Functional programming
Lecture 04 — High-order functions
(version: 2025-11-03-17:03:06)

Stéphane Vialette
stephane.vialette@univ-eiffel.fr

Laboratoire d'Informatique Gaspard-Monge, UMR CNRS 8049,
Université Gustave Eiffel

mailto:stephane.vialette@univ-eiffel.fr

High-order functions

High-order functions

High-order functions

e A function that takes a function as an argument or returns a
function as a result is called a high-order function.

e Because the term curried already exists for returning functions
as results, the ther high-order is often just used for taking
functions as arguments.

e Using high-order functions considerably increases the power of
Haskell by allowing common programming patterns to be
encapsulated as functions within the language itself.

Data.List.filter :: (a -> Bool) -> [a] -> [al

filter applied to a predicate and a list, returns the list of those
elements that satisfy the predicate.

Data.List.filter :: (a -> Bool) -> [a] -> [al

filter applied to a predicate and a list, returns the list of those
elements that satisfy the predicate.

A > filter even [1..10]

[2,4,6,8,10]

A> filter (\x -> x "mod~ 2 == 0) [1..10]
[2,4,6,8,10]

A > filter (\x -> even x && odd x) [1..10]
(]

A > filter (_ -> True) [1..10]
[1,2,3,4,5,6,7,8,9,10]

A> filter (_ -> False) [1..10]

(]

Data.List.filter :: (a -> Bool) -> [a] -> [al

filter applied to a predicate and a list, returns the list of those
elements that satisfy the predicate.

A> filter (\x -> x > 5) [1,5,2,6,3,7,4,8]
6,7,8]

A > filter (> 5) [1,5,2,6,3,7,4,8]

[6,7,8]

A > filter (\x -> x <= 5) [1,5,2,6,3,7,4,8]
[1,5,2,3,4]

A > filter (<= 5) [1,5,2,6,3,7,4,8]
[1,5,2,3,4]

Data.List.filter :: (a -> Bool) -> [a] -> [al

filter applied to a predicate and a list, returns the list of those
elements that satisfy the predicate.

-—- recursive
filterl :: (a -> Bool) -> [a] -> [a]
filter1 _ [1 = []

filterl p (x : xs)

| px
| otherwise

x : filterl p xs

filterl p xs

-— witth a list comprehension
filter2 :: (a -> Bool) -> [a] -> [a]
filter2 p xs = [x | x <- xs, p x]

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying £ to each element of xs.

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying £ to each element of xs.

A > map (*¥2) [1..5]

[2,4,6,8,10]

A > map even [1..5]
[False,True,False,True,False]

A> map (\x -> 2*x) [1..5] -- == map (2%) [1..5]
[2,4,6,8,10]

A> map (\x -> [x]) [1..5]

(011,021,131, [41,[5]1]

A > map (\x -> replicate x x) [1..5]
([11,[2,2]1,[3,3,3],[4,4,4,4],[5,5,5,5,5]]

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]
map f xs is the list obtained by applying £ to each element of xs.

A > map (map (x 2)) [[1,2,3],[4,5,6],[7,8,9]]
[[2,4,6],[8,10,12],[14,16,18]]

A > map (filter even) [[1,2,3],[4,5,6],[7,8,9]]
[[2],[4,6],[8]]

A > map length [[1,2,3],[4,5,6],[7,8,9]]
(3,3,3]

A > map (take 2) [[1,2,3],[4,5,6]1,[7,8,9]]
[[t,21,[4,5],[7,8]]

Mapping

Data.List.map :: (a -> b) -> [a] -> [b]
map f xs is the list obtained by applying £ to each element of xs.

-— recursive

mapl :: (a -> b) -> [a] -> [b]
mapl _ [] = []

mapl f (x : xs) = f x : mapl f xs

-— witth a list comprehension
map2 :: (a -> b) -> [a] -> [b]
mapl f xs = [f x | x <= xs]

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

1 2 1 20 0 0 0O
M= 13 4 M =13 4 0 00 0O

5 6 5 6 00 0 0O
m = [[1,2], m' = [[1,2,0,0,0,0,0],

[3,4], [3,4,0,0,0,0,0],

(5,6]1] (5,6,0,0,0,0,0]]

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

A>m = [[1,2],[3,4]1,[5,6]]

A > addExtraColumns O m

[[1,21,[3,4],[5,6]]

A > addExtraColumns 1 m

[(f+,2,01,I[3,4,01,[5,6,0]]

A > addExtraColumns 5 m
(ft1,2,0,0,0,0,01,I3,4,0,0,0,0,0]1,[5,6,0,0,0,0,0]]

Mapping — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

addExtraColumnsi :: Num a => Int -> [[a]] -> [[al]
addExtraColumnsl k xss = map (++ replicate k 0) xss

addExtraColumns? :: Num a => Int -> [[a]] -> [[al]
addExtraColumns?2 k xss = map (++ zs) xss
where

zs = replicate k O

Reversing

Exercice

Define a function nestedReverse which takes a list of strings as
its argument and reverses each element of the list and then
reverses the resulting list.

A > nestedReverse ["in", "the", "end"]
[lldnell lleht n llni"] .

