
The OpenGL ES® Shading Language

Language Version: 3.00
Document Revision: 6

29 January 2016

Editor: Robert J. Simpson, Qualcomm

OpenGL GLSL editor: John Kessenich, LunarG
GLSL version 1.1 Authors: John Kessenich, Dave Baldwin, Randi Rost

Copyright © 2008-2016 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group,
Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed,
broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos
Group. You may use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the receipt or possession of
this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of
Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided
that NO CHARGE is made for the specification and the latest available update of the specification for any
version of the API is used whenever possible. Such distributed specification may be reformatted AS
LONG AS the contents of the specification are not changed in any way. The specification may be
incorporated into a product that is sold as long as such product includes significant independent work
developed by the seller. A link to the current version of this specification on the Khronos Group website
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this specification, including, without limitation, any implied warranties of merchantability or
fitness for a particular purpose or non-°© infringement of any intellectual property. Khronos Group ‐
makes no, and expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no circumstances will the
Khronos Group, or any of its Promoters, Contributors or Members or their respective partners, officers,
directors, employees, agents, or representatives be liable for any damages, whether direct, indirect, special
or consequential damages for lost revenues, lost profits, or otherwise, arising from or in connection with
these materials.

Khronos, Vulkan, SYCL, SPIR, WebGL, EGL, COLLADA, StreamInput, OpenVX, OpenKCam, glTF,
OpenKODE, OpenVG, OpenWF, OpenSL ES, OpenMAX, OpenMAX AL, OpenMAX IL and OpenMAX
DL are trademarks and WebCL is a certification mark of the Khronos Group Inc. OpenCL is a trademark
of Apple Inc. and OpenGL and OpenML are registered trademarks and the OpenGL ES and OpenGL SC
logos are trademarks of Silicon Graphics International used under license by Khronos. All other product
names, trademarks, and/or company names are used solely for identification and belong to their respective
owners.

2

Table of Contents
1 Introduction...1

1.1 Changes..1
1.1.1 Changes from GLSL ES 3.0 revision 5..1
1.1.2 Changes from GLSL ES 3.0 revision 4..1
1.1.3 Changes from GLSL ES 3.0 revision 3..2
1.1.4 Changes from GLSL ES 3.0 revision 2..2
1.1.5 Changes from GLSL ES 3.0 revision 1:...3
1.1.6 Changes from OpenGL GLSL 3.3:...3

1.2 Overview..5
1.3 Error Handling..5
1.4 Typographical Conventions..6
1.5 Compatibility..6

2 Overview of OpenGL ES Shading..8
2.1 Vertex Processor...8
2.2 Fragment Processor..8
2.3 Executable..8

3 Basics..9
3.1 Logical Phases of Compilation..9
3.2 Character Set..10
3.3 Source Strings...11
3.4 Version Declaration..11
3.5 Preprocessor...12
3.6 Comments..17
3.7 Tokens..18
3.8 Keywords..18
3.9 Identifiers...20
3.10 Definitions..20

3.10.1 Static Use..20
3.10.2 Uniform and Non-Uniform Control Flow..21
3.10.3 Dynamically Uniform Expressions...21

4 Variables and Types...22
4.1 Basic Types...22

4.1.1 Void...24
4.1.2 Booleans...24
4.1.3 Integers...24
4.1.4 Floats..27
4.1.5 Vectors..28
4.1.6 Matrices..28
4.1.7 Opaque Types...28

4.1.7.1 Samplers...29

3

4.1.8 Structures..29
4.1.9 Arrays..30
4.1.10 Definitions of Terms...31

4.2 Scoping...33
4.2.1 Definition of Terms..33
4.2.2 Types of Scope..33
4.2.3 Redeclaring Names...35
4.2.4 Global Scope..36
4.2.5 Shared Globals..36

4.3 Storage Qualifiers...37
4.3.1 Default Storage Qualifier..37
4.3.2 Constant Qualifier..38
4.3.3 Constant Expressions...39
4.3.4 Input Variables..39
4.3.5 Uniform Variables...41
4.3.6 Output Variables...41
4.3.7 Interface Blocks..43
4.3.8 Layout Qualifiers..46

4.3.8.1 Input Layout Qualifiers...47
4.3.8.2 Output Layout Qualifiers..47
4.3.8.3 Uniform Block Layout Qualifiers...48

4.3.9 Interpolation..50
4.3.10 Linking of Vertex Outputs and Fragment Inputs..51

4.4 Parameter Qualifiers...51
4.5 Precision and Precision Qualifiers...52

4.5.1 Range and Precision...52
4.5.2 Conversion between precisions..54
4.5.3 Precision Qualifiers..54
4.5.4 Default Precision Qualifiers...55

4.6 Variance and the Invariant Qualifier...56
4.6.1 The Invariant Qualifier...57
4.6.2 Invariance Within a Shader...58
4.6.3 Invariance of Constant Expressions...59
4.6.4 Invariance of Undefined Values..59

4.7 Order of Qualification..59
4.8 Empty Declarations..59

5 Operators and Expressions..60
5.1 Operators..60
5.2 Array Operations..61
5.3 Function Calls..61
5.4 Constructors...61

5.4.1 Conversion and Scalar Constructors..61

4

5.4.2 Vector and Matrix Constructors..62
5.4.3 Structure Constructors..64
5.4.4 Array Constructors..65

5.5 Vector Components..65
5.6 Matrix Components..67
5.7 Structure and Array Operations..67
5.8 Assignments...68
5.9 Expressions..69
5.10 Vector and Matrix Operations..72
5.11 Evaluation of expressions...73

6 Statements and Structure...74
6.1 Function Definitions...75

6.1.1 Function Calling Conventions..77
6.2 Selection...78
6.3 Iteration..79
6.4 Jumps..80

7 Built-in Variables..81
7.1 Vertex Shader Special Variables...81
7.2 Fragment Shader Special Variables..82
7.3 Built-In Constants..82
7.4 Built-In Uniform State...83

8 Built-in Functions...84
8.1 Angle and Trigonometry Functions..86
8.2 Exponential Functions..87
8.3 Common Functions..88
8.4 Floating-Point Pack and Unpack Functions...92
8.5 Geometric Functions..93
8.6 Matrix Functions..95
8.7 Vector Relational Functions...96
8.8 Texture Lookup Functions..97
8.9 Fragment Processing Functions..103

9 Shading Language Grammar...106
10 Errors...119

10.1 Preprocessor Errors..119
10.2 Lexer/Parser Errors...119
10.3 Semantic Errors..119
10.4 Linker...121

11 Counting of Inputs and Outputs..123
12 Issues...126

12.1 Compatibility with OpenGL ES 2.0...126
12.2 Convergence with OpenGL..126
12.3 Numeric Precision..126

5

12.4 Floating Point Representation and Functionality...127
12.5 Precision Qualifiers..128
12.6 Function and Variable Name Spaces..131
12.7 Local Function Declarations and Function Hiding..132
12.8 Overloading main()..132
12.9 Error Reporting..132
12.10 Structure Declarations..132
12.11 Embedded Structure Definitions..133
12.12 Redefining Built-in Functions..133
12.13 Global Scope..134
12.14 Constant Expressions...134
12.15 Varying Linkage...134
12.16 gl_Position..135
12.17 Preprocessor...135
12.18 Character set...136
12.19 Line Continuation...137
12.20 Phases of Compilation..137
12.21 Maximum Number of Varyings..137
12.22 Array Declarations..139
12.23 Invariance...139
12.24 Invariance Within a shader...141
12.25 While-loop Declarations..142
12.26 Cross Linking Between Shaders...142
12.27 Visibility of Declarations..142
12.28 Language Version...143
12.29 Samplers...143
12.30 Dynamic Indexing..143
12.31 Maximum Number of Texture Units..144
12.32 On-target Error Reporting..144
12.33 Rounding of Integer Division...144
12.34 Undefined Return Values..144
12.35 Precisions of Operations...145
12.36 Compiler Transforms..146
12.37 Expansion of Function-like Macros in the Preprocessor...146
12.38 Should Extension Macros be Globally Defined?...146
12.39 Minimum Requirements...147
12.40 Packing Functions..147
12.41 Boolean logical vector operations..147
12.42 Range Checking of literals...148
12.43 Sequence operator and constant expressions...148
12.44 Version Directive..149
12.45 Use of Unsigned Integers...149

6

12.46 Vertex Attribute Aliasing..150
12.47 Does a vertex input Y collide with a fragment uniform Y?...151

13 Acknowledgments...152
14 Normative References...154

7

1 Introduction

This document specifies only version 3.0 of the OpenGL ES Shading Language. It requires
__VERSION__ to substitute 300, and requires #version to accept only 300 es. If #version is declared
with a smaller number, the language accepted is a previous version of the shading language, which will be
supported depending on the version and type of context in the OpenGL ES API. See the OpenGL ES
Graphics System Specification, Version 3.0, for details on what language versions are supported.

All OpenGL ES Graphics System Specification references in this specification are to version 3.0

1.1 Changes
This specification is derived from OpenGL GLSL 3.3 revision 7.

1.1.1 Changes from GLSL ES 3.0 revision 5

• Matching of row_major and column_major qualifiers for non-matirx types is implementation-
defined

• Clarified the allowed character set for pre-processing

• The invariant qualifier is only allowed on outputs

• Clarified that precision qualifiers are not allowed on constructors

• Double underscores are allowed in macro names and identifiers

• Integer division

• modf function

• Sequence and ternary operators with void type

• Sequence and ternary operators with array types

1.1.2 Changes from GLSL ES 3.0 revision 4

• It is an error to use the same block name for more than one block

• Clarified that row_major and column_major can be applied to non-matrix types

• Aliasing of vertex shader inputs is an error

• Uniform names declared in the vertex shader do not collide with input or output names declared
in the fragment shader. Likewise for fragment uniforms and vertex inputs and outputs

• Clarified that extraneous tokens in a preprocessor directive is an error

• Clarified that #error must result in an error, not just a diagnostic message

• Clarified that transform feedback values are written in highp format

1

1 Introduction

• Removed incorrect statement that implied newlines within '/*...*/' comments were retained.

• Varying counting algorithm assumes smooth and flat varyings cannot both be present in the same
row

• Reworded 'Logical Phases of Compilation' to clarify processing of comments and generation of
line numbering

1.1.3 Changes from GLSL ES 3.0 revision 3

• Constant expressions are not invariant with respect to equivalent non-constant expressions

• Removed packed as a reserved keyword

• Corrected textureSize return type

• #version: number and es must be separated by whitespace

• Clarified when line concatenation occurs

• Clarified samplerCube has a default precision

• Clarified the type matching rules for switch statements

1.1.4 Changes from GLSL ES 3.0 revision 2

• Clarified that the parameter for switch statements can be a signed or unsigned integer

• Clarified that all integer vertex shader outputs and fragment shader inputs must be qualified 'flat'

• Invalid layout qualifiers must generate an error

• Layout qualifier IDs are case sensitive

• Precision of packing and unpacking functions

• Precision of return type of textureSize()

• Precision requirements for built-in functions

• Conversion between precisions

• Removed default precision for sampler types introduced in GLSL ES 3.0

• gl_DepthRange members should be highp

• Clarified that the layout qualifier ID values can be signed or unsigned.

• Clarified that use of reserved features is an error

• Clarified description of sampling of projected textures

• Vertex shader outputs with integral type must be qualified as flat

• Clarified that digraphs and trigraphs are disallowed

• The maximum length of an identifier is 1024 characters

• The maximum length of a macro name is 1024 characters

2

1 Introduction

• Added explicit statement that the precision of a variable cannot be changed

• Regions of scope in loop statements, including corrections to grammar

• Range of lowp integers

• Correction to the counting algorithm example for varyings

• The precision statement can be used to set the default precision for sampler types

• The default precision for unsigned integers cannot be set independently from signed integers

• Added default precision for built-in variables

• Clarified that a macro with an empty replacement list does not default to '0' in a preprocessor
expression

• Inputs cannot be declared invariant

• Errors may be reported at compile time or link time

• Clarified that layout qualifier parameters may be either signed or unsigned integer constants

1.1.5 Changes from GLSL ES 3.0 revision 1:

• Clarified that mediump and lowp integers wrap on overflow

• Range checking of literal integers

• Redefinition of built-in macros not allowed

• Version directive must be the first line of a shader

1.1.6 Changes from OpenGL GLSL 3.3:

Removed:

• Profiles and deprecation

• Geometry shaders

• Multiple compilation units

• Shared globals (except for uniforms)

• in and out blocks

• vertex array inputs (attribute arrays)

• Layout qualifiers: index, origin_upper_left and pixel_center_integer

• CPP token pasting

• Unsized arrays.

• Implicit type conversion.

• Overloading built-in functions

• noperspective

3

1 Introduction

• Multi-sample textures

• Rectangular textures

• Texture buffers

• 1D textures

• Noise

• Outer scope for built-in functions.

• Redeclaring built-in variables.

Added:

• Line continuation and UTF-8 in GLSL ES 1.00 when used with OpenGL ES 3.0

• Array length operator returns a signed integer-constant. The precision is determined using the
rules for literal integers

• Clarified that source code lines may be of arbitrary length

• Line continuation

• Extended character set for comments

• Built-in constants: gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset

• Handling and reporting of errors

• GLES macro

• Use of an undefined macro is an error

• Numeric precision of variables and operations

• Default precisions

• Definitions and behavior for precision qualifiers lowp, mediump and highp

• Invariance within a shader

• Relaxation of the order of evaluation of expressions

• Pack and unpack built-in functions

• List of errors

• Normative references

• Extension macro names always defined if the extension is available

• Clarified that for the operators << and >>, if both operands are vectors, they must have the same
size

• GLSL ES 1.00 compatibility

• Vertex output, fragment input counting algorithm

4

1 Introduction

1.2 Overview
This document describes The OpenGL ES Shading Language, version 3.00

Independent compilation units written in this language are called shaders. A program is a complete set of
shaders that are compiled and linked together. The aim of this document is to thoroughly specify the
programming language. The OpenGL ES Graphics System Specification will specify the OpenGL ES
entry points used to manipulate and communicate with programs and shaders.

1.3 Error Handling
Compilers, in general, accept programs that are ill-formed, due to the impossibility of detecting all ill-
formed programs. Portability is only ensured for well-formed programs, which this specification
describes. Compilers are encouraged to detect ill-formed programs and issue diagnostic messages, but are
not required to do so for all cases. The compilation process is implementation-dependent but is generally
split into a number of stages, each of which occurs at one of the following times:

• A call to glCompileShader

• A call to glLinkProgram

• A draw call or a call to glValidateProgram

The implementation should report errors as early a possible but in any case must satisfy the following:

• All lexical, grammatical and semantic errors must have been detected following a call to
glLinkProgram

• Errors due to mismatch between the vertex and fragment shader (link errors) must have been
detected following a call to glLinkProgram

• Errors due to exceeding resource limits must have been detected following any draw call or a call
to glValidateProgram

• A call to glValidateProgram must report all errors associated with a program object given the
current GL state.

Where the specification uses the terms required, must/must not, does/does not, disallowed or not
supported, the compiler or linker is required to detect and report any violations. Similarly when a
condition or situation is an error, it must be reported. Use of any feature marked as reserved is an error.
Where the specification uses the terms should/should not or undefined behavior there is no such
requirement but compilers are encouraged to report possible violations.

A distinction is made between undefined behavior and an undefined value (or result). Undefined
behavior includes system instability and/or termination of the application. It is expected that systems will
be designed to handle these cases gracefully but specification of this is outside the scope of OpenGL ES.

5

1 Introduction

If a value or result is undefined, the system may behave as if the value or result had been assigned a
random value. For example, an undefined gl_Position may cause a triangle to be drawn with a random
size and position. The value may not be consistent. For example an undefined boolean value may cause
both sub-statements in an if-then-else statement to be executed (see section 4.6.4 Invariance of Undefined
Values). The implementation may also detect the generation and/or use of undefined values and behave
accordingly (for example causing a trap). Undefined values must not by themselves cause system
instability. However undefined values may lead to other more serious conditions such as infinite loops or
out of bounds array accesses.

Implementations may not in general support functionality beyond the mandated parts of the specification
without use of the relevant extension. The only exceptions are:

1. If a feature is marked as optional.

2. Where a maximum value is stated (e.g. the maximum number of vertex outputs), the
implementation may support a higher value than that specified.

Where the implementation supports more than the mandated specification, off-target compilers are
encouraged to issue warnings if these features are used.

The compilation process is split between the compiler and linker. The allocation of tasks between the
compiler and linker is implementation dependent. Consequently there are many errors which may be
detected either at compile or link time, depending on the implementation.

1.4 Typographical Conventions
Italic, bold, and font choices have been used in this specification primarily to improve readability. Code
fragments use a fixed width font. Identifiers embedded in text are italicized. Keywords embedded in text
are bold. Operators are called by their name, followed by their symbol in bold in parentheses. The
clarifying grammar fragments in the text use bold for literals and italics for non-terminals. The official
grammar in section 9 “Shading Language Grammar” uses all capitals for terminals and lower case for
non-terminals.

1.5 Compatibility
The OpenGL ES 3.0 API is designed to work with both GLSL ES v1.00 and GLSL ES 3.00. In general a
shader written for OpenGL ES 2.0 should work without modification in OpenGL ES 3.0.

When porting applications from OpenGL ES 2.0 to OpenGL ES 3.0, the following points should be noted:

• Not all language constructs present in v1.00 of the language are available in v3.00 e.g. attribute
and varying qualifiers. However, the functionality of GLSL ES 3.00 is a super-set of GLSL ES
1.00.

