first occurrence of each element.

nub1 :: Eq a => [a] -> [a]

nub1 [] = []

nub1 (x : xs) = x : nub1 (filter (\y -> x /= y) xs)

nub2 :: Eq a => [a] -> [a]

nub2 [] = []

nub2 (x : xs) = x : nub2 xs'

where

xs' = filter (/= x) xs
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Remove duplicate

Data.List.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==

function.
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Remove duplicate

Data.List.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==

function.

nubBy1 :: Eq a => (a -> a -> Bool) -> [a] -> [a]

nubBy1 eq [] = []

nubBy1 eq (x : xs) = x : xs'

where

xs' = nubBy1 eq (filter (\y -> not (eq x y)) xs)

nub3 :: Eq a => [a] -> [a]

nub3 = nubBy (==)
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Remove duplicate

Data.List.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==

function.

elemBy :: (a -> a -> Bool) -> a -> [a] -> Bool

elemBy _ _ [] = False

elemBy eq y (x : xs) = x `eq` y || elemBy eq y xs

nubBy2 :: (a -> a -> Bool) -> [a] -> [a]

nubBy2 eq xs = go xs []

where

go [] _ = []

go (y:ys) xs

| elemBy eq y xs = go ys xs

| otherwise = y : go ys (y : xs) 67
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