Inserting front

Exercice

Define a function atFront :: a -> [[al] -> [[a]l] which
takes an object and a list of lists and sticks the object at the front
of every component list.

A > atFront 7 [[1,2], [1, [3]]
[[7,1,21, [71, [7,3]]

Exercice

the function filter can be defined in terms of concat and map:

filter p = concat . map box
where

box x = ...

Complete this definition of filter by defining box.

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.
A > takeWhile (< 10) [1..20]

(1,2,3,4,5,6,7,8,9]
A > takeWhile odd ([1,3..10] ++ [1..10])

[1,3,5,7,9,1]

A > takeWhile even [1..10]

(]

A > takeWhile (> 0) (map ("mod™ 5) [1..10]1)
[1,2,3,4]

Taking with a predicate

Data.List.takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.

takeWhilel :: (a -> Bool) -> [a] -> [a]
takeWhilel _ [] = []
takeWhilel p (x : xs)

| px

| otherwise

x : takeWhilel p xs
(]

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after
takeWhile p xs.

10

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after
takeWhile p xs.

A > dropWhile (< 10) [1..20]
[10,11,12,13,14,15,16,17,18,19,20]

A > dropWhile odd ([1,3..10] ++ [1..10])
[2,3,4,5,6,7,8,9,10]

A > dropWhile even [1..10]
[1,2,3,4,5,6,7,8,9,10]

A > dropWhile (> 0) (map ("mod™ 5) [1..101)
[0,1,2,3,4,0]

A > dropWhile (< 3) (takeWhile (< 6) [1..10])
[3,4,5]

10

Dropping with a predicate

Data.List.dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after
takeWhile p xs

dropWhilel :: (a -> Bool) -> [a] -> [a]
dropWhilel _ [] = []
dropWhilel p (x : xs)

| px = dropWhilel p xs

| otherwise = x : xs

dropWhile2 :: (a -> Bool) -> [a] -> [al
dropWhile2 _ [] = []
dropWhile2 p xs@(x : xs')

| p x = dropWhile2 p xs'

| otherwise xS

10

Iterating

Data.List.iterate :: (a -> a) -> a —-> [a]

iterate creates an infinite list where the first item is calculated by
applying the function on the second argument, the second item by
applying the function on the previous result, and so on.

A > iterate (\x -> x+1) 1 -- == qterate (+1) 1
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, ...
“C Interrupted.

A > take 10 (iterate (\x -> x+1) 1)
[1,2,3,4,5,6,7,8,9,10]

A > take 10 (iterate (+ 1) 1)

[1,2,3,4,5,6,7,8,9,10]

A > takeWhile (< 10) (iterate (+ 1) 1)
[1,2,3,4,5,6,7,8,9]

11

Iterating

Data.List.iterate :: (a -> a) -> a —-> [a]

iteratel :: (a -> a) -> a -> [a]
iteratel f x = let y = f x in x : iteratel f y
-- iteratel f ¢ =z : iteratel f (f z)

iteratel f x

x : iteratel (f x)
x : £ x : iteratel (f (f x))
x : fx: f (fx): iteratel (f (f (f x)))

11

Iterating

Data.List.iterate :: (a -> a) -> a —-> [a]

iterate2 :: (a -> a) -> a -> [a]

iterate2 f x = x : [f y | y <~ iterate2 f x]

iterate2 f x

x : [f y | y<- iterate2 f x]
x : £fx: [fy | y<- iterate2 f (f x)]
x:fx:f (Ex): £y | y<- iterate2 £ (£ (£ x))]

11

Zipping with functions

Data.List.zipWith :: (a -> b -> ¢) -> [a] -> [b] -> [c]

zipWith generalises zip by zipping with the function given as the
first argument, instead of a tupling function.

A > zipWith (+) [0..4] [10..14]

[10,12,14,16,18]

A> zipWith (\x y -> (x,y)) [1,2,3] ['a','b',"'c']
[(1,'a"),(2,'p'),(3,"'c")]

A > zipWith (,) [1,2,3] ['a','D','c"']
[(1,'a"),(2,'b"),(3,'c")]

A> f x b = if b then x*10 else x

A > zipWith f [1,2,3,4] [True,False,True,False]
[10,2,30,4]

12

Zipping with functions

Data.List.zipWith :: (a -> b -> ¢) -> [a] -> [b] -> [c]

zipWithl :: (a -> b -> ¢) -> [a] -> [b] -> [c]
zipWithl _ [] _ =[]

zipWithl _ _ [] =[]
zipWithl f (x : xs) (y : ys)

f xy : zipWithl f xs ys

zip2 :: [a] -> [b] -> [(a,b)]
zip2 = zipWithl (,)

12

Zipping with functions — In practice

Determine whether a list is in non-decreasing order.

nonDecl :: Ord a => [a] -> Bool

nonDecl [] = True

True
x1 <= x2 && nonDecl (x2 : xs)

nonDecl [_]

nonDecl (x1 : x2 : xs)

nonDec2 :: Ord a => [a] -> Bool
nonDec?2 [] = True
nonDec2 [_] = True

nonDec2 (x1 : xs0(x2 : _)) x1 <= x2 && nonDec2 xs

nonDec3 :: Ord a => [a] -> Bool
nonDec3 xs = and $ zipWith (<=) xs (tail xs)

13

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

14

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you

want to add extra columns to pad on the right side.