• Some features of the OpenGL ES 3.0 API require language features that are present in GLSL ES
3.00 but not present in GLSL ES 1.00.

• It is an error to link a vertex shader and a fragment shader if they are written in different versions
of the language.

• The OpenGL ES 2.0 API does not support shaders written in GLSL ES 3.0.

6

1 Introduction

• Using GLSL ES 1.00 shaders within OpenGL ES 3.0 may extend the resources available beyond
the minima specified in GLSL ES 1.0. Shaders which make use of this will not necessarily run
on an OpenGL ES 2.0 implementation:

Uniforms

The number of uniforms specified by gl_MaxVertexUniformVectors and returned by the
corresponding API query is the same for GLSL ES versions 1.00 and 3.00 when used as part of
OpenGL ES 3.0.

Varyings, vertex outputs and fragment inputs

These are specified differently in the two versions of the language and may be different. For
GLSL ES 1.00, the maximum number of varyings is specified by gl_MaxVaryingVectors. For
GLSL ES 3.00, the maximum number of vertex outputs and fragment inputs is independently
specified by gl_MaxVertexOutputVectors and gl_MaxFragmentInputVectors.

In GLSL ES 1.00, only varyings which are statically used in both the vertex and fragment
shaders are counted. This applies when GLSL ES 1.00 is used in OpenGL ES 3.0

Multiple Render Targets

Although gl_FragData is declared as an array in GLSL ES 1.00, multiple render targets are not
supported in OpenGL ES 2.0 and are therefore not available when using GLSL ES 1.00 in
OpenGL ES 3.0.

• Support of line continuation and support of UTF-8 characters within comments is optional in
GLSL ES 1.00 when used with the OpenGL ES 2.0 API. However, support is mandated for both
of these when a GLSL ES 1.00 shader is used with the OpenGL ES 3.0 API.

7

2 Overview of OpenGL ES Shading

The OpenGL ES Shading Language is actually two closely related languages. These languages are used
to create shaders for each of the programmable processors contained in the OpenGL ES processing
pipeline. Currently, these processors are the vertex and fragment processors.

Unless otherwise noted in this paper, a language feature applies to all languages, and common usage will
refer to these languages as a single language. The specific languages will be referred to by the name of
the processor they target: vertex or fragment.

Most OpenGL ES state is not tracked or made available to shaders. Typically, user-defined variables will
be used for communicating between different stages of the OpenGL ES pipeline. However, a small
amount of state is still tracked and automatically made available to shaders, and there are a few built-in
variables for interfaces between different stages of the OpenGL ES pipeline.

2.1 Vertex Processor
The vertex processor is a programmable unit that operates on incoming vertices and their associated data.
Compilation units written in the OpenGL ES Shading Language to run on this processor are called vertex
shaders.

The vertex processor operates on one vertex at a time. It does not replace graphics operations that require
knowledge of several vertices at a time.

2.2 Fragment Processor
The fragment processor is a programmable unit that operates on fragment values and their associated
data. Compilation units written in the OpenGL ES Shading Language to run on this processor are called
fragment shaders.

A fragment shader cannot change a fragment's (x, y) position. Access to neighboring fragments is not
allowed. The values computed by the fragment shader are ultimately used to update framebuffer memory
or texture memory, depending on the current OpenGL ES state and the OpenGL ES command that caused
the fragments to be generated.

2.3 Executable
A single vertex shader and a single fragment shader are compiled and then linked together to form an
executable. OpenGL ES 3.0 does not support multiple compilation units per stage.

8

3 Basics

3.1 Logical Phases of Compilation
The compilation process is based on a subset of the C++ standard (see section 14: Normative References).
The compilation units for the vertex and fragment processor are processed separately before being linked
together in the final stage of compilation. The logical phases of compilation are:

1. Source strings are input as byte sequences. The value 'zero' is interpreted as a terminator.

2. Source strings are concatenated to form a single input. Zero bytes are discarded but all other
values are retained.

3. Each string is interpreted according to the UTF-8 standard, with the exception that all invalid
byte sequences are retained in their original form for subsequent processing.

4. Each {carriage-return, line-feed} and {line-feed, carriage return} sequence is replaced by a
single newline. All remaining carriage-return and line-feed characters are then each replaced by
a newline.

5. Line numbering for each character, which is equal to the number of preceding newlines plus one,
is noted. Note this can only be subsequently changed by the #line directive and is not affected by
the removal of newlines in phase 6 of compilation.

6. Wherever a backslash ('\') occurs immediately before a newline, both are deleted. Note that no
whitespace is substituted, thereby allowing a single preprocessing token to span a newline. This
operation is not recursive; any new {backslash newline} sequences generated are not removed.

7. All comments are replaced with a single space. All (non-zero) characters and invalid UTF-8 byte
sequences are allowed within comments. '//' style comments include the initial '//' marker and
continue up to, but not including, the terminating newline. '/*...*/' comments include both the
start and end marker.

8. The source string is converted into a sequence of preprocessing tokens. These tokens include
preprocessing numbers, identifiers and preprocessing operations. The line number associated
with each token is copied from the line number of the first character of the token.

9. The preprocessor is run. Directives are executed and macro expansion is performed.

10. White space and newlines are discarded.

11. Preprocessing tokens are converted into tokens.

12. The syntax is analyzed according to the GLSL ES grammar.

13. The result is checked according to the semantic rules of the language.

14. The vertex and fragment shaders are linked together. Any vertex outputs and corresponding
fragment inputs not used in both the vertex and fragment shaders may be discarded.

9

3 Basics

15. The binary is generated.

3.2 Character Set
The source character set used for the OpenGL ES shading languages is Unicode in the UTF-8 encoding
scheme. Invalid UTF-8 characters are ignored. During pre-rpocessing, the following applies1:

• A byte with the value zero is always interpreted as the end of the string

• Backslash ('\'), is used to indicate line continuation when immediately preceding a new-line.

• White space consists of one or more of the following characters: the space character, horizontal
tab, vertical tab, form feed, carriage-return, line-feed.

• The number sign (#) is used for preprocessor directives

• Macro names are restricted to:

◦ The letters a-z, A-Z, and the underscore (_).

◦ The numbers 0-9, except for the first character of a macro name.

After preprocessing, only the following characters are allowed in the resulting stream of GLSL tokens:

• The letters a-z, A-Z, and the underscore (_).

• The numbers 0-9.

• The symbols period (.), plus (+), dash (-), slash (/), asterisk (*), percent (%), angled brackets (<
and >), square brackets ([and]), parentheses ((and)), braces ({ and }), caret (^), vertical bar
(|), ampersand (&), tilde (~), equals (=), exclamation point (!), colon (:), semicolon (;), comma
(,), and question mark (?).

There are no digraphs or trigraphs. There are no escape sequences or other uses of the backslash beyond
use as the line-continuation character.

Lines are relevant for compiler diagnostic messages and the preprocessor. They are terminated by
carriage-return or line-feed. If both are used together, it will count as only a single line termination. For
the remainder of this document, any of these combinations is simply referred to as a new-line. Lines may
be of arbitrary length.

In general, the language’s use of this character set is case sensitive.

There are no character or string data types, so no quoting characters are included.

There is no end-of-file character.

1 Support for characters outside the ASCII character set in the pre-processor is only mandated for comments in
GLSL ES 3.0.

10

3 Basics

3.3 Source Strings
The source for a single shader is an array of strings of characters from the character set. A single shader is
made from the concatenation of these strings. Each string can contain multiple lines, separated by new-
lines. No new-lines need be present in a string; a single line can be formed from multiple strings. No
new-lines or other characters are inserted by the implementation when it concatenates the strings to form a
single shader.

Diagnostic messages returned from compiling a shader must identify both the line number within a string
and which source string the message applies to. Source strings are counted sequentially with the first
string being string 0. Line numbers are one more than the number of new-lines that have been processed,
including counting the new lines that will be removed by the line-continuation character (\).

Lines separated by the line-continuation character preceding a new line are concatenated together before
either comment processing or preprocessing. This means that no white space is substituted for the line-
continuation character. That is, a single token could be formed by the concatenation by taking the
characters at the end of one line concatenating them with the characters at the beginning of the next line.

float f\
oo;
// forms a single line equivalent to “float foo;”
// (assuming '\' is the last character before the new line and “oo” are
// the first two characters of the next line)

3.4 Version Declaration
Shaders must declare the version of the language they are written to. The version is specified in the first
line of a shader by a character string:

#version number es

where number must be a version of the language, following the same convention as __VERSION__ above.
The directive “#version 300 es” is required in any shader that uses version 3.00 of the language. Any
number representing a version of the language a compiler does not support will cause an error to be
generated. Version 1.00 of the language does not require shaders to include this directive, and shaders
that do not include a #version directive will be treated as targeting version 1.00.

Shaders declaring version 3.00 of the shading language cannot be linked with shaders declaring version
1.00.

The #version directive must be present in the first line of a shader and must be followed by a newline. It
may contain optional white-space as specified below but no other characters are allowed. The directive is
only permitted in the first line of a shader.

Processing of the #version directive occurs before all other preprocessing, including line concatenation
and comment processing.

version-declaration:

 whitespaceopt POUND whitespaceopt VERSION whitespace number whitespace ES whitespaceopt

Tokens:

11

3 Basics

 POUND #
 VERSION version
 ES es

3.5 Preprocessor
There is a preprocessor that processes the source strings as part of the compilation process.

The complete list of preprocessor directives is as follows.

#
#define
#undef

#if
#ifdef
#ifndef
#else
#elif
#endif

#error
#pragma

#extension

#line

The following operator is also available

defined

Note that the version directive is not considered to be a preprocessor directive and so is not listed here.

Each number sign (#) can be preceded in its line only by spaces or horizontal tabs. It may also be
followed by spaces and horizontal tabs, preceding the directive. Each directive is terminated by a new-
line. Preprocessing does not change the number or relative location of new-lines in a source string.

The number sign (#) on a line by itself is ignored. Any directive not listed above will cause an error.

#define and #undef functionality are defined as is standard for C++ preprocessors for macro definitions
both with and without macro parameters.

The following predefined macros are available

__LINE__
__FILE__
__VERSION__
GL_ES

__LINE__ will substitute a decimal integer constant that is one more than the number of preceding new-
lines in the current source string.

12

3 Basics

__FILE__ will substitute a decimal integer constant that says which source string number is currently
being processed.

__VERSION__ will substitute a decimal integer reflecting the version number of the OpenGL ES shading
language. The version of the shading language described in this document will have __VERSION__
substitute the decimal integer 300.

GL_ES will be defined and set to 1. This is not true for the non-ES OpenGL Shading Language, so it can
be used to do a compile time test to determine if a shader is running on an ES system.

By convention, all macro names containing two consecutive underscores (__) are reserved for use by
underlying software layers. Defining such a name in a shader does not itself result in an error, but may
result in unintended behaviors that stem from having multiple definitions of the same name. All macro
names prefixed with “GL_” (“GL” followed by a single underscore) are also reserved, and defining such a
name results in a compile-time error.

It is an error to undefine or to redefine a built-in (pre-defined) macro name.

The maximum length of a macro name is 1024 characters. It is an error to declare a name with a length
greater than this.

#if, #ifdef, #ifndef, #else, #elif, and #endif are defined to operate as for C++ except for the following:

• Expressions following #if and #elif are restricted to pp-constant-expressions as defined below.

• Undefined identifiers not consumed by the defined operator do not default to '0'. Use of such
identifiers causes an error.

• Character constants are not supported.

As in C++, a macro name defined with an empty replacement list does not default to '0' when used in a
preprocessor expression.

A pp-constant-expression is an integral expression, evaluated at compile-time during preprocessing and
formed from literal integer constants and the following operators:

The operators available are as follows:

13

3 Basics

Precedence Operator class Operators Associativity

 1 (highest) parenthetical grouping () NA

2 unary defined
+ - ~ !

Right to Left

3 multiplicative * / % Left to Right

4 additive + - Left to Right

5 bit-wise shift << >> Left to Right

6 relational < > <= >= Left to Right

7 equality == != Left to Right

8 bit-wise and & Left to Right

9 bit-wise exclusive or ^ Left to Right

10 bit-wise inclusive or | Left to Right

11 logical and && Left to Right

12 (lowest) logical inclusive or | | Left to Right

The defined operator can be used in either of the following ways:

defined identifier
defined (identifier)

 There are no number sign based operators (e.g. no # or #@), no ## operator, nor is there a sizeof
operator.

The semantics of applying operators in the preprocessor match those standard in the C++ preprocessor
with the following exceptions:

• The 2nd operand in a logical and ('&&') operation is evaluated if and only if the 1st operand
evaluates to non-zero.

• The 2nd operand in a logical or ('||') operation is evaluated if and only if the 1st operand evaluates
to zero.

• There is no boolean type and no boolean literals. A true or false result is returned as integer one
or zero respectively. Wherever a boolean operand is expected, any non-zero integer is
interpreted as true and a zero integer as false.

If an operand is not evaluated, the presence of undefined identifiers in the operand will not cause an error.

#error will cause the implementation to put a diagnostic message into the shader object’s information log
(see section 6.1.12 “Shader and Program Queries” in the OpenGL ES Graphics System Specification for
how to access a shader object’s information log). The message will be the tokens following the #error
directive, up to the first new-line. The implementation must treat the presence of a #error directive as a
compile-time error.

14

3 Basics

#pragma allows implementation dependent compiler control. Tokens following #pragma are not subject
to preprocessor macro expansion. If an implementation does not recognize the tokens following
#pragma, then it will ignore that pragma. The following pragmas are defined as part of the language.

#pragma STDGL

The STDGL pragma is used to reserve pragmas for use by this and future revisions of the language. No
implementation may use a pragma whose first token is STDGL.

#pragma optimize(on)
#pragma optimize(off)

can be used to turn off optimizations as an aid in developing and debugging shaders. It can only be used
outside function definitions. By default, optimization is turned on for all shaders. The debug pragma

#pragma debug(on)
#pragma debug(off)

can be used to enable compiling and annotating a shader with debug information, so that it can be used
with a debugger. It can only be used outside function definitions. By default, debug is turned off.

The scope as well as the effect of the optimize and debug pragmas is implementation-dependent except
that their use must not generate an error.

15

3 Basics

By default, compilers of this language must issue compile time syntactic, grammatical, and semantic
errors for shaders that do not conform to this specification. Any extended behavior must first be enabled.
Directives to control the behavior of the compiler with respect to extensions are declared with the
#extension directive

#extension extension_name : behavior
#extension all : behavior

where extension_name is the name of an extension. Extension names are not documented in this
specification. The token all means the behavior applies to all extensions supported by the compiler. The
behavior can be one of the following:

behavior Effect

require Behave as specified by the extension extension_name.

Give an error on the #extension if the extension extension_name is not
supported, or if all is specified.

enable Behave as specified by the extension extension_name.

Warn on the #extension if the extension extension_name is not supported.

Give an error on the #extension if all is specified.

warn Behave as specified by the extension extension_name, except issue warnings
on any detectable use of that extension, unless such use is supported by other
enabled or required extensions.

If all is specified, then warn on all detectable uses of any extension used.

Warn on the #extension if the extension extension_name is not supported.

disable Behave (including issuing errors and warnings) as if the extension
extension_name is not part of the language definition.

If all is specified, then behavior must revert back to that of the non-extended
core version of the language being compiled to.

Warn on the #extension if the extension extension_name is not supported.

The extension directive is a simple, low-level mechanism to set the behavior for each extension. It does
not define policies such as which combinations are appropriate, those must be defined elsewhere. Order
of directives matters in setting the behavior for each extension: Directives that occur later override those
seen earlier. The all variant sets the behavior for all extensions, overriding all previously issued
extension directives, but only for the behaviors warn and disable.

16

3 Basics

The initial state of the compiler is as if the directive

#extension all : disable

was issued, telling the compiler that all error and warning reporting must be done according to this
specification, ignoring any extensions.

Each extension can define its allowed granularity of scope. If nothing is said, the granularity is a shader
(that is, a single compilation unit), and the extension directives must occur before any non-preprocessor
tokens. If necessary, the linker can enforce granularities larger than a single compilation unit, in which
case each involved shader will have to contain the necessary extension directive.

Macro expansion is not done on lines containing #extension and #version directives.

For each extension there is an associated macro. The macro is always defined in an implementation that
supports the extension. This allows the following construct to be used:

#ifdef OES_extension_name
#extension OES_extension_name : enable
// code that requires the extension

#else
// alternative code

#endif

#line must have, after macro substitution, one of the following forms:

#line line
#line line source-string-number

where line and source-string-number are pp-constant-expressions. After processing this directive
(including its new-line), the implementation will behave as if it is compiling at line number line and
source string number source-string-number. Subsequent source strings will be numbered sequentially,
until another #line directive overrides that numbering.

If during macro expansion a preprocessor directive is encountered, the results are undefined; the compiler
may or may not report an error in such cases.

3.6 Comments
Comments are delimited by /* and */, or by // and a newline. '//' style comments include the initial '//'
marker and continue up to, but not including, the terminating newline. '/*...*/' comments include both the
start and end marker. The begin comment delimiters (/* or //) are not recognized as comment delimiters
inside of a comment, hence comments cannot be nested. Comments are treated syntactically as a single
space.