12 1200000
M= 1|3 4 M =13 40000 0
5 6 56 00000
m = [[1,2], m' = [[1,2,0,0,0,0,01,
(3,41, [3,4,0,0,0,0,0],
(5,61] [5,6,0,0,0,0,01]

14

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

A>m = [[1,2],[3,4],[5,6]]

A > addExtraColumns O m
[[1,2],[3,4],[5,6]1]

A > addExtraColumns 1 m
(f1,2,01,03,4,01,[5,6,01]

A > addExtraColumns 5 m
(f1,2,0,0,0,0,01,[3,4,0,0,0,0,01,[5,6,0,0,0,0,01]

14

Zipping with functions — In practice

You are constructing a numeric matrix (as a list of lists), but you
want to add extra columns to pad on the right side.

addExtraColumnsl :: Num a => Int -> [[a]] -> [[al]
addExtraColumnsl k xss = map (++ zs) xss
where

zs = replicate k O

addExtraColumns2 :: Num a => Int -> [[al]l -> [[all]
addExtraColumns2 k xss = zipWith (++) xss zss
where

zss = repeat (replicate k 0)

14

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states

that
1

A
4 ~ 3 5 7 9

15

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states

that
Mo 1,111
4 3 5 7 9
approxPil k = 4 * sum (take k xs)
where
ss = [(-1)"n | n <= [0..]]
Xs =

zipWith (*) ss (map (1/) (iterate (+2) 1))

approxPi2 k = 4 * sum (take k xs)
where
ss =1 : [(-1)*s | s <- ss]

xs = zipWith (%) ss (map (1/) (iterate (+2) 1))

15

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states

that
1

U 1 1 1
1773 57770
A> pi

3.141592653589793

A> let k = 10 in approxPil k
3.0418396189294032

A> let k = 100 in approxPil k
3.1315929035585537

A > let k = 10000 in approxPil k
3.1414926535900345

15

Zipping with functions — In practice

The Leibniz formula for 7t, named after Gottfried Leibniz, states

that
1

U 1 1 1
1773 57770
A > ks = iterate (*10) 1

A > mapM_ print (take 8 [pi / approxPil k | k <- ks])
0.7853981633974483

.0327936535639899

.0031931832582315

.0003184111600008

.0000318320017856

.0000031831090173

.0000003183099935

.00000003183099

e e

15

1-conversion

An eta conversion (also written 1-conversion) is adding or
dropping of abstraction over a function.

The following two values are equivalent under n-conversion:
\x -> someFunction x

and

someFunction

Converting from the first to the second would constitute an
n-reduction, and moving from the second to the first would be an
eta-expansion.

The term 1-conversion can refer to the process in either direction.

16

1-conversion

f :: T1 -> T2 -> T3
ftlt2 =g tl t2

1-reduction

y

f:: Tl ->T2 -> T3
ftl=gtl

n-reduction

: T1 -> T2 -> T3

f
f=g

17

The composition operator

The high-order library operator . returns the composition of two

function as a single function
(.) :: (b->¢c) > (a->b) > (a->c)
f.g=\x—>1f (gx)

f . g, which is read as £ composed with g, is the function that
takes an argument x, applies the function g to this argument, and

applies the function £ to the result.

18

The composition operator

Composition can be used to simplify nested function applications,
by reducing parentheses ans avoiding the need to explicitly refer to
the initial argument.

19

The composition operator

Composition can be used to simplify nested function applications,
by reducing parentheses ans avoiding the need to explicitly refer to
the initial argument.

oddl :: Integral a => a -> Bool
oddl n = not (even n)

odd2 :: Integral a => a -> Bool
0odd2 n = (not . even) n

-— 4.e., 0dd2 = \z -> not (even n)

odd3 :: Integral a => a -> Bool

odd3 not . even

19

The composition operator

Composition can be used to simplify nested function applications,
by reducing parentheses ans avoiding the need to explicitly refer to
the initial argument.

twicel :: (a -> a) —> a —> a
twicel f x = f (f x)

twice2 :: (a -> a) > a —> a
twice2 f x = (f . f) x -- d.e., twice2 = \z > f (f z)
twice3 :: (a -> a) > a —> a

twiced f = f . £

19

The composition operator

Composition is associative

f.(g.h=1f.g.h

for any functions £, g and h of the appropriate types.

sumSqrEvenl :: Integral a => [a] -> a

sumSqrEvenl xs = sum (map ("2) (filter even xs))

sumSqrEven2 :: Integral a => [a] -> a

sumSqrEven2 xs = (sum . map ("2) . filter even) xs

sumSqrEven3 :: Integral a => [a] -> a
sumSqrEven3 = sum . map ("2) . filter even

20

The composition operator

Composition also has an identity, given by the identity function:

id :: a > a
id = \x > x

For any function £:

id . £ =f
f . id = £

21

The composition operator

Composition also has an identity, given by the identity function:

A> f = head . id

A>f [1,2,3,4]
1

Hh
]

head . id

\x -> head (id x)
\x -> head x
head

21

The composition operator

Composition also has an identity, given by the identity function:

A> g = id . head

A> g [1,2,3,4]
1

id . head

\x -> id (head x)
\x -> head x
head

g

21

The composition operator

Composition also has an identity, given by the identity function:
A > :type take

take :: Int -> [a] -> [a]

A> f = take . id

A> f 3 [1..10]

[1,2,3]

f = take . id
= \x -> take (id x)
= \x -> take x —— :: Int -> ([a] -> [a])
= take

21

The composition operator

Composition also has an identity, given by the identity function:
A > :type take

take :: Int -> [a] -> [a]

A> g = id . take

A> g 3 [1..10]

[1,2,3]

g = id . take
= \x -> id (take x)
= \x -> take x —— :: Int -> ([a] -> [a])
= take

21

IIHiiHHHHHHiHIII

Be sure to understand the following:

A> ((+1) . (+D) 1

3

A> ((+) . (+1)) 100 10

111

A> ((++) . (#+ " ")) "hello" "world!"

"hello world!"

22

IIHiHHIHHH%IHHIII

Be sure to understand the following:

A > trim = let f = reverse . dropWhile (== ' ') in f . £
A > :type trim

trim :: [Char] -> [Char]

A> trim " ab cd ef g hi "

"ab cd ef g hi"

23

Composition (difficult !)

Explain :

A>f = N\xyz->x). (\ab > axb)
A>f 1234

4

A>g=Nxyz->y). (\ab -> axb)

A>g 1234
<interactive>: error:
Could not deduce (Num tO)

24

The function application operator

The $ is an operator for function application.
($) :: (a->b) ->a ->b
f$x=1fx

All this does is apply a function. So, £ $ x exactly equivalent to
f x:

A > head $ [1,2,3,4]
1

A> tail $ [1,2,3,4]
[2,3,4]

A > map (+ 1) $ [1,2’3:4]
(2,3,4,5]

25

The function application operator

This seems utterly pointless, until you look beyond the type.

A > :info ($)

($) :: (& ->b) ->a->b -- Defined in ‘GHC.Base’
infixr 0 $

26

The function application operator

This seems utterly pointless, until you look beyond the type.

A > :info ($)
($) :: (& ->b) ->a->b -- Defined in ‘GHC.Base’
infixr 0 $

This little note holds the key to understanding the ubiquity of ($):
infixr O.
e infixr tells us it's an infix operator with right associativity.
e O tells us it has the lowest precedence possible.

In contrast, normal function application (via white space)

e is left associative and

e has the highest precedence possible (10).

26

The function application operator

Compare

A > take 10 "Haskell " ++ "rocks!"
"Haskell rocks!"

A > (take 10 "Haskell ") ++ "rocks!"
"Haskell rocks!"

with

A > take 10 $ "Haskell " ++ "rocks!"
"Haskell ro"
A > take 10 ("Haskell " ++ "rocks!")
"Haskell ro"

27

The function application operator

One pattern where you see the dollar sign used sometimes is
between a chain of composed functions and an argument being
passed to (the first of) those.

A> sum . drop 3 . take 5 [1..10]
error.

A> sum . drop 3 . take 5 $ [1..10]
9

A> (sum . drop 3 . take 5) [1..10]
9

A> sum . drop 3 $ take 5 [1..10]
9

28

The function application operator

Function application.

A>map (\f -> £ 2) [(x i) | i <- [1,2,3,4,5]]

[2,4,6,8,10]

A>map 2 [(x i) | i <- [1,2,3,4,5]]
error.

A>map ($ 2) [(x 1) | i <- [1,2,3,4,5]]
[2,4,6,8,10]

A>map ($ 2) [fi | £ < [(%,#], 1< [1,2,3,4,5]]
[2,4,6,8,10,3,4,5,6,7]

29

$ is just an identity function for ... functions.

($) :: (a->b) —>a->b
(a ->Db) > (a -> b)

id :: a -> a
(a =>b) > (a->b) —— fora ~a->0

30

$ is just an identity function for ... functions.
($) :: (@ ->Db) >a->b
(a ->Db) > (a -> b)
id :: a -> a
(a =>b) > (a->b) —— fora "~ a->0
A> (sum . drop 3 . take 5) [1..10]
9

A> sum . drop 3 $ take 5 [1..10]
9

A> (sum . drop 3) “id> take 5 [1..10]
9

A> id (sum . drop 3) (take 5 [1..10])
9 30

Origami programming

Origami programming

31

Folding

e In functional programming, fold is a family of higher order
functions that process a data structure in some order and
build a return value.

e This is as opposed to the family of unfold functions which
take a starting value and apply it to a function to generate a
data structure.

e A fold deals with two things:

1. a combining function, and

2. a data structure.
The fold then proceeds to combine elements of the data
structure using the function in some systematic way.