17

3 Basics

3.7 Tokens

The language is a sequence of tokens. A token can be

token:

keyword

identifier

integer-constant

floating-constant

operator

; { }

3.8 Keywords
The following are the keywords in the language, and cannot be used for any other purpose than that
defined by this document:

 const uniform

 layout

 centroid flat smooth

 break continue do for while switch case default

 if else

 in out inout

 float int void bool true false

 invariant

 discard return

 mat2 mat3 mat4

 mat2x2 mat2x3 mat2x4

 mat3x2 mat3x3 mat3x4

 mat4x2 mat4x3 mat4x4

 vec2 vec3 vec4 ivec2 ivec3 ivec4 bvec2 bvec3 bvec4

 uint uvec2 uvec3 uvec4

 lowp mediump highp precision

 sampler2D sampler3D samplerCube

 sampler2DShadow samplerCubeShadow

 sampler2DArray

 sampler2DArrayShadow

 isampler2D isampler3D isamplerCube

 isampler2DArray

18

3 Basics

 usampler2D usampler3D usamplerCube

 usampler2DArray

 struct

The following are the keywords reserved for future use. Using them will result in an error:

 attribute varying

 coherent volatile restrict readonly writeonly

 resource atomic_uint

 noperspective

 patch sample

 subroutine

 common partition active

 asm

 class union enum typedef template this

 goto

 inline noinline volatile public static extern external interface

 long short double half fixed unsigned superp

 input output

 hvec2 hvec3 hvec4 dvec2 dvec3 dvec4 fvec2 fvec3 fvec4

 sampler3DRect

 filter

 image1D image2D image3D imageCube

 iimage1D iimage2D iimage3D iimageCube

 uimage1D uimage2D uimage3D uimageCube

 image1DArray image2DArray

 iimage1DArray iimage2DArray uimage1DArray uimage2DArray

 imageBuffer iimageBuffer uimageBuffer

 sampler1D sampler1DShadow sampler1DArray sampler1DArrayShadow

 isampler1D isampler1DArray usampler1D usampler1DArray

 sampler2DRect sampler2DRectShadow isampler2DRect usampler2DRect

 samplerBuffer isamplerBuffer usamplerBuffer

 sampler2DMS isampler2DMS usampler2DMS

19

3 Basics

 sampler2DMSArray isampler2DMSArray usampler2DMSArray

 sizeof cast

 namespace using

In addition, all identifiers containing two consecutive underscores (__) are reserved for use by underlying
software layers. Defining such a name in a shader does not itself result in an error, but may result in
unintended behaviors that stem from having multiple definitions of the same name.

3.9 Identifiers
Identifiers are used for variable names, function names, structure names, and field selectors (field
selectors select components of vectors and matrices similar to structure fields, as discussed in section 5.5
“Vector Components” and section 5.6 “Matrix Components”). Identifiers have the form

identifier

nondigit

identifier nondigit

identifier digit

nondigit: one of

_ a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

digit: one of

0 1 2 3 4 5 6 7 8 9

Identifiers starting with “gl_” are reserved for use by OpenGL ES, and may not be declared in a shader as
either a variable or a function. It is an error to redeclare a variable, including those starting “gl_”.

The maximum length of an identifier is 1024 characters. It is an error to declare a variable with a length
greater than this.

3.10 Definitions
Some language rules described below depend on the following definitions.

3.10.1 Static Use

A shader contains a static use of (or static assignment to) a variable x if, after preprocessing, the shader
contains a statement that would read (or write) x, whether or not run-time flow of control will cause that
statement to be executed.

20

3 Basics

3.10.2 Uniform and Non-Uniform Control Flow

When executing statements in a fragment shader, control flow starts as uniform control flow; all fragments
enter the same control path into main(). Control flow becomes non-uniform when different fragments
take different paths through control-flow statements (selection, iteration, and jumps). Control flow
subsequently returns to being uniform after such divergent sub-statements or skipped code completes,
until the next time different control paths are taken.

For example:

main()
{
 float a = ...;// this is uniform control flow
 if (a < b) { // this expression is true for some fragments, not all
 ; // non-uniform control flow
 } else {
 ; // non-uniform control flow
 }
 ; // uniform control flow again
}

Other examples of non-uniform control flow can occur within switch statements and after conditional
breaks, continues, early returns, and after fragment discards, when the condition is true for some
fragments but not others. Loop iterations that only some fragments execute are also non-uniform control
flow.

This is similarly defined for other shader stages, based on the per-instance data items they process.

3.10.3 Dynamically Uniform Expressions

A fragment-shader expression is dynamically uniform if all fragments evaluating it get the same resulting
value. When loops are involved, this refers to the expression's value for the same loop iteration. When
functions are involved, this refers to calls from the same call point.

This is similarly defined for other shader stages, based on the per-instance data they process.

Note that constant expressions are trivially dynamically uniform. It follows that typical loop counters
based on these are also dynamically uniform.

The definition is not used in this version of GLSL ES but may be referenced by extensions.

21

4 Variables and Types

All variables and functions must be declared before being used. Variable and function names are
identifiers.

There are no default types. All variable and function declarations must have a declared type, and
optionally qualifiers. A variable is declared by specifying its type followed by one or more names
separated by commas. In many cases, a variable can be initialized as part of its declaration by using the
assignment operator (=). The grammar near the end of this document provides a full reference for the
syntax of declaring variables.

User-defined types may be defined using struct to aggregate a list of existing types into a single name.

The OpenGL ES Shading Language is type safe. There are no implicit conversions between types.

4.1 Basic Types
The OpenGL ES Shading Language supports the following basic data types, grouped as follows.

Transparent types

Type Meaning

void for functions that do not return a value

bool a conditional type, taking on values of true or false

int a signed integer

uint an unsigned integer

float a single floating-point scalar

vec2 a two-component floating-point vector

vec3 a three-component floating-point vector

vec4 a four-component floating-point vector

bvec2 a two-component Boolean vector

bvec3 a three-component Boolean vector

bvec4 a four-component Boolean vector

ivec2 a two-component signed integer vector

ivec3 a three-component signed integer vector

ivec4 a four-component signed integer vector

uvec2 a two-component unsigned integer vector

uvec3 a three-component unsigned integer vector

22

4 Variables and Types

Type Meaning

uvec4 a four-component unsigned integer vector

mat2 a 2×2 floating-point matrix

mat3 a 3×3 floating-point matrix

mat4 a 4×4 floating-point matrix

mat2x2 same as a mat2

mat2x3 a floating-point matrix with 2 columns and 3 rows

mat2x4 a floating-point matrix with 2 columns and 4 rows

mat3x2 a floating-point matrix with 3 columns and 2 rows

mat3x3 same as a mat3

mat3x4 a floating-point matrix with 3 columns and 4 rows

mat4x2 a floating-point matrix with 4 columns and 2 rows

mat4x3 a floating-point matrix with 4 columns and 3 rows

mat4x4 same as a mat4

Floating Point Sampler Types (opaque)

Type Meaning

sampler2D a handle for accessing a 2D texture

sampler3D a handle for accessing a 3D texture

samplerCube a handle for accessing a cube mapped texture

samplerCubeShadow a handle for accessing a cube map depth texture with comparison

sampler2DShadow a handle for accessing a 2D depth texture with comparison

sampler2DArray a handle for accessing a 2D array texture

sampler2DArrayShadow a handle for accessing a 2D array depth texture with comparison

Signed Integer Sampler Types (opaque)

Type Meaning

isampler2D a handle for accessing an integer 2D texture

isampler3D a handle for accessing an integer 3D texture

isamplerCube a handle for accessing an integer cube mapped texture

isampler2DArray a handle for accessing an integer 2D array texture

23

4 Variables and Types

Unsigned Integer Sampler Types (opaque)

Type Meaning

usampler2D a handle for accessing an unsigned integer 2D texture

usampler3D a handle for accessing an unsigned integer 3D texture

usamplerCube a handle for accessing an unsigned integer cube mapped texture

usampler2DArray a handle for accessing an unsigned integer 2D array texture

In addition, a shader can aggregate these using arrays and structures to build more complex types.

There are no pointer types.

4.1.1 Void

Functions that do not return a value must be declared as void. There is no default function return type.
The keyword void cannot be used in any other declarations (except for empty formal or actual parameter
lists).

4.1.2 Booleans

To make conditional execution of code easier to express, the type bool is supported. There is no
expectation that hardware directly supports variables of this type. It is a genuine Boolean type, holding
only one of two values meaning either true or false. Two keywords true and false can be used as literal
Boolean constants. Booleans are declared and optionally initialized as in the follow example:

bool success; // declare “success” to be a Boolean
bool done = false; // declare and initialize “done”

The right side of the assignment operator (=) must be an expression whose type is bool.

Expressions used for conditional jumps (if, for, ?:, while, do-while) must evaluate to the type bool.

4.1.3 Integers

Signed and unsigned integer variables are fully supported. In this document, the term integer is meant to
generally include both signed and unsigned integers. Highp unsigned integers have exactly 32 bits of
precision. Highp signed integers use 32 bits, including a sign bit, in two's complement form. Mediump
and lowp integers have implementation-defined numbers of bits.

For all precisions, operations resulting in overflow or underflow will not cause any exception, nor will
they saturate, rather they will “wrap” to yield the low-order n bits of the result where n is the size in bits of
the integer. See section 4.5.1 “Range and Precision“ for details. However, for the case where the
minimum representable value is divided by -1, it is allowed to return either the minimum representable
value or the maximum representable value.

Integers are declared and optionally initialized with integer expressions, as in the following example:

int i, j = 42; // default integer literal type is int
uint k = 3u; // “u” establishes the type as uint

24

4 Variables and Types

Literal integer constants can be expressed in decimal (base 10), octal (base 8), or hexadecimal (base 16)
as follows.

integer-constant:

decimal-constant integer-suffixopt

octal-constant integer-suffixopt

hexadecimal-constant integer-suffixopt

integer-suffix: one of

u U

decimal-constant:

nonzero-digit

decimal-constant digit

octal-constant:

0
octal-constant octal-digit

hexadecimal-constant:

0x hexadecimal-digit

0X hexadecimal-digit

hexadecimal-constant hexadecimal-digit

digit:

0
nonzero-digit

nonzero-digit: one of

1 2 3 4 5 6 7 8 9

octal-digit : one of

0 1 2 3 4 5 6 7

hexadecimal-digit: one of

0 1 2 3 4 5 6 7 8 9

a b c d e f

A B C D E F

No white space is allowed between the digits of an integer constant, including after the leading 0 or after
the leading 0x or 0X of a constant, or before the suffix u or U. When the suffix u or U is present, the
literal has type uint, otherwise the type is int. A leading unary minus sign (-) is interpreted as an
arithmetic unary negation, not as part of the constant. Hence, literals themselves are always expressed
with non-negative syntax, though they could result in a negative value.

It is an error to provide a literal integer whose bit pattern cannot fit in 32 bits. Note:

1. This only applies to literals; no error checking is performed on the result of a constant
expression.

2. Unlike C++, hexadecimal and decimal literals behave in the same way.

25

4 Variables and Types

Examples

1 // OK. Signed integer, value 1

1u // OK. Unsigned integer, value 1

-1 // OK. Unary minus applied to signed integer.
 // result is a signed integer, value -1

-1u // OK. Unary minus applies to unsigned integer
 // result is an unsigned integer, value 0xffffffff

0xA0000000 // OK. 32-bit signed hexadecimal

0xABcdEF00u // OK 32-bit unsigned hexadecimal

0xffffffff // OK. Signed integer, value -1

0x80000000 // OK. Evaluates to -2147483648

0xffffffffu // OK. unsigned integer, value 0xffffffff

0xffffffff0 // Error: needs more than 32 bits

0xfffffffff // Error: needs more than 32 bits

3000000000 // OK. A signed decimal literal taking 32 bits.
 // It evaluates to -1294967296

2147483648 // OK. Evaluates to -2147483648

5000000000 // Error: needs more than 32 bits

int x = 1u; // Error: type mismatch.

uint y = 1; // Error: type mismatch

26

4 Variables and Types

4.1.4 Floats

Floats are available for use in a variety of scalar calculations. Floating-point variables are defined as in
the following example:

float a, b = 1.5;

As an input value to one of the processing units, a floating-point variable is expected to match the IEEE
754 single precision floating-point definition for precision and dynamic range. Highp floating-point
variables within a shader are encoded according to the IEEE 754 specification for single-precision
floating-point values (logically, not necessarily physically). While encodings are logically IEEE 754,
operations (addition, multiplication, etc.) are not necessarily performed as required by IEEE 754. See
section 4.5.1 “Range and Precision“ for more details on precision and usage of NaNs (Not a Number) and
Infs (positive or negative infinities).

Floating-point constants are defined as follows.

floating-constant:
fractional-constant exponent-part

opt
floating-suffixopt

digit-sequence exponent-part floating-suffixopt

fractional-constant:

digit-sequence . digit-sequence

digit-sequence .

. digit-sequence

exponent-part:
e sign

opt
 digit-sequence

E sign
opt

 digit-sequence

sign: one of

+ –

digit-sequence:

digit

digit-sequence digit

floating-suffix: one of

f F

A decimal point (.) is not needed if the exponent part is present. No white space may appear anywhere
within a floating-point constant, including before a suffix. A leading unary minus sign (-) is interpreted as
a unary operator and is not part of the floating-point constant.

There is no limit on the number of digits in any digit-sequence. If the value of the floating point number
is too large (small) to be stored as a single precision value, it is converted to positive (negative) infinity. A
value with a magnitude too small to be represented as a mantissa and exponent is converted to zero.
Implementations may also convert subnormal (denormalized) numbers to zero.

27

4 Variables and Types

4.1.5 Vectors

The OpenGL ES Shading Language includes data types for generic 2-, 3-, and 4-component vectors of
floating-point values, integers, and Booleans. Floating-point vector variables can be used to store colors,
normals, positions, texture coordinates, texture lookup results and the like. Boolean vectors can be used
for component-wise comparisons of numeric vectors. Some examples of vector declaration are:

vec2 texcoord1, texcoord2;
vec3 position;
vec4 myRGBA;
ivec2 textureLookup;
bvec3 less;

Initialization of vectors can be done with constructors, which are discussed shortly.

4.1.6 Matrices

The OpenGL ES Shading Language has built-in types for 2×2, 2×3, 2×4, 3×2, 3×3, 3×4, 4×2, 4×3, and
4×4 matrices of floating-point numbers. The first number in the type is the number of columns, the
second is the number of rows. Example matrix declarations:

mat2 mat2D;
mat3 optMatrix;
mat4 view, projection;
mat4x4 view; // an alternate way of declaring a mat4
mat3x2 m; // a matrix with 3 columns and 2 rows

Initialization of matrix values is done with constructors (described in section 5.4 “Constructors”) in
column-major order.

mat2 is an alias for mat2x2, not a distinct type. Similarly for mat3 and mat4 The following is legal:

mat2 a;
mat2x2 b = a;

4.1.7 Opaque Types

The opaque types declare variables that are effectively opaque handles to other objects. These objects are
accessed through built-in functions, not through direct reading or writing of the declared variable. They
can only be declared as function parameters or in uniform-qualified variables (see section 4.3.5
“Uniform”). Except for array indexing, structure member selection, and parentheses, opaque variables are
not allowed to be operands in expressions; such use results in a compile-time error.

Opaque variables cannot be treated as l-values; hence cannot be used as out or inout function parameters,
nor can they be assigned into. Any such use results in a compile-time error. However, they can be passed
as in parameters with matching type. They are initialized only through the OpenGL API; they cannot be
declared with an initializer in a shader.

28

4 Variables and Types

4.1.7.1 Samplers

Sampler types (e.g. sampler2D) are opaque types. They are handles to textures and their filters and are
used with the built-in texture functions (described in section 8.7 “Texture Lookup Functions”) to specify
which texture to access and how it is to be filtered. Samplers aggregated into arrays within a shader
(using square brackets []) can only be indexed with constant integral expressions (see section 4.3.3
“Constant Expressions”). As uniforms, they are initialized only with the OpenGL ES API; they cannot
be declared with an initializer in a shader. As function parameters, only samplers may be passed to
samplers of matching type. This enables consistency checking between shader texture accesses and
OpenGL ES texture state before a shader is run.

4.1.8 Structures

User-defined types can be created by aggregating other already defined types into a structure using the
struct keyword. For example,

struct light {
 float intensity;
 vec3 position;
} lightVar;

In this example, light becomes the name of the new type, and lightVar becomes a variable of type light.
To declare variables of the new type, use its name (without the keyword struct).

light lightVar2;

More formally, structures are declared as follows. However, the complete correct grammar is as given in
section 9 “Shading Language Grammar” .

struct-definition:
qualifier

opt
 struct name

opt
 { member-list } declarators

opt
 ;

member-list:

member-declaration;

member-declaration member-list;

member-declaration:

basic-type declarators;

where name becomes the user-defined type, and can be used to declare variables to be of this new type.
The name shares the same name space as other variables, types, and functions. All previously visible
variables, types, constructors, or functions with that name are hidden. The optional qualifier only applies
to any declarators, and is not part of the type being defined for name.

Structures must have at least one member declaration. Member declarators may contain precision
qualifiers, but may not contain any other qualifiers. Bit fields are not supported. Member types must be
already defined (there are no forward references). Member declarations cannot contain initializers.
Member declarators can contain arrays. Such arrays must have a size specified, and the size must be a
constant integral expression that's greater than zero (see section 4.3.3 “Constant Expressions”). Each
level of structure has its own name space for names given in member declarators; such names need only
be unique within that name space.

29

4 Variables and Types

Anonymous structures are not supported. Embedded structure definitions are not supported.

struct S { float f; }; // Allowed: S is defined as a structure.

struct T {
S; // Error: anonymous structures disallowed
struct { ... }; // Error: embedded structures disallowed
S s; // Allowed: nested structure with a name.