32

Folding right

foldr :: (a -=>b ->Db) -=>b -> [a] > b
foldr f z [] =z
foldr f z (x : xs) = f x (foldr f z xs)

foldr f z
/‘\
f
/\ 7/ \
1 f
/\ 7/ \
2 f
/\ 7/ \
3 f
/\ 7/ \
4 f
/\ / N\

] 5 z
33

Folding right

foldr ::

foldr
foldr

foldr
= (+)
= (+)
= (+)
= ()
= (+)
= (+)
= (+)
= (+)
= 10

N = e e = =

f z []
fz (x: xs) =f x (foldr f z xs)

(a->b->Db) >Db->[a] > b

=z

(+) 0 [1,2,3,4]
(foldr

((+
((+)
((+)
(+
(+
(+
9

2
2
2
2
2
2

(+) 0 [2,3,4]

(foldr (+) 0 [3,4])

((+) 3 (foldr (+) 0 [41)

((+) 3 ((+) 4 (foldr (+) 0 [1)
((+) 3 ((+) 4 0) -- stop recursion
((+) 34)

7)

34

Folding right

foldr :: (a ->b ->Db) ->b -> [a] > b
foldr f z [] =z
foldr f z (x : xs) = f x (foldr f z xs)

foldr (:) [1 [1,2,3,4]

= (:) 1 (foldr (:) [1 [2,3,4]

= (:) 1 ((:) 2 (foldr (:) [I [3,4D)

= (:) 1 ((¢:) 2 ((:) 3 (foldr (:) [1 [4D)

= () 1 ((:) 2 ((:) 3 ((:) 4 (foldr (:) [1 [

= (:) 1 ((:) 2 ((:) 3 ((:) 4 [1) —- stop recursion
= () 1 () 2 () 34:[

= ()1 :)23:4: [

= ()12 :3:4:10D

=1:2:3:4:1] - [1,2,3,4]1

35

Folding right

foldr :: (a ->b ->Db) ->b -> [a] > b
foldr f z [] =z
foldr f z (x : xs) = f x (foldr f z xs)

let f x acc = [x] : acc in foldr f [] [1,2,3,4]
(foldr £ [1 [2,3,4]

(f 2 (foldr £ [1 [3,41))

(f 2 (£ 3 (foldr £ [1 [41)))

(f 2 (£ 3 (f 4 (foldr £ [1 [1))))

(f 2 (£3 4[N -- stop recursion
(f 2 (£ 3 [4] : [N

(£ 2 [3] : [4] : D)

([21 : 31 : [41 : [

= [11 « [2] : [3] : [41 : 00 -- [[17,[2],[3],[4]1]

N e e e e e
N N N NN

]
Hh Hh Hh Fh Fh Fh Hh b

36

Folding right

foldr ::
f z [] =z
fz (x: xs) =f x (foldr f z xs)

foldr
foldr

let f

(f
(f
(f
(£
(f
(f

1]
Hh Hh Fh Hh Fh Fh Hh Fh
N e e e e e

(a->b->Db) >Db->[a] > b

x acc = acc ++ [x] in foldr f [] [1,2,3,4]

2

N NN NN

(foldr £ [1 [2,3,4]

(folar £ [1 [3,41))

(f 3 (foldr £ [1 [41)))

(f 3 (£ 4 (foldr £ [1 [1))))

(£ 3 (4 [N -- stop recursion
(£ 3 (01 ++ [41)))

(01 ++ [4]1 ++ [31))

(01 ++ [4] ++ [3] ++ [2])

= [1 ++ [4] ++ [3] ++ [2] ++ [11 -- [4,3,2,1]

37

Folding left

foldl :: (b ->a ->b) ->b -> [a] > b
foldl f z [] =z
foldl f z (x : xs) = foldl f (f z x) xs

foldl £ z

,/\.f

/\ /N
1 : f 5

/ N\ / N\

2 : f 4

/N /\

3 3

/\ /\
/\ /\

38

Folding left

foldl ::

(b->a->b) =>b ->[a] -=> b
foldl f z []
foldl f z (x : xs) = foldl £ (f z x) xs

=z

foldl (+) 0 [1,2,3,4]

= foldl (+)
= foldl (+)
= foldl (+)
= foldl (+)
= ((+) ((+)
= ((+) ((+)
= ((+) ((+)
= ((+) 6 4)
= 10

€C)
€6)
((+
((+
€C)
€C)
3 3)

0 1) [2,3,4]

((+) 0 1) 2) [3,4]

((+) ((+) 0 1) 2) 3) [4]

((+) ((+) ((+) 0 1) 2) 3) 4) []

((+) 0 1) 2) 3) 4) -- stop recursion
12) 3) 4)

4)

39

Folding left

foldl :: (b ->a ->Db) ->b -> [a] > b

foldl f z []

foldl f z (x :

let fC acc x
foldl fC (fC
foldl fC (fC
foldl fC (fC
foldl fC (£fC
(fC (£C (£fC (

(fC (fC (fC 1 :
(fC (£C 2 : 1 :
(fC 3 : 2 :1:
4 : 3 :2 :1:

=z
xs) = foldl £ (f z x) xs

= x : acc in foldl fC [] [1,2,3,4]
1 1) [2,3,4]

(fc [0 1) 2) [3,4]

(fC (£fC [1 1) 2) 3) [4]

(fC (fC (£C [1 1) 2) 3) 4) [

fC [1 1) 2) 3) 4) -- stop recursion
02 3) 4)

0 3) 4)

0 4

(] -- [4,3,2,1]

40

Folding left

foldl :: (b ->a ->Db) ->b -> [a] > b
foldl f z [] =z
foldl f z (x : xs) = foldl £ (f z x) xs

let fC acc x = [x]: acc in foldl fC [] [1,2,3,4]

foldl fC (fC [1 1) [2,3,4]

foldl fC (fC (fC [1 1) 2) [3,4]

foldl fC (fC (fC (£C [1 1) 2) 3) [4]

foldl fC (fC (fC (£C (£fC [1 1) 2) 3) 4) []

= (fC (fC (£C (fC [1 1) 2) 3) 4) -- stop recursion

= (fC (fC (fC [1] : [1 2) 3) 4)

= (fC (fC [2] : [1] : [0 3) 4)

= (fC [3] : [2] : [11 : [1 4

= [4] : [3] : [2] : [1] : [I -- [[4]1,[3],[2],[

41

Folding left

foldl :: (b ->a ->Db) ->b -> [a] > b
foldl f z [] =z
foldl f z (x : xs) = foldl £ (f z x) xs

let fC acc x = acc ++ [x] in foldl fC [] [1,2,3,4]
= foldl fC (fC [1 1) [2,3,4]
= foldl fC (fC (fC [1 1) 2) [3,4]
= foldl fC (£fC (fC (£fC [1 1) 2) 3) [4]
= foldl fC (£C (£fC (£C (£fC [1 1) 2) 3) 4) []
= (fC (fC (£C (fC [1 1) 2) 3) 4) -- stop recursion
= (fC (fC (fC [1 ++ [11 2) 3) 4)
= (fC (£C [1 ++ [1] ++ [2] 3) 4)
= (£C [1 ++ [1] ++ [2] ++ [3] 4)
= [1 ++ [1] ++ [2] ++ [3] ++ [4] -- [1,2,3,4]

42

Folding

foldr f z foldl f z
f
/ N\ /\
1 f
/ N\ /\
2 f
/\ /\
3
/\ /\

/\ /\

43

Removing duplicates

Exercice
The function remDups removes adjacent duplicates from a list.

A > remDups [1,2,2,3,3,3,1,1]
[1,2,3,1]

Define remDups using foldr. Give another definition using foldl.

44

Folding integers

Exercice

The fold on integers (let's call it f01dI) can be defined as follows:

foldl :: (a -> a) -> a -> Int —> a
foldl _ q 0 = q
foldIl f q i = £ . foldl £ q $ pred i

Define the functions add, mult and exp in terms of fo1dI. Of

course, you're not allowed to use (+) and (*).

45

Curried functions & friends

Curried functions & friends

46

Currying is the process of transforming a function that takes
multiple arguments in a tuple as its argument, into a function that
takes just a single argument and returns another function which
accepts further arguments, one by one, that the original function

would receive in the rest of that tuple.
f::a->b->c --4d.e. f::a-> (b ->c)
is the curried form of

g :: (a, b) > c

In Haskell, all functions are considered curried: That is, all

functions in Haskell take just one argument.

47

Currying / uncurrying

f:ra->b->c --1d.e f::ra->((->c
g :: (a, b) > ¢

You can convert these two types in either directions with the
Prelude functions curry and uncurry:

curry :: ((a, b) > c¢c) > a —>b -> ¢
uncurry :: (a -> b -> ¢c) > (a, b) > c
We have:

f = curry g

g = uncurry f

48

Currying / uncurrying

f:ra->b->c --1d.e f::ra->((->c
g :: (a, b) > ¢

You can convert these two types in either directions with the
Prelude functions curry and uncurry:

curry :: ((a, b) > c¢c) > a —>b -> ¢
uncurry :: (a -> b -> ¢c) > (a, b) > c

Both forms are equally expressive. It holds:

fxy=g (x,y)

48

A> :type (+)
(#) :: Num a => a -> a —> a

A> addl = (+) 1
A > :type addl

addl :: Num a => a > a
A > addil 2
3

A > :type uncurry (+)
uncurry (+) :: Num a => (a, a) -> a

A > uncurry (+) (1,2)
3

A > uncurry (+) 1

error.

49

A > zipWith (+) [0..4] [10..14]
[10,12,14,16,18]

A> :type (+)
(+#) :: Num a => a -> a -> a

A > :type map
map :: (a -> b) -> [a] -> [b]

A > zip [0..4] [10..14]
[€0,10),(1,11),(2,12),(3,13),(4,14)]

A> map (\(x,y) -> x+y) $ zip [0..4] [10..14]
[10,12,14,16,18]

A > map (uncurry (+)) $ zip [0..4] [10..14]
[10,12,14,16,18]

50

A > :type fst
fst :: (a, b) —> a

A> fst (1,2)
1

A> fst 1

error.