};

Structures can be initialized at declaration time using constructors, as discussed in section 5.4.3 “Structure
Constructors” .

Any restrictions on the usage of a type or qualifier also apply to a structure that contains that type or
qualifier. This applies recursively.

4.1.9 Arrays

Variables of the same type can be aggregated into arrays by declaring a name followed by brackets ([])
enclosing a size. The array size must be a constant integral expression (see section 4.3.3 “Constant
Expressions”) greater than zero. The type of the size parameter can be a signed or unsigned integer and
the choice of type does not affect the type of the resulting array. It is illegal to index an array with a
constant integral expression greater than or equal to the declared size. It is also illegal to index an array
with a negative constant expression. Arrays declared as formal parameters in a function declaration must
also specify a size. Undefined behavior results from indexing an array with a non-constant expression
that’s greater than or equal to the array’s size or less than 0. Only one-dimensional arrays may be
declared. All basic types and structures can be formed into arrays. Some examples are:

float frequencies[3];
uniform vec4 lightPosition[4u];

const int numLights = 2;
light lights[numLights];

An array type can be formed by specifying a type followed by square brackets ([]) and including a size:

float[5]

This type can be used anywhere any other type can be used, including as the return value from a function

float[5] foo() { }

as a constructor of an array

float[5](3.4, 4.2, 5.0, 5.2, 1.1)

as an unnamed parameter

void foo(float[5])

30

4 Variables and Types

and as an alternate way of declaring a variable or function parameter.

float[5] a;

An array type can also be formed without specifying a size if the definition includes an initializer:

float x[] = float[2] (1.0, 2.0); // declares an array of size 2
float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3

float a[5];
float b[] = a;

Note that the initializer itself does not need to be a constant expression but the length of the initializer will
be a constant expression.

It is an error to declare arrays of arrays:

float a[5][3]; // illegal
float[5] a[3]; // illegal

Arrays can have initializers formed from array constructors:

float a[5] = float[5](3.4, 4.2, 5.0, 5.2, 1.1);
float a[5] = float[](3.4, 4.2, 5.0, 5.2, 1.1); // same thing

An array declaration which leaves the size unspecified is an error.

Arrays have a fixed number of elements. This can be obtained by using the length method:

a.length(); // returns 5 for the above declarations

The return value is a constant signed integral expression. The precision is determined using the same
rules as for literal integers.

4.1.10 Definitions of Terms

integral type

An integral type is any signed or unsigned, scalar or vector integer type. It excludes arrays and
structures. The following are the integral types in GLSL ES 3.0:

int uint

ivec2 ivec3 ivec4

uvec2 uvec3 uvec4

scalar integral type

The scalar integral types are the scalar signed and unsigned integer types:

int and uint

31

4 Variables and Types

vector integral type

The vector integral types are vectors of signed or unsigned integer types:

ivec2 ivec3 ivec4

uvec2 uvec3 uvec4

floating point type:

A floating point type is any floating point scalar, vector or matrix type. It excludes arrays and
structures. The following are the floating point types in GLSL ES 3.0:

float

vec2 vec3 vec4

mat2 mat3 mat4

mat2x2 mat2x3 mat2x4

mat3x2 mat3x3 mat3x4

mat4x2 mat4x3 mat4x4

boolean type

A boolean type is any boolean scalar or vector type. It excludes arrays and structures. The
following are the boolean types in GLSL ES 3.0:

bool

bvec2 bvec3 bvec4

opaque types

An opaque type is a type where the internal structure of the type is hidden from the language. The
following are the opaque types in GLSL ES 3.0:

sampler2D sampler3D samplerCube

sampler2DShadow samplerCubeShadow

sampler2DArray

sampler2DArrayShadow

isampler2D isampler3D isamplerCube

isampler2DArray

usampler2D usampler3D usamplerCube

usampler2DArray

Note the distinction between, for example, boolean and boolean type. boolean refers only to the scalar
type whereas boolean type includes both the scalar and vector types.

32

4 Variables and Types

4.2 Scoping
The scope of a declaration determines where the declaration is visible. GLSL ES uses a system of
statically nested scopes. This allows names to be redefined within a shader.

4.2.1 Definition of Terms

The term scope refers to a specified region of the program where names are guaranteed to be visible. For
example, a compound_statement_with_scope ('{' statement statement ... '}') defines a scope.

A nested scope is a scope defined within an outer scope.

The terms 'same scope' and 'current scope' are equivalent to the term 'scope' but used to emphasize that
nested scopes are excluded.

The scope of a declaration is the region or regions of the program where that declaration is visible.

A name space defines where names may be defined. Within a single name space, a name has at most one
entry, specifying it to be one of: structure, variable, or function.

In general, each scope has an associated name space. However, in certain cases e.g. for uniforms,
multiple scopes share the same name space. In these cases, conflicting declarations are an error, even
though the name is only visible in the scopes where it is declared.

4.2.2 Types of Scope

The scope of a variable is determined by where it is declared. If it is declared outside all function
definitions, it has global scope, which starts from where it is declared and persists to the end of the shader
it is declared in. If it is declared in a while test or a for statement, then it is scoped to the end of the
following sub-statement (specified as statement-no-new-scope in the grammar). Otherwise, if it is
declared as a statement within a compound statement, it is scoped to the end of that compound statement.
If it is declared as a parameter in a function definition, it is scoped until the end of that function definition.
A function's parameter declarations and body together form a single scope.

int f(/* nested scope begins here */ int k)
{
 int k = k + 3; // redeclaration error of the name k
 ...
}

int f(int k)
{
 {
 int k = k + 3; // 2nd k is parameter, initializing nested first k
 int m = k // use of new k, which is hiding the parameter
 }
}

For both for and while loops, the sub-statement itself does not introduce a new scope for variable names,
so the following has a redeclaration compile-time error:

33

4 Variables and Types

for (/* nested scope begins here */ int i = 0; i < 10; i++)
{
 int i; // redeclaration error
}

The body of a do-while loop introduces a new scope lasting only between the do and while (not including
the while test expression), whether or not the body is simple or compound:

int i = 17;
do
 int i = 4; // okay, in nested scope
while (i == 0); // i is 17, scoped outside the do-while body

Representing the if construct as:

if if-expression then if-statement else else-statement,

a variable declared in the if-statement is scoped to the end of the if-statement. A variable declared in the
else-statement is scoped to the end of the else-statement. This applies both when these statements are
simple statements and when they are compound statements. The if-expression does not allow new
variables to be declared, hence does not form a new scope.

Within a declaration, the scope of a name starts immediately after the initializer if present or immediately
after the name being declared if not. Several examples:

int x = 1;
{

int x = 2,/* 2nd x visible here */ y = x; // y is initialized to 2
int z = z; // error if z not previously defined.

}
{

int x = x; // x is initialized to '1'
}

A structure name declaration is visible at the end of the struct_specifier in which it was declared:

34

4 Variables and Types

struct S
{

int x;
};

{
S S = S(0); // 'S' is only visible as a struct and constructor
S; // 'S' is now visible as a variable

}

int x = x; // Error if x has not been previously defined.

4.2.3 Redeclaring Names

All variable names, structure type names, and function names in a given scope share the same name space.
Function names can be redeclared in the same scope, with the same or different parameters, without error.
Otherwise, within a shader, a declared name cannot be redeclared in the same scope; doing so results in a
redeclaration error. If a nested scope redeclares a name used in an outer scope, it hides all existing uses of
that name. There is no way to access the hidden name or make it unhidden, without exiting the scope that
hid it.

Names of built-in functions cannot be redeclared as functions. Therefore overloading or redefining built-
in functions is an error.

A declaration is considered to be a statement that adds a name or signature to the symbol table. A
definition is a statement that fully defines that name or signature. E.g.

int f(); // declaration;
int f() {return 0;} // declaration and definition
int x; // declaration and definition
int a[4]; // array declaration and definition
struct S {int x;}; // structure declaration and definition

The determination of equivalence of two declarations depends on the type of declaration. For functions,
the whole function signature must be considered (see section 6.1 Function Definitions). For variables
(including arrays) and structures only the names must match.

Within each scope, a name may be declared either as a variable declaration or as function declarations or
as a structure.

Examples of combinations that are allowed:

1.

void f(int) {...}
void f(float) {...} // function overloading allowed

2.

void f(int); // 1st declaration (allowed)
void f(int); // repeated declaration (allowed)
void f(int) {...} // single definition (allowed)

35

4 Variables and Types

Examples of combinations that are disallowed:

1.

void f(int) {...}
void f(int) {...} // Error: repeated definition

2.

void f(int);
struct f {int x;}; // Error: type 'f' conflicts with function 'f'

3.

struct f {int x;};
int f; // Error: conflicts with the type 'f'

4.

int a[3];
int a[3]; // Error: repeated array definition

5.

int x;
int x; // Error: repeated variable definition

4.2.4 Global Scope

The built-in functions are scoped in the global scope users declare global variables in. That is, a shader's
global scope, available for user-defined functions and global variables, is the same as the scope containing
the built-in functions. Function declarations (prototypes) cannot occur inside of functions; they must be at
global scope. Hence it is not possible to hide a name with a function.

4.2.5 Shared Globals

Shared globals are variables that can be accessed by multiple compilation units. In GLSL ES the only
shared globals are uniforms. Vertex shader outputs are not considered to be shared globals since they
must pass through the rasterization stage before they are used as input by the fragment shader.

Shared globals share the same name space, and must be declared with the same type and precision. They
will share the same storage. Shared global arrays must have the same base type and the same explicit size.
Scalars must have exactly the same precision, type name and type definition. Structures must have the
same name, sequence of type names, and type definitions, and field names to be considered the same type.
This rule applies recursively for nested or embedded types.

36

4 Variables and Types

4.3 Storage Qualifiers
Variable declarations may have one storage qualifier specified in front of the type. These are summarized
as

Qualifier Meaning

< none: default > local read/write memory, or an input parameter to a function

const a compile-time constant, or a function parameter that is read-only

in
centroid in

linkage into a shader from a previous stage, variable is copied in
linkage with centroid based interpolation

out
centroid out

linkage out of a shader to a subsequent stage, variable is copied out
linkage with centroid based interpolation

uniform value does not change across the primitive being processed, uniforms
form the linkage between a shader, OpenGL ES, and the application

Outputs from a shader (out) and inputs to a shader (in) can be further qualified with one of these
interpolation qualifiers

Qualifier Meaning

smooth perspective correct interpolation

flat no interpolation

These interpolation qualifiers may only precede the qualifiers in, centroid in, out, or centroid out in a
declaration. They do not apply to inputs into a vertex shader or outputs from a fragment shader.

Local variables can only use the const storage qualifier.

Function parameters can use const, in, and out qualifiers, but as parameter qualifiers. Parameter
qualifiers are discussed in section 6.1.1 “Function Calling Conventions”.

Function return types and structure fields do not use storage qualifiers.

Data types for communication from one run of a shader executable to its next run (to communicate
between fragments or between vertices) do not exist. This would prevent parallel execution of the same
shader executable on multiple vertices or fragments.

Initializers may only be used in declarations of globals with no storage qualifier or with a const qualifier.
Such initializers must be a constant expression. Global variables without storage qualifiers that are not
initialized in their declaration or by the application will not be initialized by OpenGL ES, but rather will
enter main() with undefined values.

4.3.1 Default Storage Qualifier

If no qualifier is present on a global variable, then the variable has no linkage to the application or shaders
running on other pipeline stages. For either global or local unqualified variables, the declaration will
appear to allocate memory associated with the processor it targets. This variable will provide read/write
access to this allocated memory.

37

4 Variables and Types

4.3.2 Constant Qualifier

Named compile-time constants can be declared using the const qualifier. Any variables qualified as
constant are read-only variables for that shader. Declaring variables as constant allows more descriptive
shaders than using hard-wired numerical constants. The const qualifier can be used with any of the non-
void transparent basic data types as well as structures and arrays of these. It is an error to write to a const
variable outside of its declaration, so they must be initialized when declared. For example,

const vec3 zAxis = vec3 (0.0, 0.0, 1.0);

Structure fields may not be qualified with const. Structure variables can be declared as const, and
initialized with a structure constructor.

Initializers for const declarations must be constant expressions, as defined in section 4.3.3 “Constant
Expressions.”

38

4 Variables and Types

4.3.3 Constant Expressions

A constant expression is one of

• a literal value (e.g. 5 or true)

• a global or local variable qualified as const (i.e., not including function parameters)

• an expression formed by an operator on operands that are all constant expressions, including getting an
element of a constant array, or a field of a constant structure, or components of a constant vector.
However, the sequence operator (,) and the assignment operators (=, +=, ...) are not included in the
operators that can create a constant expression.

• the length() method on an array, whether or not the object itself is constant.

• a constructor whose arguments are all constant expressions

• a built-in function call whose arguments are all constant expressions, with the exception of the texture
lookup functions. The built-in functions dFdx, dFdy, and fwidth must return 0 when evaluated inside
an initializer with an argument that is a constant expression.

Function calls to user-defined functions (non-built-in functions) cannot be used to form constant
expressions.

Scalar, vector, matrix, array and structure variables are constant expressions if qualified as const. Sampler
types cannot be constant expressions.

A constant integral expression is a constant expression that evaluates to a scalar signed or unsigned
integer.

Constant expressions will be evaluated in an invariant way so as to create the same value in multiple
shaders when the same constant expressions appear in those shaders. See section 4.6.1 “The Invariant
Qualifier” for more details on how to create invariant expressions.

4.3.4 Input Variables

Shader input variables are declared with the in storage qualifier or the centroid in storage qualifier. They
form the input interface between previous stages of the OpenGL ES pipeline and the declaring shader.
Input variables must be declared at global scope. Values from the previous pipeline stage are copied into
input variables at the beginning of shader execution. Variables declared as in or centroid in may not be
written to during shader execution. Only the input variables that are actually read need to be written by
the previous stage; it is allowed to have superfluous declarations of input variables.

See section 7 “Built-in Variables” for a list of the built-in input names.

Vertex shader input variables (or attributes) receive per-vertex data. They are declared in a vertex shader
with the in qualifier. It is an error to use centroid in or interpolation qualifiers in a vertex shader input.
The values copied in are established by the OpenGL ES API or through the use of the layout identifier
location.

It is a compile-time error to declare a vertex shader input with, or that contains, any of the following types
(see 4.1.10 “Definitions of Terms”):

• A boolean type

39

4 Variables and Types

• An opaque type

• An array

• A structure

Example declarations in a vertex shader:

in vec4 position;
in vec3 normal;

It is expected that graphics hardware will have a small number of fixed vector locations for passing vertex
inputs. Therefore, the OpenGL ES Shading language defines each non-matrix input variable as taking up
one such vector location. There is an implementation dependent limit on the number of locations that can
be used, and if this is exceeded it will cause a link error. (Declared input variables that are not statically
used do not count against this limit.) A scalar input counts the same amount against this limit as a vec4, so
applications may want to consider packing groups of four unrelated float inputs together into a vector to
better utilize the capabilities of the underlying hardware. A matrix input will use up multiple locations.
The number of locations used will equal the number of columns in the matrix.

Fragment shader inputs get per-fragment values, typically interpolated from a previous stage's outputs.
They are declared in fragment shaders with the in storage qualifier or the centroid in storage qualifier.

It is a compile-time error to declare a fragment shader input with, or that contains, any of the following
types (see 4.1.10 “Definitions of Terms”):

• A boolean type

• An opaque type

• An array of arrays

• An array of structures

• A structure containing an array

• A structure containing a structure

Fragment shader inputs that are, or contain, signed or unsigned integers or integer vectors must be
qualified with the interpolation qualifier flat.

Fragment inputs are declared as in the following examples:

in vec3 normal;
centroid in vec2 TexCoord;

flat in vec3 myColor;

The output of the vertex shader and the input of the fragment shader form an interface. For this interface,
vertex shader output variables and fragment shader input variables of the same name must match in type
and qualification (other than precision, invariance and out matching to in).

40

4 Variables and Types

4.3.5 Uniform Variables

The uniform qualifier is used to declare global variables whose values are the same across the entire
primitive being processed. All uniform variables are read-only. They are initialized to 0 at link time and
may be updated through the API.

Example declarations are:

uniform vec4 lightPosition;

The uniform qualifier can be used with any of the basic data types, or when declaring a variable whose
type is a structure, or an array of any of these.

There is an implementation dependent limit on the amount of storage for uniforms that can be used for
each type of shader and if this is exceeded it will cause a compile-time or link-time error. Uniform
variables that are declared but not used do not count against this limit. The number of user-defined
uniform variables and the number of built-in uniform variables that are used within a shader are added
together to determine whether available uniform storage has been exceeded.

Uniforms in the vertex and fragment shaders share a single global name space. Hence, the types and
precisions of uniform variables with the same name must match across shaders that are linked into a single
program. While this single uniform name space is cross stage, a uniform variable name's scope is per
stage: If a uniform variable name is declared in one stage (e.g., a vertex shader) but not in another (e.g., a
fragment shader), then that name is still available in the other stage for a different use.

4.3.6 Output Variables

Shader output variables are declared with the out or centroid out storage qualifiers. They form the
output interface between the declaring shader and the subsequent stages of the OpenGL ES pipeline.
Output variables must be declared at global scope. During shader execution they will behave as normal
unqualified global variables. Their values are copied out to the subsequent pipeline stage on shader exit.
Only output variables that are read by the subsequent pipeline stage need to be written; it is allowed to
have superfluous declarations of output variables.

There is not an inout storage qualifier at global scope for declaring a single variable name as both input
and output to a shader. Output variables must be declared with different names than input variables.