A > type curry fst
curry fst :: a -> b > a

A> f = curry fst 1
A> :type f
f :: Numa=>b ->a

A>f 2
1

51

A> add p = fst p + snd p
A > :type add
add :: Num a => (a, a) -> a

A > add (1,2)
3

A > addl = curry add 1
A > :type addl

addl :: Num a => a —-> a
A > addl 2
3

52

Flipping

flip :: (@ =>b > ¢c) > b ->a -> ¢

evaluates the function flipping the order of arguments

A> (/) 12
0.5

A > foldr (++) [] ["A”,"B","C",”D"]
"ABCD"

A > foldr (fllp (++)) [] [IIAII,IIBII’IICII’HDII]
"DCBA"

A> foldr (:) [1 ['a'..'d']
"abcd"

A > foldr (flip (:)) [] ['a'..'d']

error.

53

Flipping

flip :: (a => b > ¢c) -=> b -> a -> ¢

evaluates the function flipping the order of arguments

A> (/) 12
0.5

A > foldr (++) [] ["A","B","C","D"]
"ABCD"

A > foldr (flip (++)) [] ["A","B","C","D"]
"DCBA"

A> foldr (:) []1 ['a'..'d']
"abed"

A > foldr (flip (:)) [1 ['a'..'d']

error.

54

Flipping

flip :: (a => b > ¢c) -=> b -> a -> ¢

evaluates the function flipping the order of arguments

flipl :: (a -=>b ->c¢c) > b -> a -> ¢
flipl f xy=£f y x

flip2 :: (a > b ->¢) ->b > a -> ¢
flip2 £ = \x > \y > f y x

54

Flipping — Use cases

A > foldr (:) [1 [1..4]
[1,2,3,4]

A > foldl (flip (:)) [1 [1..4]
[4,3,2,1]

A > foldl (-) 100 [1..4] -— (((100-1)-2)-3)-4
90
A > foldr (-) 100 [1..4] -— 1-(2-(3-(4-100)))
98
A > foldl (flip (-)) 100 [1..4] -- 4-(3-(2-(1-100)))
102
A > foldr (flip (-)) 100 [1..4] -- (((100-4)-3)-2)-1
90

55

const :: a -> b -> a

const x y always evaluates to x, ignoring its second argument.

A > const 1 2
1

A > const (2/3) (1/0)
0.6666666666666666

A > const take drop 5 [1..10]

[1,2,3,4,5]

A > foldr (_ acc -> 1 + acc) 0 [1..10]
10

A > foldr (const (1+)) 0 [1..10]

10

56

IIHiHHHHHIHIII

const :: a -> b -> a

const x y always evaluates to x, ignoring its second argument.

constl :: a > b -> a
constl x _ = x
const?2 :: a > b -> a

const2 = \x > _ —> x

56

Fun with flipping and constant

curry id = \x y -> id (x, y)
\x y -> (x, y)
\xy > () xy
\x > (,) x

= ()

A> curry id 1 2
(1,2)

A> () 12
(1,2)

def. curry
def. id
desugar

eta reduction

eta reduction

57

Fun with flipping and constant

uncurry const = \(x, y) -> const x y -- def. uncurry
=\(x, y) >x -- def. const
= fst -— def. fst

A > uncurry const (1, 2)
1

A> fst (1, 2) -- from Data.Tuple (in Prelude)
1

57

Fun with flipping and constant

uncurry (flip const)

= \(x, y) -> (flip comnst) x y -- def. uncurry
= \(x, y) -> const y x -- def. flip
=\(x, y) >y -- def. const

= snd -- def. snd

A > uncurry (flip comst) (1, 2)

2

A> snd (1, 2) -- from Data.Tuple (in Prelude)
2

57

Fun with flipping and constant

uncurry (flip (,))

= \(x, y) -> (flip (,)) xy -- def. uncurry
=\(x,) > () yx -- def. flip
=\,) > (, x -- desugar

A > uncurry (flip (,)) (1, 2)
2,10

A > import Data.Tuple

A > :type swap

swap :: (a, b) -> (b, a)

A > swap (1, 2)

2,1

57

Processing lists — revisit

Processing lists — revisit

58

Rotations — revisit

Produce all rotations of a list.
A > rotate []
[011

A > rotate [1]
[[11]

A > rotate [1,2]
[[2,11,[1,2]]

A > rotate [1,2,3]
(es,1,21,12,3,11,[1,2,31]

A > rotate [1,2,3,4]
(4,1,2,31,13,4,1,21,[2,3,4,1]1,[1,2,3,4]1]

59

Rotations — revisit

Produce all rotations of a list.

shiftl :: [a] —> [a]
shiftl [] = [

shiftl (x : xs) = xs ++ [x]
rotatel :: [a] -> [[all
rotatel [1 = [[]]
rotatel xs@(_ : xs') = foldl f [xs] xs'
where
f acc@(xs'' : _) _ = shiftl xs'' : acc

59

Rotations — revisit

Produce all rotations of a list.

import Data.List

rotate2 :: [a] -> [[a]]
rotate2 xs = init $§ zipWith (++) (tails xs) (inits xs)

-- tatls [1,2,3,4]
-- tnits [1,2,3,4]

[[1,2,3,4], [2,3,4], [3,4]1, [4],
[, [17, (1,27, [1,2,3],

59

Rotations — revisit

Produce all rotations of a list.