Vertex output variables output per-vertex data and are declared using the out storage qualifier or the
centroid out storage qualifier.

It is a compile-time error to declare a vertex shader output with, or that contains, any of the following
types (see 4.1.10 “Definitions of Terms”):

• A boolean type

• An opaque type

• An array of arrays

• An array of structures

• A structure containing an array

• A structure containing a structure

41

4 Variables and Types

Vertex shader outputs that are, or contain, signed or unsigned integers or integer vectors must be qualified
with the interpolation qualifier flat.

Individual vertex outputs are declared as in the following examples:

out vec3 normal;
centroid out vec2 TexCoord;
invariant centroid out vec4 Color;
flat out vec3 myColor;

Fragment outputs output per-fragment data and are declared using the out storage qualifier. It is an error
to use centroid out in a fragment shader.

It is a compile-time error to declare a fragment shader output with, or that contains, any of the following
types (see 4.1.10 “Definitions of Terms”):

• A boolean type

• An opaque type

• A matrix

• A structure

Fragment shader outputs declared as arrays may only be indexed by a constant integral expression.

Fragment outputs are declared as in the following examples:

out vec4 FragmentColor;
out uint Luminosity;

42

4 Variables and Types

4.3.7 Interface Blocks

Uniform variable declarations can be grouped into named interface blocks to provide coarser granularity
backing than is achievable with individual declarations. They can have an optional instance name, used in
the shader to reference their members. A uniform block is backed by the application with a buffer object.

GLSL ES 3.0 does not support interface blocks for shader inputs or outputs.

An interface block is started by a uniform keyword, followed by a block name, followed by an open curly
brace ({) as follows:

interface-block:
layout-qualifieropt uniform block-name { member-list } instance-nameopt ;

layout-qualifier:
layout (layout-qualifier-id-list)

layout-qualifier-id-list
comma separated list of layout-qualifier-id

member-list:
member-declaration
member-declaration member-list

member-declaration:
layout-qualifieropt qualifiersopt type declarators ;

instance-name:
identifier
identifier [constant-integral-expression]

Each of the above elements is discussed below, with the exception of layout qualifiers (layout-qualifier),
which are defined in the next section.

First, an example,

uniform Transform {
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 uniform mat3 NormalMatrix; // allowed restatement of qualifier
 float Deformation;
};

The above establishes a uniform block named “Transform” with four uniforms grouped inside it.

Types and declarators are the same as for other uniform variable declarations outside blocks, with these
exceptions:

• opaque types are not allowed

• structure definitions cannot be nested inside a block

Otherwise, built-in types, previously declared structures, and arrays of these are allowed as the type of a
declarator in the same manner they are allowed outside a block.

43

4 Variables and Types

 Repeating the uniform interface qualifier for a member's storage qualifier is optional. For example,

uniform Transform
{
 uniform mat4 model_view; // legal, uniform inside a uniform block.
 mat4 projection; // legal, 'uniform' inherited from block.
 in bool transform_flag; // illegal, member is not a uniform.
};

A shader interface is defined to be one of these:

• All the uniform variables of a program. This spans all compilation units linked together within one
program.

• The boundary between adjacent programmable pipeline stages: This spans all the outputs from the
shader in the first stage and all the inputs to the shader in the second stage. Note that for the purposes
of this definition, the vertex shader and fragment shader are considered to have a shared boundary
even though in practice, all values passed from the vertex shader to the fragment shader first pass
through the rasterizer and interpolator.

For uniform blocks, the application uses the block name to identify the block. Block names have no other
use within a shader beyond interface matching; it is an error to use a block name at global scope for
anything other than as a block name (e.g., use of a block name for a global variable name or function
name is currently reserved). It is a compile-time error to use the same block name for more than one
block declaration in the same shader interface (as defined above) within one shader, even if the block
contents are identical.

Matched block names within a shader interface (as defined above) must match in terms of having the
same number of declarations with the same sequence of types, precisions and the same sequence of
member names, as well as having the same member-wise layout qualification1 (see next section).
Furthermore, if a matching block is declared as an array, then the array sizes must also match.

1 In GLSL ES 3.0, it is implementation-defined whether the row_major and column_major qualifiers must match
for non-matrix types.

44

4 Variables and Types

If an instance name (instance-name) is not used, the names declared inside the block are scoped at the
global level and accessed as if they were declared outside the block. If an instance name (instance-name)
is used, then it puts all the members inside a scope within its own name space, accessed with the field
selector (.) operator (analogously to structures). For example,

uniform Transform_1
{
 mat4 modelview;
};

uniform Transform_2
{
 mat4 projection;
} transform_2;

mat4 modelview; // illegal as modelview already defined at this scope
mat4 projection; // legal as projection and transform_2.projection are
 // distinct.

Matched uniform block names must also either all be lacking an instance name or all having an instance
name, thereby putting their members at the same scoping level. When instance names are present on
matched block names, it is allowed for the instance names to differ; they need not match for the blocks to
match.

Outside the shading language (i.e., in the API), members are similarly identified except the block name is
always used in place of the instance name (API accesses are to interfaces, not to shaders). If there is no
instance name, then the API does not use the block name to access a member, just the member name. For
example:

uniform Transform_1
{
 mat4 modelview; // API will use “modelview”
};

uniform Transform_2
{
 mat4 projection; // API will use “Transform_2.projection”
} transform_2;

For blocks declared as arrays, the array index must also be included when accessing members, as in this
example

45

4 Variables and Types

uniform Transform { // API uses “Transform[2]” to refer to instance 2
 mat4 ModelViewMatrix;
 mat4 ModelViewProjectionMatrix;
 float Deformation;
} transforms[4];
...
... = transforms[2].ModelViewMatrix; // shader access of instance 2
// API uses “Transform.ModelViewMatrix” to query an offset or other query

For uniform blocks declared as an array, each individual array element corresponds to a separate buffer
object backing one instance of the block. As the array size indicates the number of buffer objects needed,
uniform block array declarations must specify an array size. All indexes used to index a uniform block
array must be constant integral expressions.

When using OpenGL ES API entry points to identify the name of an individual block in an array of
blocks, the name string must include an array index (e.g., Transform[2]). When using OpenGL ES API
entry points to refer to offsets or other characteristics of a block member, an array index must not be
specified (e.g., Transform.ModelViewMatrix).

There is an implementation dependent limit on the number of uniform blocks that can be used per stage.
If this limit is exceeded, it will cause a link error.

4.3.8 Layout Qualifiers

Layout qualifiers can appear in several forms of declaration. They can appear as part of an interface
block definition or block member, as shown in the grammar in the previous section. They can also appear
with just a uniform to establish layouts of other uniform declarations:

layout-qualifier uniform ;

Or, they can appear with an individual variable declared with an interface qualifier:

layout-qualifier interface-qualifier declaration ;

Declarations of layouts can only be made at global scope, and only where indicated in the following
subsections; their details are specific to what the interface qualifier is, and are discussed individually.

Interface qualifiers are a subset of storage qualifiers:

interface-qualifier:
in
out
uniform

As shown in the previous section, layout-qualifier expands to:

layout-qualifier :
layout (layout-qualifier-id-list)

The tokens in any layout-qualifier-id-list are identifiers, not keywords. Generally, they can be listed in
any order. Order-dependent meanings exist only if explicitly called out below. As for other identifiers,
they are case sensitive.

46

4 Variables and Types

4.3.8.1 Input Layout Qualifiers

Vertex shaders allow input layout qualifiers on input variable declarations. The layout qualifier identifier
for vertex shader inputs is:

layout-qualifier-id
location = integer-constant

Only one argument is accepted. For example,

layout(location = 3) in vec4 normal;

will establish that the vertex shader input normal is copied in from vector location number 3.

If an input variable with no location assigned in the shader text has a location specified through the
OpenGL ES API, the API-assigned location will be used. Otherwise, such variables will be assigned a
location by the linker. See section 2.11.5 “Vertex Attributes” of the OpenGL ES 3.0 Graphics System
Specification for more details.

It is an error if more than one input or element of a matrix input is bound to the same location.

Fragment shaders cannot have input layout qualifiers.

4.3.8.2 Output Layout Qualifiers

Vertex shaders cannot have output layout qualifiers.

In the fragment shader, a binding between an output variable and a numbered draw buffer is established
by the location layout qualifier in the output declaration. The location of each output corresponds to the
draw buffer the data is written to. Locations are integral values in the range
[0, MAX_DRAW_BUFFERS – 1].

Fragment shaders allow output layout qualifiers only on the interface qualifier out. The layout qualifier
identifier for fragment shader outputs is:

layout-qualifier-id
location = integer-constant

The qualifier may appear at most once within a declaration. For example,

layout(location = 3) out vec4 color;

will establish that the fragment shader output color is copied out to draw buffer 3.

If the named fragment shader output is an array, it will be assigned consecutive locations starting with the
location specified. For example,

layout(location = 2) out vec4 colors[3];

will establish that colors is copied out to draw buffers 2, 3, and 4.

If there is only a single output, the location does not need to be specified, in which case it defaults to zero.
This applies for all output types, including arrays. For example,

47

4 Variables and Types

out vec4 my_FragColor; // must be the only output declaration

will establish that the fragment shader output my_FragColor is copied out to draw buffer 0. Likewise,

out vec4 my_FragData[4]; // must be the only output declaration

will establish that the fragment shader outputs my_FragData[0] to my_FragData[3] is copied out to
draw buffers 0 through 3 respectively.

If there is more than one output, the location must be specified for all outputs. It is an error if any of the
following occur:

• The location of any output or element of an array output, is greater or equal to the value of
MAX_DRAW_BUFFERS.

• More than one output or element of an array output is bound to the same location.

 See section 3.9.2 “Shader Execution” of the OpenGL ES 3.0 Graphics System Specification for more
details.

4.3.8.3 Uniform Block Layout Qualifiers

Layout qualifiers can be used for uniform blocks, but not for non-block uniform declarations. The layout
qualifier identifiers for uniform blocks are:

layout-qualifier-id
shared
packed
std140
row_major
column_major

None of these have any semantic effect at all on the usage of the variables being declared; they only
describe how data is laid out in memory. For example, matrix semantics are always column-based, as
described in the rest of this specification, no matter what layout qualifiers are being used.

Uniform block layout qualifiers can be declared for global scope, on a single uniform block, or on a single
block member declaration.

Default layouts are established at global scope for uniform blocks as

layout(layout-qualifier-id-list) uniform;

When this is done, the previous default qualification is first inherited and then overridden as per the
override rules listed below for each qualifier listed in the declaration. The result becomes the new default
qualification scoped to subsequent uniform block definitions.

The initial state of compilation is as if the following were declared:

layout(shared, column_major) uniform;

Explicitly declaring this in a shader will return defaults back to their initial state.

48

4 Variables and Types

Uniform blocks can be declared with optional layout qualifiers, and so can their individual member
declarations. Such block layout qualification is scoped only to the content of the block. As with global
layout declarations, block layout qualification first inherits from the current default qualification and then
overrides it. Similarly, individual member layout qualification is scoped just to the member declaration,
and inherits from and overrides the block's qualification.

The shared qualifier overrides only the std140 and packed qualifiers; other qualifiers are inherited. The
compiler/linker will ensure that multiple programs and programmable stages containing this definition
will share the same memory layout for this block, as long as they also matched in their row_major and/or
column_major qualifications. This allows use of the same buffer to back the same block definition across
different programs.

The packed qualifier overrides only std140 and shared; other qualifiers are inherited. When packed is
used, no shareable layout is guaranteed. The compiler and linker can optimize memory use based on what
variables actively get used and on other criteria. Offsets must be queried, as there is no other way of
guaranteeing where (and which) variables reside within the block. Attempts to share a packed uniform
block across programs or stages will generally fail. However, implementations may aid application
management of packed blocks by using canonical layouts for packed blocks.

The std140 qualifier overrides only the packed and shared qualifiers; other qualifiers are inherited. The
layout is explicitly determined by this, as described in section 2.11.5 “Uniform Variables” under
“Standard Uniform Block Layout” of the OpenGL ES Graphics System Specification. Hence, as in
shared above, the resulting layout is shareable across programs.

Layout qualifiers on member declarations cannot use the shared, packed, or std140 qualifiers. These can
only be used at global scope or on a block declaration.

The row_major and column_major qualifiers affect the layout of only matrices, including all matrices
contained in structures and arrays they are applied to, to all depths of nesting. These qualifiers can be
applied to other types, but will have no effect.

The row_major qualifier overrides only the column_major qualifier; other qualifiers are inherited.
Elements within a matrix row will be contiguous in memory.

The column_major qualifier overrides only the row_major qualifier; other qualifiers are inherited.
Elements within a matrix column will be contiguous in memory.

When multiple arguments are listed in a layout declaration, the effect will be the same as if they were
declared one at a time, in order from left to right, each in turn inheriting from and overriding the result
from the previous qualification.

Layout qualifiers are identifiers, not keywords and they have their own name space.

49

4 Variables and Types

For example

layout(row_major, column_major)

results in the qualification being column_major. Other examples:

layout(shared, row_major) uniform; // default is now shared and row_major

layout(std140) uniform Transform { // layout of this block is std140
 mat4 M1; // row_major
 layout(column_major) mat4 M2; // column major
 mat3 N1; // row_major
};

uniform T2 { // layout of this block is shared
 ...
};

layout(column_major) uniform T3 { // shared and column_major
 mat4 M3; // column_major
 layout(row_major) mat4 m4; // row major
 mat3 N2; // column_major
};

4.3.9 Interpolation

The presence of and type of interpolation is controlled by the storage qualifiers centroid in and centroid
out, and by the optional interpolation qualifiers smooth and flat. When no interpolation qualifier is
present, smooth interpolation is used. It is a compile-time error to use more than one interpolation
qualifier.

A variable qualified as flat will not be interpolated. Instead, it will have the same value for every
fragment within a triangle. This value will come from a single provoking vertex, as described by the
OpenGL ES Graphics System Specification. A variable may be qualified as flat centroid, which will
mean the same thing as qualifying it only as flat.

A variable qualified as smooth will be interpolated in a perspective-correct manner over the primitive
being rendered. Interpolation in a perspective correct manner is specified in equations 3.4 in the OpenGL
ES 3.0 Graphics System Specification, section 3.5 “Line Segments”.

This paragraph only applies if interpolation is being done: If single-sampling, the value is interpolated to
the pixel's center, and the centroid qualifier, if present, is ignored. If multi-sampling and the variable is
not qualified with centroid, then the value must be interpolated to the pixel's center, or anywhere within
the pixel, or to one of the pixel's samples. If multi-sampling and the variable is qualified with centroid,
then the value must be interpolated to a point that lies in both the pixel and in the primitive being
rendered, or to one of the pixel's samples that falls within the primitive. Due to the less regular location of
centroids, their derivatives may be less accurate than non-centroid interpolated variables.

The type and presence of the interpolation qualifiers and storage qualifiers of variables with the same
name declared in all linked shaders must match, otherwise the link command will fail.

50

4 Variables and Types

4.3.10 Linking of Vertex Outputs and Fragment Inputs

The type of vertex outputs and fragment inputs with the same name must match, otherwise the link
command will fail. The precision does not need to match. Only those fragment inputs statically used (i.e.
read) in the fragment shader must be declared as outputs in the vertex shader; declaring superfluous vertex
shader outputs is permissible.

The following table summarizes the rules for matching vertex outputs with fragment inputs:

Fragment Shader Inputs

No reference Declares;
no static use

Declares
and static use

Vertex
Shader
Outputs

No reference Allowed Allowed error

Declares;
no static use

Allowed Allowed Allowed
(values are
undefined)

Declares
and static use

Allowed Allowed Allowed
(values are
potentially
undefined)

The term static use means that after preprocessing the shader includes at least one statement that accesses
the input or output, even if that statement is never actually executed.

The precision of a vertex output does not need to match the precision of the corresponding fragment input.
The minimum precision at which vertex outputs are interpolated is the minimum of the vertex output
precision and the fragment input precision, with the exception that for highp, implementations do not have
to support full IEEE 754 precision. In this case, the precision of the interpolated value is defined by a
range and resolution as below:

The precision of values exported to a transform feedback buffer is the precision of the outputs of the
vertex shader. However, they are converted to highp format before being written.

4.4 Parameter Qualifiers
Parameters can have these qualifiers.

Qualifier Meaning

< none: default > same is in

in for function parameters passed into a function

out for function parameters passed back out of a function, but not initialized
for use when passed in

inout for function parameters passed both into and out of a function

Parameter qualifiers are discussed in more detail in section 6.1.1 “Function Calling Conventions”.

51

4 Variables and Types

4.5 Precision and Precision Qualifiers

4.5.1 Range and Precision

The precision of highp floating-point variables is defined by the IEEE 754 standard for 32-bit floating-
point numbers. This includes support for NaNs (Not a Number) and Infs (positive or negative infinities).

The following rules apply to highp operations: Infinities and zeros are generated as dictated by IEEE,
but subject to the precisions allowed in the following table and subject to allowing positive and negative
zeros to be interchanged. However, dividing a non-zero by 0 results in the appropriately signed IEEE Inf:
If both positive and negative zeros are implemented, the correctly signed Inf will be generated, otherwise
positive Inf is generated. Any subnormal (denormalized) value input into a shader or potentially
generated by any operation in a shader can be flushed to 0. The rounding mode cannot be set and is
undefined. NaNs are not required to be generated. Support for signaling NaNs is not required and
exceptions are never raised. Operations and built-in functions that operate on a NaN are not required to
return a NaN as the result. However if NaNs are generated, isnan() should return the correct value.

Precisions are expressed in terms of maximum relative error in units of ULP (units in the last place),
unless otherwise noted.

For single precision operations, precisions are required as follows:

Operation Precision

a + b, a – b, a * b Correctly rounded.

<, <=, ==, >, >= Correct result.

a / b, 1.0 / b 2.5 ULP for b in the range [2-126, 2126].

a * b + c Correctly rounded single operation or sequence of
two correctly rounded operations.

pow(x, y) Inherited from exp2 (x * log2 (y)).

exp (x), exp2 (x) (3 + 2 * |x|) ULP.

log (), log2 () 3 ULP outside the range [0.5, 2.0].

Absolute error < 2-21 inside the range [0.5, 2.0].

sqrt () Inherited from 1.0 / inversesqrt().

inversesqrt () 2 ULP.

explicit
conversions between types

Correctly rounded.

The rounding mode is not defined but must not affect the result by more than 1 ULP.

Built-in functions defined in the specification with an equation built from the above operations inherit the
above errors. These include, for example, the geometric functions, the common functions, and many of
the matrix functions. Built-in functions not listed above and not defined as equations of the above have
undefined precision. These include, for example, the trigonometric functions and determinant.

52

4 Variables and Types

Storage requirements are declared through use of precision qualifiers. The precision of operations must
preserve the storage precisions of the variables involved.

highp floating point values are stored in IEEE 754 single precision floating point format. Mediump and
lowp floating point values have minimum range and precision requirements as detailed below and have
maximum range and precision as defined by IEEE 754.

All integral types are assumed to be implemented as integers and so may not be emulated by floating point
values. Highp signed integers are represented as twos-complement 32-bit signed integers. Highp
unsigned integers are represented as unsigned 32-bit integers. Mediump integers (signed and unsigned)
must be represented as an integer with between 16 and 32 bits inclusive. Lowp integers (signed and
unsigned) must be represented as an integer with between 9 and 32 bits inclusive.

The required ranges and precisions for precision qualifiers are:

Qualifier Floating
Point Range

Floating Point
Magnitude

Range

Floating Point
Precision

Integer
Range

Signed Unsigned

highp As IEEE-754

(−2126 , 2127
)

As IEEE-754

0.0,(2−126 , 2127
)

As IEEE 754
relative:

2−24

[−231 , 231
−1] [0 ,232

−1]

mediump
(minimum

requirements)
(−214 , 214

) (2−14 ,214
)

Relative:

2−10

[−215 , 215
−1] [0 ,216

−1]

lowp
(minimum

requirements)

(−2, 2) (2−8 ,2)
Absolute:

2−8 / 2−9

signed/unsigned

[−28 , 28
−1] [0 , 29

−1]

In addition, the range and precision of a mediump floating point value must be the same as or greater than
the range and precision of a lowp floating point value. The range and precision of a highp floating point
value must be the same as or greater than the range and precision of a mediump floating point value.

The range of a mediump integer value must be the same as or greater than the range of a lowp integer
value. The range of a highp integer value must be the same as or greater than the range of a mediump
integer value.

Within the above specification, an implementation is allowed to vary the representation of numeric values,
both within a shader and between different shaders. If necessary, this variance can be controlled using the
invariance qualifier.

The actual ranges and precisions provided by an implementation can be queried through the API. See the
OpenGL ES 3.0 specification for details on how to do this.

53

4 Variables and Types

4.5.2 Conversion between precisions

Within the same type, conversion from a lower to a higher precision must be exact. When converting
from a higher precision to a lower precision, if the value is representable by the implementation of the
target precision, the conversion must also be exact. If the value is not representable, the behavior is
dependent on the type:

• For signed and unsigned integers, the value is truncated; bits in positions not present in the target
precision are set to zero. (Positions start at zero and the least significant bit is considered to be
position zero for this purpose.)

• For floating point values, the value should either clamp to +INF or -INF, or to the maximum or
minimum value that the implementation supports. While this behavior is implementation
dependent, it should be consistent for a given implementation.

4.5.3 Precision Qualifiers

Any floating point, integer or sampler declaration can have the type preceded by one of these precision
qualifiers:

Qualifier Meaning

highp The variable satisfies the minimum requirements for highp described above.
Highp variables have the maximum range and precision available but may
cause operations to run more slowly on some implementations.

mediump The variable satisfies the minimum requirements for mediump described
above. Mediump variables may typically be used to store high dynamic
range colors and low precision geometry.

lowp The variable satisfies the minimum requirements for lowp described above.
Lowp variables may typically be used to store 8-bit color values.

For example:

lowp float color;
out mediump vec2 P;
lowp ivec2 foo(lowp mat3);
highp mat4 m;

Literal constants do not have precision qualifiers. Neither do Boolean variables. Neither do constructors.

For this paragraph, “operation” includes operators, built-in functions, and constructors, and “operand”
includes function arguments and constructor arguments. The precision used to internally evaluate an
operation, and the precision qualification subsequently associated with any resulting intermediate values,
must be at least as high as the highest precision qualification of the operands consumed by the operation.

For constant expressions and sub-expressions, where the precision is not defined, the evaluation is
performed at or above the highest supported precision of the target (either mediump or highp). The
evaluation of constant expressions must be invariant and will usually be performed at compile time.

54

4 Variables and Types

In other cases where operands do not have a precision qualifier, the precision qualification will come from
the other operands. If no operands have a precision qualifier, then the precision qualifications of the
operands of the next consuming operation in the expression will be used. This rule can be applied
recursively until a precision qualified operand is found. If necessary, it will also include the precision
qualification of l-values for assignments, of the declared variable for initializers, of formal parameters for
function call arguments, or of function return types for function return values. If the precision cannot be
determined by this method e.g. if an entire expression is composed only of operands with no precision
qualifier, and the result is not assigned or passed as an argument, then it is evaluated at the default
precision of the type or greater. When this occurs in the fragment shader, the default precision must be
defined.

For example, consider the statements.

uniform highp float h1;
highp float h2 = 2.3 * 4.7; // operation and result are highp precision
mediump float m;
m = 3.7 * h1 * h2; // all operations are highp precision
h2 = m * h1; // operation is highp precision
m = h2 – h1; // operation is highp precision
h2 = m + m; // addition and result at mediump precision
void f(highp float p);
f(3.3); // 3.3 will be passed in at highp precision

Precision qualifiers, as with other qualifiers, do not affect the basic type of the variable. In particular,
there are no constructors for precision conversions; constructors only convert types. Similarly, precision
qualifiers, as with other qualifiers, do not contribute to function overloading based on parameter types. As
discussed in the next chapter, function input and output is done through copies, and therefore qualifiers do
not have to match.

The same uniform declared in different shaders that are linked together must have the same precision
qualification.

The precision of a variable is determined when the variable is declared and cannot be subsequently
changed.

4.5.4 Default Precision Qualifiers

The precision statement

precision precision-qualifier type;

can be used to establish a default precision qualifier. The type field can be either int or float or any of the
sampler types, and the precision-qualifier can be lowp, mediump, or highp. Any other types or qualifiers
will result in an error. If type is float, the directive applies to non-precision-qualified floating point type
(scalar, vector, and matrix) declarations. If type is int, the directive applies to all non-precision-qualified
integral type (scalar, vector, signed, and unsigned) declarations. This includes global variable
declarations, function return declarations, function parameter declarations, and local variable declarations.

55

4 Variables and Types

Non-precision qualified declarations will use the precision qualifier specified in the most recent precision
statement that is still in scope. The precision statement has the same scoping rules as variable
declarations. If it is declared inside a compound statement, its effect stops at the end of the innermost
statement it was declared in. Precision statements in nested scopes override precision statements in outer
scopes. Multiple precision statements for the same basic type can appear inside the same scope, with later
statements overriding earlier statements within that scope.

The vertex language has the following predeclared globally scoped default precision statements:

precision highp float;
precision highp int;

precision lowp sampler2D;
precision lowp samplerCube;

The fragment language has the following predeclared globally scoped default precision statements:

precision mediump int;

precision lowp sampler2D;
precision lowp samplerCube;

The fragment language has no default precision qualifier for floating point types. Hence for float, floating
point vector and matrix variable declarations, either the declaration must include a precision qualifier or
the default float precision must have been previously declared. Similarly, there is no default precision
qualifier for the following sampler types in either the vertex or fragment language:

sampler3D;
samplerCubeShadow;
sampler2DShadow;
sampler2DArray;
sampler2DArrayShadow;
isampler2D;
isampler3D;
isamplerCube;
isampler2DArray;
usampler2D;
usampler3D;
usamplerCube;
usampler2DArray;

4.6 Variance and the Invariant Qualifier
In this section, variance refers to the possibility of getting different values from the same expression in
different programs. For example, say two vertex shaders, in different programs, each set gl_Position with
the same expression in both shaders, and the input values into that expression are the same when both
shaders run. It is possible, due to independent compilation of the two shaders, that the values assigned to
gl_Position are not exactly the same when the two shaders run. In this example, this can cause problems
with alignment of geometry in a multi-pass algorithm.

56

4 Variables and Types

In general, such variance between shaders is allowed. When such variance does not exist for a particular
output variable, that variable is said to be invariant.

4.6.1 The Invariant Qualifier

To ensure that a particular output variable is invariant, it is necessary to use the invariant qualifier. It can
either be used to qualify a previously declared variable as being invariant

invariant gl_Position; // make built-in gl_Position be invariant

out vec3 Color;
invariant Color; // make existing Color be invariant

invariant Color_2; // error: Color_2 has not been declared

or as part of a declaration when a variable is declared

invariant centroid out vec3 Color;

The invariant qualifier must appear before any interpolation qualifiers or storage qualifiers when
combined with a declaration. Only variables output from a shader can be candidates for invariance. This
includes user-defined output variables and the built-in output variables. As only outputs can be declared
as invariant, an invariant output from one shader stage will still match an input of a subsequent stage
without the input being declared as invariant.

The invariant keyword can be followed by a comma separated list of previously declared identifiers. All
uses of invariant must be at the global scope, and before any use of the variables being declared as
invariant.

To guarantee invariance of a particular output variable across two programs, the following must also be
true:

• The output variable is declared as invariant in both programs.

• The same values must be input to all shader input variables consumed by expressions and control flow
contributing to the value assigned to the output variable.

• The texture formats, texel values, and texture filtering are set the same way for any texture function
calls contributing to the value of the output variable.

• All input values are all operated on in the same way. All operations in the consuming expressions and
any intermediate expressions must be the same, with the same order of operands and same
associativity, to give the same order of evaluation. Intermediate variables and functions must be
declared as the same type with the same explicit or implicit precision qualifiers and the same constant
qualifiers. Any control flow affecting the output value must be the same, and any expressions
consumed to determine this control flow must also follow these invariance rules.

• All the data flow and control flow leading to setting the invariant output variable reside in a single
compilation unit.

Essentially, all the data flow and control flow leading to an invariant output must match.

57

4 Variables and Types

Initially, by default, all output variables are allowed to be variant. To force all output variables to be
invariant, use the pragma

#pragma STDGL invariant(all)

before all declarations in a shader. If this pragma is used after the declaration of any variables or
functions, then the set of outputs that behave as invariant is undefined. It is an error to use this pragma in
a fragment shader.

Generally, invariance is ensured at the cost of flexibility in optimization, so performance can be degraded
by use of invariance. Hence, use of this pragma is intended as a debug aid, to avoid individually declaring
all output variables as invariant.

4.6.2 Invariance Within a Shader

When a value is stored in a variable, it is usually assumed it will remain constant unless explicitly
changed. However, during the process of optimization, it is possible that the compiler may choose to
recompute a value rather than store it in a register. Since the precision of operations is not completely
specified (e.g. a low precision operation may be done at medium or high precision), it would be possible
for the recomputed value to be different from the original value.

Values are allowed to be variant within a shader. To prevent this, the invariant qualifier or invariant
pragma must be used.

Within a shader, there is no invariance for values generated by different non-constant expressions, even if
those expressions are identical.

Example 1:

precision mediump;
vec4 col;
vec2 a = ...
...
col = texture(tex, a); // a has a value a1
...
col = texture(tex, a); // a has a value a2 where possibly a1 ≠ a2

To enforce invariance in this example use:

#pragma STDGL invariant(all)

Example 2:

vec2 m = ...;
vec2 n = ...;
vec2 a = m + n;
vec2 b = m + n; // a and b are not guaranteed to be exactly equal

There is no mechanism to enforce invariance between a and b.

58

4 Variables and Types

4.6.3 Invariance of Constant Expressions

Invariance must be guaranteed for constant expressions. A particular constant expression must evaluate to
the same result if it appears again in the same shader or a different shader. This includes the same
expression appearing in two shaders of the same language or shaders of two different languages.

Constant expressions must evaluate to the same result when operated on as already described above for
invariant variables. Constant expressions are not invariant with respect to equivalent non-constant
expressions, even when the invariant qualifier or pragma is used.

4.6.4 Invariance of Undefined Values

Undefined values are not invariant nor can they be made invariant by use of the invariant qualifier or
pragma. In some implementations, undefined values may cause unexpected behavior if they are used in
control-flow expressions e.g. in the following case, one, both or neither functions may be executed and
this may not be consistent over multiple invocations of the shader:

int x; // undefined value
if (x == 1)
{
 f(); // Undefined whether f() is executed
}
if (x == 2)
{
 g(); // Undefined whether g() is executed.
}

Note that an undefined value is a value that has not been specified. A value that has been specified but has
a potentially large error due to, for example, lack of precision in an expression, is not undefined and so
can be made invariant.

4.7 Order of Qualification
When multiple qualifications are present, they must follow a strict order. This order is as follows.

invariant-qualifier interpolation-qualifier storage-qualifier precision-qualifier

storage-qualifier parameter-qualifier precision-qualifier

4.8 Empty Declarations
Empty declarations are allowed. E.g.

int;

The combinations of qualifiers that cause compile-time or link-time errors are the same whether or not the
declaration is empty e.g.

invariant in float x; // Error. An input cannot be invariant.
invariant in float; // Error even though no variable is declared.

59

5 Operators and Expressions

5.1 Operators
The OpenGL ES Shading Language has the following operators.

Precedence Operator Class Operators Associativity

 1 (highest) parenthetical grouping () NA

2

array subscript
function call and constructor structure
field or method selector, swizzler
post fix increment and decrement

[]
()
.
++ --

Left to Right

3
prefix increment and decrement
unary

++ --
+ - ~ !

Right to Left

4 multiplicative * / % Left to Right

5 additive + - Left to Right

6 bit-wise shift << >> Left to Right

7 relational < > <= >= Left to Right

8 equality == != Left to Right

9 bit-wise and & Left to Right

10 bit-wise exclusive or ^ Left to Right

11 bit-wise inclusive or | Left to Right

12 logical and && Left to Right

13 logical exclusive or ^^ Left to Right

14 logical inclusive or | | Left to Right

15 selection ? : Right to Left

16

Assignment
arithmetic assignments

=
+= -=
*= /=
%= <<= >>=
&= ^= |=

Right to Left

17 (lowest) sequence , Left to Right

There is no address-of operator nor a dereference operator. There is no typecast operator; constructors are
used instead.

60

5 Operators and Expressions

5.2 Array Operations
These are now described in section 5.7 “Structure and Array Operations”.

5.3 Function Calls
If a function returns a value, then a call to that function may be used as an expression, whose type will be
the type that was used to declare or define the function.

Function definitions and calling conventions are discussed in section 6.1 “Function Definitions” .

5.4 Constructors
Constructors use the function call syntax, where the function name is a type, and the call makes an object
of that type. Constructors are used the same way in both initializers and expressions. (See section 9
“Shading Language Grammar” for details.) The parameters are used to initialize the constructed value.
Constructors can be used to request a data type conversion to change from one scalar type to another
scalar type, or to build larger types out of smaller types, or to reduce a larger type to a smaller type.

In general, constructors are not built-in functions with predetermined prototypes. For arrays and
structures, there must be exactly one argument in the constructor for each element or field. For the other
types, the arguments must provide a sufficient number of components to perform the initialization, and it
is an error to include so many arguments that they cannot all be used. Detailed rules follow. The
prototypes actually listed below are merely a subset of examples.

5.4.1 Conversion and Scalar Constructors

Converting between scalar types is done as the following prototypes indicate:

int(bool) // converts a Boolean value to an int
int(float) // converts a float value to an int
float(bool) // converts a Boolean value to a float
float(int) // converts a signed integer value to a float
bool(float) // converts a float value to a Boolean
bool(int) // converts a signed integer value to a Boolean
uint(bool) // converts a Boolean value to an unsigned integer
uint(float) // converts a float value to an unsigned integer
uint(int) // converts a signed integer value to an unsigned integer
int(uint) // converts an unsigned integer to a signed integer
bool(uint) // converts an unsigned integer value to a Boolean value
float(uint) // converts an unsigned integer value to a float value

When constructors are used to convert a float to an int or uint, the fractional part of the floating-point
value is dropped. It is undefined to convert a negative floating point value to an uint.

When a constructor is used to convert an int, uint, or a float to a bool, 0 and 0.0 are converted to false,
and non-zero values are converted to true. When a constructor is used to convert a bool to an int, uint,
or float, false is converted to 0 or 0.0, and true is converted to 1 or 1.0.

61

5 Operators and Expressions

The constructor int(uint) preserves the bit pattern in the argument, which will change the argument's
value if its sign bit is set. The constructor uint(int) preserves the bit pattern in the argument, which will
change its value if it is negative.

Identity constructors, like float(float) are also legal, but of little use.