A> let xs = [1,2,3,4] in rotatel xs == rotate2 xs
False

A > rotatel [1,2,3,4]
(r4,1,2,31,13,4,1,21,[2,3,4,11,[1,2,3,4]]

A > rotate2 [1,2,3,4]
[ft+,2,3,41,12,3,4,11,03,4,1,2],[4,1,2,3]1]

59

Finding (revisit)

Data.List.elem is the list membership predicate, usually written
in infix form, e.g., x “elem” xs. For the result to be False, the
list must be finite; True, however, results from an element equal to
x found at a finite index of a finite or infinite list.

-- foldr
eleml :: a —> [a] -> Bool
eleml x' xs = foldr f False xs
where
fxb=x==x"1]|0b

60

Finding (revisit)

Data.List.elem is the list membership predicate, usually written
in infix form, e.g., x “elem” xs. For the result to be False, the
list must be finite; True, however, results from an element equal to
x found at a finite index of a finite or infinite list.

-- eta-reduction

elem2 :: a -> [a] -> Bool

elem2 x' = foldr f False
where

fxb=x=x"1||b

60

Finding (revisit)

Data.List.elem is the list membership predicate, usually written
in infix form, e.g., x “elem” xs. For the result to be False, the
list must be finite; True, however, results from an element equal to
x found at a finite index of a finite or infinite list.

-- using a lambda
elem3 :: a -> [a] -> Bool
elem3 x' = foldr (\x b -> x == x' || b) False

60

Exercice

Define elem using

filter :: (a -> Bool) —> [a] —-> [a]
but not

length :: [a] -> Int.

61

Exercice
Notice that

A> 10 “eleml” [1..]
True

A> 10 “eleml” [11..]
“C Interrupted.

Explain the two results (keep in mind the implementation of
eleml).

62

Filtering (revisit)

Data.List.filter, applied to a predicate and a list, returns the
list of those elements that satisfy the predicate.

filter3 :: (a -> Bool) -> [a] -> [a]
filter3 p xs = foldr f [] xs

where
f x acc
| p x = x : acc
| otherwise = acc

63

Repeating (revisit)

Data.List.repeat takes an element and returns an infinite list
that just has that element.

repeatd :: a -> [al
repeatd x = foldr (_ acc -> x : acc) [] [1..]

64

Repeating (revisit)

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.

65

Repeating (revisit)

Data.Foldable.maximum returns the maximum value from a list,
which must be non-empty, finite, and of an ordered type.

maximum4 :: Ord a => [a] —> a
error "empty list"

foldr f x xs

maximumé4d []

maximum4 (x : xs)
where

f xm=41if x > m then x else m

maximumb :: Ord a => [a] -> a
maximumb [] = error "empty list"

maximumb (x : xs) = foldr max x xs

65

Repeating (revisit)

Data.Foldable.maximum returns the maximum value from a list,

which must be non-empty, finite, and of an ordered type.

maximum6é :: Ord a => [a] -> a

maximumé [] error "empty list"

foldll max xs

maximumé6 xs

maximum7 :: Ord a => [a] > a

maximum?7 [] error "empty list"

foldrl max xs

maximum7 xs

65

Remove duplicate

Data.List.nub :: Eq a => [a] -> [a]

The nub function removes duplicate elements from a list. In
particular, it keeps only the first occurrence of each element.

66

Remove duplicate

Data.List.nub :: Eq a => [a] -> [a]

The nub function removes duplicate elements from a list. In
particular, it keeps only the first occurrence of each element.

nubl :: Eq a => [a] -> [a]
nubl [] = []
nubl (x : xs) = x : nubl (filter (\y -> x /= y) xs)

nub2 :: Eq a => [a] -> [a]
nub2 [] = []
nub2 (x : xs) = x : nub2 xs'

where

xs' filter (/= x) xs

66

Remove duplicate

Data.List.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a

user-supplied equality predicate instead of the overloaded ==
function.

67

Remove duplicate

Data.List.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a
user-supplied equality predicate instead of the overloaded ==
function.
nubByl :: Eq a => (a -> a -> Bool) -> [a] -> [a]
nubByl eq [] =[]
nubByl eq (x : xs) = x : xs'

where

xs' = nubByl eq (filter (\y -> not (eq x y)) xs)

nub3 :: Eq a => [a] -> [a]
nub3 = nubBy (==

67

Remove duplicate

Data.List.nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a
user-supplied equality predicate instead of the overloaded ==

function.
elemBy :: (a -> a -> Bool) -> a -> [a] -> Bool
elemBy _ _ [] = False

elemBy eq y (x : xs) = x “eq” y || elemBy eq y xs
nubBy2 :: (a -> a -> Bool) -> [a] -> [a]
nubBy2 eq xs = go xs []
where
go [] _ (]
go (y:ys) xs
| elemBy eq y xs = go ys xs
y : go ys (y : xs) 67

| otherwise

	High-order functions
	Origami programming
	Curried functions & friends
	Processing lists – revisit