Scalar constructors with non-scalar parameters can be used to take the first element from a non-scalar.
For example, the constructor float(vec3) will select the first component of the vec3 parameter.

5.4.2 Vector and Matrix Constructors

Constructors can be used to create vectors or matrices from a set of scalars, vectors, or matrices. This
includes the ability to shorten vectors.

If there is a single scalar parameter to a vector constructor, it is used to initialize all components of the
constructed vector to that scalar’s value. If there is a single scalar parameter to a matrix constructor, it is
used to initialize all the components on the matrix’s diagonal, with the remaining components initialized
to 0.0.

If a vector is constructed from multiple scalars, one or more vectors, or one or more matrices, or a mixture
of these, the vector's components will be constructed in order from the components of the arguments. The
arguments will be consumed left to right, and each argument will have all its components consumed, in
order, before any components from the next argument are consumed. Similarly for constructing a matrix
from multiple scalars or vectors, or a mixture of these. Matrix components will be constructed and
consumed in column major order. In these cases, there must be enough components provided in the
arguments to provide an initializer for every component in the constructed value. It is an error to provide
extra arguments beyond this last used argument.

If a matrix is constructed from a matrix, then each component (column i, row j) in the result that has a
corresponding component (column i, row j) in the argument will be initialized from there. All other
components will be initialized to the identity matrix. If a matrix argument is given to a matrix constructor,
it is an error to have any other arguments.

If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic type of the
object being constructed, the scalar construction rules (above) are used to convert the parameters.

62

5 Operators and Expressions

Some useful vector constructors are as follows:

vec3(float) // initializes each component of the vec3 with the float
vec4(ivec4) // makes a vec4 with component-wise conversion
vec4(mat2) // the vec4 is column 0 followed by column 1

vec2(float, float) // initializes a vec2 with 2 floats
ivec3(int, int, int) // initializes an ivec3 with 3 ints
bvec4(int, int, float, float) // uses 4 Boolean conversions

vec2(vec3) // drops the third component of a vec3
vec3(vec4) // drops the fourth component of a vec4

vec3(vec2, float) // vec3.x = vec2.x, vec3.y = vec2.y, vec3.z = float
vec3(float, vec2) // vec3.x = float, vec3.y = vec2.x, vec3.z = vec2.y
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

Some examples of these are:

vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgba = vec4(1.0); // sets each component to 1.0
vec3 rgb = vec3(color); // drop the 4th component

To initialize the diagonal of a matrix with all other elements set to zero:

mat2(float)
mat3(float)
mat4(float)

That is, result[i][j] is set to the float argument for all i = j and set to 0 for all i≠ j.

63

5 Operators and Expressions

To initialize a matrix by specifying vectors or scalars, the components are assigned to the matrix elements
in column-major order.

mat2(vec2, vec2); // one column per argument
mat3(vec3, vec3, vec3); // one column per argument
mat4(vec4, vec4, vec4, vec4); // one column per argument
mat3x2(vec2, vec2, vec2); // one column per argument

mat2(float, float, // first column
 float, float); // second column

mat3(float, float, float, // first column
 float, float, float, // second column
 float, float, float); // third column

mat4(float, float, float, float, // first column
 float, float, float, float, // second column
 float, float, float, float, // third column
 float, float, float, float); // fourth column

mat2x3(vec2, float, // first column
 vec2, float); // second column

A wide range of other possibilities exist, to construct a matrix from vectors and scalars, as long as enough
components are present to initialize the matrix. To construct a matrix from a matrix:

mat3x3(mat4x4); // takes the upper-left 3x3 of the mat4x4
mat2x3(mat4x2); // takes the upper-left 2x2 of the mat4x4, last row is 0,0
mat4x4(mat3x3); // puts the mat3x3 in the upper-left, sets the lower right
 // component to 1, and the rest to 0

5.4.3 Structure Constructors

Once a structure is defined, and its type is given a name, a constructor is available with the same name to
construct instances of that structure. For example:

struct light {
 float intensity;
 vec3 position;
};

light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

The arguments to the constructor will be used to set the structure's fields, in order, using one argument per
field. Each argument must be the same type as the field it sets.

Structure constructors can be used as initializers or in expressions.

64

5 Operators and Expressions

5.4.4 Array Constructors

Array types can also be used as constructor names, which can then be used in expressions or initializers.
For example,

const float c[3] = float[3](5.0, 7.2, 1.1);
const float d[3] = float[](5.0, 7.2, 1.1);

float g;
...
float a[5] = float[5](g, 1, g, 2.3, g);
float b[3];

b = float[3](g, g + 1.0, g + 2.0);

There must be exactly the same number of arguments as the size of the array being constructed. The
arguments are assigned in order, starting at element 0, to the elements of the constructed array. Each
argument must be the same type as the element type of the array.

5.5 Vector Components

The names of the components of a vector are denoted by a single letter. As a notational convenience,
several letters are associated with each component based on common usage of position, color or texture
coordinate vectors. The individual components of a vector can be selected by following the variable name
with period (.) and then the component name.

The component names supported are:

{x, y, z, w} Useful when accessing vectors that represent points or normals

{r, g, b, a} Useful when accessing vectors that represent colors

{s, t, p, q} Useful when accessing vectors that represent texture coordinates

The component names x, r, and s are, for example, synonyms for the same (first) component in a vector.

Note that the third component of the texture coordinate set, r in OpenGL ES, has been renamed p so as to
avoid the confusion with r (for red) in a color.

Accessing components beyond those declared for the vector type is an error so, for example:

vec2 pos;
pos.x // is legal
pos.z // is illegal

65

5 Operators and Expressions

The component selection syntax allows multiple components to be selected by appending their names
(from the same name set) after the period (.).

vec4 v4;
v4.rgba; // is a vec4 and the same as just using v4,
v4.rgb; // is a vec3,
v4.b; // is a float,
v4.xy; // is a vec2,
v4.xgba; // is illegal - the component names do not come from
 // the same set.

No more than 4 components can be selected.

vec4 v4;
v4.xyzw; // is a vec4
v4.xyzwxy; // is illegal since it has 6 components
(v4.xyzwxy).xy; // is illegal since the intermediate value has 6 components

vec2 v2;
v2.xyxy; // is legal. It evaluates to a vec4.

The order of the components can be different to swizzle them, or replicated:

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vec4 swiz= pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0)
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0)

This notation is more concise than the constructor syntax. To form an r-value, it can be applied to any
expression that results in a vector r-value.

The component group notation can occur on the left hand side of an expression.

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice
pos.xy = vec3(1.0, 2.0, 3.0); // illegal - mismatch between vec2 and vec3

To form an l-value, swizzling must be applied to an l-value of vector type, contain no duplicate
components, and it results in an l-value of scalar or vector type, depending on number of components
specified.

Array subscripting syntax can also be applied to vectors to provide numeric indexing. So in

vec4 pos;

pos[2] refers to the third element of pos and is equivalent to pos.z. This allows variable indexing into a
vector, as well as a generic way of accessing components. Any integer expression can be used as the
subscript. The first component is at index zero. Reading from or writing to a vector using a constant
integral expression with a value that is negative or greater than or equal to the size of the vector is illegal.
When indexing with non-constant expressions, behavior is undefined if the index is negative, or greater
than or equal to the size of the vector.

66

5 Operators and Expressions

Note that scalars are not considered to be single-component vectors and therefore the use of component
selection operators on scalars is illegal.

5.6 Matrix Components
The components of a matrix can be accessed using array subscripting syntax. Applying a single subscript
to a matrix treats the matrix as an array of column vectors, and selects a single column, whose type is a
vector of the same size as the (column size of the) matrix. The leftmost column is column 0. A second
subscript would then operate on the resulting vector, as defined earlier for vectors. Hence, two subscripts
select a column and then a row.

mat4 m;
m[1] = vec4(2.0); // sets the second column to all 2.0
m[0][0] = 1.0; // sets the upper left element to 1.0
m[2][3] = 2.0; // sets the 4th element of the third column to 2.0

Behavior is undefined when accessing a component outside the bounds of a matrix with a non-constant
expression. It is an error to access a matrix with a constant expression that is outside the bounds of the
matrix.

5.7 Structure and Array Operations
The fields of a structure and the length method of an array are selected using the period (.).

In total, only the following operators are allowed to operate on arrays and structures as whole entities:

 field or method selector .

equality == !=

assignment =

Ternary operator1 ?:

Sequence operator2 ,

indexing (arrays only) []

The equality operators and assignment operator are only allowed if the two operands are same size and
type. Structure types must be of the same declared structure. When using the equality operators, two
structures are equal if and only if all the fields are component-wise equal, and two arrays are equal if and
only if all the elements are element-wise equal.

Array elements are accessed using the array subscript operator ([]). An example of accessing an array
element is

diffuseColor += lightIntensity[3] * NdotL;

Array indices start at zero. Array elements are accessed using an expression whose type is int or uint.

1 Support for the ternary operator with array types is optional in GLSL ES 3.0
2 Support for the sequence operator with array types is optional in GLSL ES 3.0

67

5 Operators and Expressions

Arrays can also be accessed with the method operator (.) and the length method to query the size of the
array:

lightIntensity.length() // return the size of the array

5.8 Assignments
Assignments of values to variable names are done with the assignment operator (=):

lvalue-expression = rvalue-expression

The lvalue-expression evaluates to an l-value. The assignment operator stores the value of rvalue-
expression into the l-value and returns an r-value with the type and precision of lvalue-expression. The
lvalue-expression and rvalue-expression must have the same type. Any type-conversions must be
specified explicitly via constructors. L-values must be writable. Variables that are built-in types, entire
structures or arrays, structure fields, l-values with the field selector (.) applied to select components or
swizzles without repeated fields, l-values within parentheses, and l-values dereferenced with the array
subscript operator ([]) are all l-values. Other binary or unary expressions, function names, swizzles with
repeated fields, and constants cannot be l-values. The ternary operator (?:) is also not allowed as an l-
value.

Expressions on the left of an assignment are evaluated before expressions on the right of the assignment.

The other assignment operators are

• add into (+=)

• subtract from (-=)

• multiply into (*=)

• divide into (/=)

• modulus into (%=)

• left shift by (<<=)

• right shift by (>>=)

• and into (&=)

• inclusive-or into (|=)

• exclusive-or into (^=)

68

5 Operators and Expressions

where the general expression

 lvalue op= expression

is equivalent to

 lvalue = lvalue op expression

where op is as described below, and the l-value and expression must satisfy the semantic requirements of
both op and equals (=).

Reading a variable before writing (or initializing) it is legal, however the value is undefined.

5.9 Expressions
Expressions in the shading language are built from the following:

• Constants of type bool, int, uint, float, all vector types, and all matrix types.

• Constructors of all types.

• Variable names of all types.

• An array name with the length method applied.

• Subscripted arrays.

• Function calls that return values. In some cases, function calls returning void are also allowed in
expressions as specified below.

• Component field selectors and array subscript results.

• Parenthesized expression. Any expression including expressions with void type1 can be parenthesized.
Parentheses can be used to group operations. Operations within parentheses are done before
operations across parentheses.

• The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/) operate on integer and
floating-point scalars, vectors, and matrices. If the operands are integral types, they must both be
signed or both be unsigned. All arithmetic binary operators result in the same fundamental type
(signed integer, unsigned integer, or floating-point) as the operands they operate on. The following
cases are valid

• The two operands are scalars. In this case the operation is applied, resulting in a scalar.

• One operand is a scalar, and the other is a vector or matrix. In this case, the scalar operation is
applied independently to each component of the vector or matrix, resulting in the same size vector
or matrix.

• The two operands are vectors of the same size. In this case, the operation is done component-wise
resulting in the same size vector.

1 Support for parenthesized expressions with void type is optional in GL ES 3.0

69

5 Operators and Expressions

• The operator is add (+), subtract (-), or divide (/), and the operands are matrices with the same
number of rows and the same number of columns. In this case, the operation is done component-
wise resulting in the same size matrix.

• The operator is multiply (*), where both operands are matrices or one operand is a vector and the
other a matrix. A right vector operand is treated as a column vector and a left vector operand as a
row vector. In all these cases, it is required that the number of columns of the left operand is equal
to the number of rows of the right operand. Then, the multiply (*) operation does a linear
algebraic multiply, yielding an object that has the same number of rows as the left operand and the
same number of columns as the right operand. Section 5.10 “Vector and Matrix Operations”
explains in more detail how vectors and matrices are operated on.

All other cases are illegal.

Dividing by zero does not cause an exception but does result in an unspecified value. Use the built-in
functions dot, cross, matrixCompMult, and outerProduct, to get, respectively, vector dot product,
vector cross product, matrix component-wise multiplication, and the matrix product of a column
vector times a row vector.

• The operator modulus (%) operates on signed or unsigned integers or integer vectors. The operand
types must both be signed or both be unsigned. The operands cannot be vectors of differing size. If
one operand is a scalar and the other vector, then the scalar is applied component-wise to the vector,
resulting in the same type as the vector. If both are vectors of the same size, the result is computed
component-wise. The resulting value is undefined for any component computed with a second
operand that is zero, while results for other components with non-zero second operands remain
defined. If both operands are non-negative, then the remainder is non-negative. Results are undefined
if one or both operands are negative. The operator modulus (%) is not defined for any other data
types (non-integral types).

• The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and ++) operate
on integer or floating-point values (including vectors and matrices). All unary operators work
component-wise on their operands. These result with the same type they operated on. For post- and
pre-increment and decrement, the expression must be one that could be assigned to (an l-value). Pre-
increment and pre-decrement add or subtract 1 or 1.0 to the contents of the expression they operate on,
and the value of the pre-increment or pre-decrement expression is the resulting value of that
modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to the contents
of the expression they operate on, but the resulting expression has the expression’s value before the
post-increment or post-decrement was executed.

• The relational operators greater than (>), less than (<), greater than or equal (>=), and less than or
equal (<=) operate only on scalar integer and scalar floating-point expressions. The result is scalar
Boolean. The types of the operands must match. To do component-wise relational comparisons on
vectors, use the built-in functions lessThan, lessThanEqual, greaterThan, and greaterThanEqual.

• The equality operators equal (==), and not equal (!=) operate on all types. They result in a scalar
Boolean. The types of the operands must match. For vectors, matrices, structures, and arrays, all
components, fields, or elements of one operand must equal the corresponding components, fields, or
elements in the other operand for the operands to be considered equal. To get a vector of component-
wise equality results for vectors, use the built-in functions equal and notEqual.

70

5 Operators and Expressions

• The logical binary operators and (&&), or (| |), and exclusive or (^^) operate only on two Boolean
expressions and result in a Boolean expression. And (&&) will only evaluate the right hand operand if
the left hand operand evaluated to true. Or (| |) will only evaluate the right hand operand if the left
hand operand evaluated to false. Exclusive or (^^) will always evaluate both operands.

• The logical unary operator not (!). It operates only on a Boolean expression and results in a Boolean
expression. To operate on a vector, use the built-in function not.

• The sequence (,) operator that operates on expressions by returning the type and value of the right-
most expression in a comma separated list of expressions. All expressions are evaluated, in order,
from left to right. The operands to the sequence operator may have void type.1

• The ternary selection operator (?:). It operates on three expressions (exp1 ? exp2 : exp3). This
operator evaluates the first expression, which must result in a scalar Boolean. If the result is true, it
selects to evaluate the second expression, otherwise it selects to evaluate the third expression. Only
one of the second and third expressions is evaluated. The second and third expressions can be any
type, including the void type2, as long their types match. This resulting matching type is the type of
the entire expression.

• The one's complement operator (~). The operand must be of type signed or unsigned integer or integer
vector, and the result is the one's complement of its operand; each bit of each component is
complemented, including any sign bits.

• The shift operators (<<) and (>>). For both operators, the operands must be signed or unsigned
integers or integer vectors. One operand can be signed while the other is unsigned. In all cases, the
resulting type will be the same type as the left operand. If the first operand is a scalar, the second
operand has to be a scalar as well. If the first operand is a vector, the second operand must be a scalar
or a vector with the same size as the first operand, and the result is computed component-wise. The
result is undefined if the right operand is negative, or greater than or equal to the number of bits in the
left expression's base type. The value of E1 << E2 is E1 (interpreted as a bit pattern) left-shifted by
E2 bits. The value of E1 >> E2 is E1 right-shifted by E2 bit positions. If E1 is a signed integer, the
right-shift will extend the sign bit. If E1 is an unsigned integer, the right-shift will zero-extend.

• The bitwise operators and (&), exclusive-or (^), and inclusive-or (|). The operands must be of type
signed or unsigned integers or integer vectors. The operands cannot be vectors of differing size. If
one operand is a scalar and the other a vector, the scalar is applied component-wise to the vector,
resulting in the same type as the vector. The fundamental types of the operands (signed or unsigned)
must match, and will be the resulting fundamental type. For and (&), the result is the bitwise-and
function of the operands. For exclusive-or (^), the result is the bitwise exclusive-or function of the
operands. For inclusive-or (|), the result is the bitwise inclusive-or function of the operands.

For a complete specification of the syntax of expressions, see section 9 “Shading Language Grammar”.

1 Support for the void type with the sequence operator is not mandated in GLSL ES 3.0
2 Support for the void type with the ternary operator is not mandated in GLSL ES 3.0

71

5 Operators and Expressions

5.10 Vector and Matrix Operations

With a few exceptions, operations are component-wise. Usually, when an operator operates on a vector or
matrix, it is operating independently on each component of the vector or matrix, in a component-wise
fashion. For example,

vec3 v, u;
float f;

v = u + f;

will be equivalent to

v.x = u.x + f;
v.y = u.y + f;
v.z = u.z + f;

And

vec3 v, u, w;
w = v + u;

will be equivalent to

w.x = v.x + u.x;
w.y = v.y + u.y;
w.z = v.z + u.z;

and likewise for most operators and all integer and floating point vector and matrix types. The exceptions
are matrix multiplied by vector, vector multiplied by matrix, and matrix multiplied by matrix. These do
not operate component-wise, but rather perform the correct linear algebraic multiply.

vec3 v, u;
mat3 m;

u = v * m;

is equivalent to

u.x = dot(v, m[0]); // m[0] is the left column of m
u.y = dot(v, m[1]); // dot(a,b) is the inner (dot) product of a and b
u.z = dot(v, m[2]);

And

u = m * v;

is equivalent to

u.x = m[0].x * v.x + m[1].x * v.y + m[2].x * v.z;
u.y = m[0].y * v.x + m[1].y * v.y + m[2].y * v.z;
u.z = m[0].z * v.x + m[1].z * v.y + m[2].z * v.z;

72

5 Operators and Expressions

And

mat3 m, n, r;

r = m * n;

is equivalent to

r[0].x = m[0].x * n[0].x + m[1].x * n[0].y + m[2].x * n[0].z;
r[1].x = m[0].x * n[1].x + m[1].x * n[1].y + m[2].x * n[1].z;
r[2].x = m[0].x * n[2].x + m[1].x * n[2].y + m[2].x * n[2].z;

r[0].y = m[0].y * n[0].x + m[1].y * n[0].y + m[2].y * n[0].z;
r[1].y = m[0].y * n[1].x + m[1].y * n[1].y + m[2].y * n[1].z;
r[2].y = m[0].y * n[2].x + m[1].y * n[2].y + m[2].y * n[2].z;

r[0].z = m[0].z * n[0].x + m[1].z * n[0].y + m[2].z * n[0].z;
r[1].z = m[0].z * n[1].x + m[1].z * n[1].y + m[2].z * n[1].z;
r[2].z = m[0].z * n[2].x + m[1].z * n[2].y + m[2].z * n[2].z;

and similarly for other sizes of vectors and matrices.

5.11 Evaluation of expressions
The C++ standard requires that expressions must be evaluated in the order specified by the precedence of
operations and may only be regrouped if the result is the same or where the result is undefined. No other
transforms may be applied that affect the result of an operation. GLSL ES relaxes these requirements in
the following ways:

• Addition and multiplication are assumed to be associative.

• Multiplication may be replaced by repeated addition

• Floating point division may be replaced by reciprocal and multiplication:

• Within the constraints of invariance (where applicable), the precision used may vary.

73

6 Statements and Structure

The fundamental building blocks of the OpenGL ES Shading Language are:

• statements and declarations

• function definitions

• selection (if-else and switch-case-default)

• iteration (for, while, and do-while)

• jumps (discard, return, break, and continue)

The overall structure of a shader is as follows

translation-unit:

global-declaration

translation-unit global-declaration

global-declaration:

function-definition

declaration

That is, a shader is a sequence of declarations and function bodies. Function bodies are defined as

function-definition:

function-prototype { statement-list }

statement-list:

statement

statement-list statement

statement:

compound-statement

simple-statement

Curly braces are used to group sequences of statements into compound statements.

compound-statement:

{ statement-list }

simple-statement:

declaration-statement

expression-statement

selection-statement

74

6 Statements and Structure

iteration-statement

jump-statement

Simple declaration, expression, and jump statements end in a semi-colon.

This above is slightly simplified, and the complete grammar specified in section 9 “Shading Language
Grammar” should be used as the definitive specification.

Declarations and expressions have already been discussed.

6.1 Function Definitions
As indicated by the grammar above, a valid shader is a sequence of global declarations and function
definitions. A function is declared as the following example shows:

// prototype
returnType functionName (type0 arg0, type1 arg1, ..., typen argn);

and a function is defined like:

// definition
returnType functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return returnValue;
}

where returnType must be present and cannot be void

or:

void functionName (type0 arg0, type1 arg1, ..., typen argn)
{
 // do some computation
 return; // optional
}

Each of the typeN must include a type and can optionally include a parameter qualifier and/or const.

A function is called by using its name followed by a list of arguments in parentheses.

Arrays are allowed as arguments and as the return type. In both cases, the array must be explicitly sized.
An array is passed or returned by using just its name, without brackets, and the size of the array must
match the size specified in the function's declaration.

Structures are also allowed as argument types. The return type can also be a structure.

See section 9 “Shading Language Grammar” for the definitive reference on the syntax to declare and
define functions.

All functions must be either declared with a prototype or defined with a body before they are called. For
example:

75

6 Statements and Structure

float myfunc (float f, // f is an input parameter
 out float g); // g is an output parameter

Functions that return no value must be declared as void. A void function can only use return without a
return argument, even if the return argument has void type. Return statements only accept values:

void func1() { }
void func2() { return func1(); } // illegal return statement

Only a precision qualifier is allowed on the return type of a function. Formal parameters can have
parameter and precision qualifiers, but no other qualifiers.

Functions that accept no input arguments need not use void in the argument list because prototypes (or
definitions) are required and therefore there is no ambiguity when an empty argument list "()" is declared.
The idiom “(void)” as a parameter list is provided for convenience.

Function names can be overloaded. The same function name can be used for multiple functions, as long
as the parameter types differ. If a function name is declared twice with the same parameter types, then the
return types and all qualifiers must also match, and it is the same function being declared. When function
calls are resolved, an exact type match for all the arguments is required.

For example,

vec4 f(in vec4 x, out vec4 y);
vec4 f(in vec4 x, out ivec4 y); // allowed, different argument type
int f(in vec4 x, out ivec4 y); // error, only return type differs
vec4 f(in vec4 x, in ivec4 y); // error, only qualifier differs
int f(const in vec4 x, out ivec4 y); // error, only qualifier differs

Calling the first two functions above with the following argument types yields

f(vec4, vec4) // exact match of vec4 f(in vec4 x, out vec4 y)
f(vec4, ivec4) // exact match of vec4 f(in vec4 x, out ivec4 y)
f(ivec4, vec4) // error, no exact match.
f(ivec4, ivec4) // error, no exact match.

User-defined functions can have multiple declarations, but only one definition.

A shader cannot redefine or overload built-in functions.

The function main is used as the entry point to a shader executable. Both the vertex and fragment shaders
must define a function named main. This function takes no arguments, returns no value, and must be
declared as type void:

void main()
{
 ...
}

The function main can contain uses of return. See section 6.4 “Jumps” for more details.

It is an error to declare or define a function main with any other parameters or return type.

76

6 Statements and Structure

6.1.1 Function Calling Conventions

Functions are called by value-return. This means input arguments are copied into the function at call time,
and output arguments are copied back to the caller before function exit. Because the function works with
local copies of parameters, there are no issues regarding aliasing of variables within a function. To
control what parameters are copied in and/or out through a function definition or declaration:

• The keyword in is used as a qualifier to denote a parameter is to be copied in, but not copied out.

• The keyword out is used as a qualifier to denote a parameter is to be copied out, but not copied in.
This should be used whenever possible to avoid unnecessarily copying parameters in.

• The keyword inout is used as a qualifier to denote the parameter is to be both copied in and copied
out.

• A function parameter declared with no such qualifier means the same thing as specifying in.

All arguments are evaluated at call time, exactly once, in order, from left to right. Evaluation of an in
parameter results in a value that is copied to the formal parameter. Evaluation of an out parameter results
in an l-value that is used to copy out a value when the function returns. Evaluation of an inout parameter
results in both a value and an l-value; the value is copied to the formal parameter at call time and the l-
value is used to copy out a value when the function returns.

The order in which output parameters are copied back to the caller is undefined.

In a function, writing to an input-only parameter is allowed. Only the function’s copy is modified. This
can be prevented by declaring a parameter with the const qualifier.

When calling a function, expressions that do not evaluate to l-values cannot be passed to parameters
declared as out or inout.

Only precision qualifiers are allowed on the return type of a function.

function-prototype:

precision-qualifier type function-name(const-qualifier parameter-qualifier precision-qualifier

type name array-specifier, ...)

type:

any basic type, array type, structure name, or structure definition

const-qualifier:

empty

const

parameter-qualifier:

empty

in

out

inout

name:

empty

77

6 Statements and Structure

identifier

array-specifier:

empty

[constant-integral-expression]

However, the const qualifier cannot be used with out or inout. The above is used for function
declarations (i.e., prototypes) and for function definitions. Hence, function definitions can have unnamed
arguments.

Static and dynamic recursion is not allowed. Static recursion is present if the static function call graph of
the program contains cycles. Dynamic recursion occurs if at any time control flow has entered but not
exited a single function more than once.

6.2 Selection
Conditional control flow in the shading language is done by either if, if-else, or switch statements:

selection-statement:
if (bool-expression) statement
if (bool-expression) statement else statement
switch (init-expression) { switch-statement-listopt

 }

Where switch-statement-list is a list of zero or more switch-statement and other statements defined by the
language, where switch-statement adds some forms of labels. That is

switch-statement-list:
switch-statement
switch-statement-list switch-statement

switch-statement:
case constant-expression:
default :
statement

If an if-expression evaluates to true, then the first statement is executed. If it evaluates to false and there
is an else part then the second statement is executed.

Any expression whose type evaluates to a Boolean can be used as the conditional expression bool-
expression. Vector types are not accepted as the expression to if.

Conditionals can be nested.

The type of init-expression in a switch statement must be a scalar integer. If a case label has a constant-
expression of equal value, then execution will continue after that label. Otherwise, if there is a default
label, execution will continue after that label. Otherwise, execution skips the rest of the switch statement.
It is an error to have more than one default or a replicated constant-expression. A break statement not
nested in a loop or other switch statement (either not nested or nested only in if or if-else statements) will
also skip the rest of the switch statement. Fall through labels are allowed, but it is an error to have no
statement between a label and the end of the switch statement. No statements are allowed in a switch
statement before the first case statement.

78

6 Statements and Structure

The type of init-expression must match the type of the case labels within each switch statement. Either
signed integers or unsigned integers are allowed but there is no implicit type conversion between the two.

No case or default labels can be nested inside other control flow nested within their corresponding
switch.

6.3 Iteration
For, while, and do loops are allowed as follows:

for (init-expression; condition-expression; loop-expression)
 sub-statement

while (condition-expression)
 sub-statement

do
 statement
while (condition-expression)

See section 9 “Shading Language Grammar” for the definitive specification of loops.

The for loop first evaluates the init-expression, then the condition-expression. If the condition-expression
evaluates to true, then the body of the loop is executed. After the body is executed, a for loop will then
evaluate the loop-expression, and then loop back to evaluate the condition-expression, repeating until the
condition-expression evaluates to false. The loop is then exited, skipping its body and skipping its loop-
expression. Variables modified by the loop-expression maintain their value after the loop is exited,
provided they are still in scope. Variables declared in init-expression or condition-expression are only in
scope until the end of the sub-statement of the for loop.

The while loop first evaluates the condition-expression. If true, then the body is executed. This is then
repeated, until the condition-expression evaluates to false, exiting the loop and skipping its body.
Variables declared in the condition-expression are only in scope until the end of the sub-statement of the
while loop.

For both for and while loops, the sub-statement does not introduce a new scope for variable names, so the
following has a redeclaration error:

for (int i = 0; i < 10; i++)
{
 int i; // redeclaration error
}

The do-while loop first executes the body, then executes the condition-expression. This is repeated until
condition-expression evaluates to false, and then the loop is exited.

Expressions for condition-expression must evaluate to a Boolean.

Both the condition-expression and the init-expression can declare and initialize a variable, except in the
do-while loop, which cannot declare a variable in its condition-expression. The variable’s scope lasts
only until the end of the sub-statement that forms the body of the loop.

79

6 Statements and Structure

Loops can be nested.

Non-terminating loops are allowed. The consequences of very long or non-terminating loops are platform
dependent.

6.4 Jumps
These are the jumps:

jump_statement:

continue;

break;

return;
return expression;

discard; // in the fragment shader language only

There is no “goto” nor other non-structured flow of control.

The continue jump is used only in loops. It skips the remainder of the body of the innermost loop of
which it is inside. For while and do-while loops, this jump is to the next evaluation of the loop
condition-expression from which the loop continues as previously defined. For for loops, the jump is to
the loop-expression, followed by the condition-expression.

The break jump can also be used only in loops and switch statements. It is simply an immediate exit of
the inner-most loop or switch statements containing the break. No further execution of condition-
expression, loop-expression, or switch-statement is done.

The discard keyword is only allowed within fragment shaders. It can be used within a fragment shader to
abandon the operation on the current fragment. This keyword causes the fragment to be discarded and no
updates to any buffers will occur. Control flow exits the shader, and subsequent implicit or explicit
derivatives are undefined when this control flow is non-uniform (meaning different fragments within the
primitive take different control paths). It would typically be used within a conditional statement, for
example:

if (intensity < 0.0)
 discard;

A fragment shader may test a fragment’s alpha value and discard the fragment based on that test.
However, it should be noted that coverage testing occurs after the fragment shader runs, and the coverage
test can change the alpha value.

The return jump causes immediate exit of the current function. If it has expression then that is the return
value for the function.

The function main can use return. This simply causes main to exit in the same way as when the end of
the function had been reached. It does not imply a use of discard in a fragment shader. Using return in
main before defining outputs will have the same behavior as reaching the end of main before defining
outputs.

80

7 Built-in Variables

7.1 Vertex Shader Special Variables
Some OpenGL ES operations occur in fixed functionality between the vertex processor and the fragment
processor. Shaders communicate with the fixed functionality of OpenGL ES through the use of built-in
variables.

The built-in vertex shader variables for communicating with fixed functionality are intrinsically declared
as follows in the vertex language:

in highp int gl_VertexID;
in highp int gl_InstanceID;

out highp vec4 gl_Position;
out highp float gl_PointSize;

Unless otherwise noted elsewhere, these variables are only available in the vertex language as declared
above.

The variable gl_Position is intended for writing the homogeneous vertex position. It can be written at any
time during shader execution. This value will be used by primitive assembly, clipping, culling, and other
fixed functionality operations, if present, that operate on primitives after vertex processing has occurred.
Its value is undefined after the vertex processing stage if the vertex shader executable does not write
gl_Position.

The variable gl_PointSize is intended for a shader to write the size of the point to be rasterized. It is
measured in pixels. If gl_PointSize is not written to, its value is undefined in subsequent pipe stages.

The variable gl_VertexID is a vertex shader input variable that holds an integer index for the vertex, as
defined under “Shader Inputs” in section 2.11.9 “Shader Execution” in the OpenGL ES Graphics System
Specification. While the variable gl_VertexID is always present, its value is not always defined.

The variable gl_InstanceID is a vertex shader input variable that holds the instance number of the current
primitive in an instanced draw call (see “Shader Inputs” in section 2.11.9 “Shader Execution” in the
OpenGL ES 3.0 Graphics System Specification). If the current primitive does not come from an instanced
draw call, the value of gl_InstanceID is zero.

81

7 Built-in Variables

7.2 Fragment Shader Special Variables

The built-in special variables that are accessible from a fragment shader are intrinsically declared as
follows:

in highp vec4 gl_FragCoord;
in bool gl_FrontFacing;
out highp float gl_FragDepth;
in mediump vec2 gl_PointCoord;

Except as noted below, they behave as other input and output variables.

The output of the fragment shader executable is processed by the fixed function operations at the back end
of the OpenGL ES pipeline.

The fixed functionality computed depth for a fragment may be obtained by reading gl_FragCoord.z,
described below.

Writing to gl_FragDepth will establish the depth value for the fragment being processed. If depth
buffering is enabled, and no shader writes gl_FragDepth, then the fixed function value for depth will be
used as the fragment’s depth value. If a shader statically assigns a value to gl_FragDepth, and there is an
execution path through the shader that does not set gl_FragDepth, then the value of the fragment’s depth
may be undefined for executions of the shader that take that path. That is, if the set of linked fragment
shaders statically contain a write to gl_FragDepth, then it is responsible for always writing it.

If a shader executes the discard keyword, the fragment is discarded, and the values of any user-defined
fragment outputs, become irrelevant.

The variable gl_FragCoord is available as an input variable from within fragment shaders and it holds the
window relative coordinates (x, y, z, 1/w) values for the fragment. If multi-sampling, this value can be for
any location within the pixel, or one of the fragment samples. The use of centroid in does not further
restrict this value to be inside the current primitive. This value is the result of the fixed functionality that
interpolates primitives after vertex processing to generate fragments. The z component is the depth value
that would be used for the fragment’s depth if no shader contained any writes to gl_FragDepth. This is
useful for invariance if a shader conditionally computes gl_FragDepth but otherwise wants the fixed
functionality fragment depth.

Fragment shaders have access to the input built-in variable gl_FrontFacing, whose value is true if the
fragment belongs to a front-facing primitive. One use of this is to emulate two-sided lighting by selecting
one of two colors calculated by a vertex shader.

The values in gl_PointCoord are two-dimensional coordinates indicating where within a point primitive
the current fragment is located, when point sprites are enabled. They range from 0.0 to 1.0 across the
point. If the current primitive is not a point, or if point sprites are not enabled, then the values read from
gl_PointCoord are undefined.

7.3 Built-In Constants
The following built-in constants are provided to all shaders. The actual values used are implementation
dependent, but must be at least the value shown.

//

82

7 Built-in Variables

// Implementation dependent constants. The example values below
// are the minimum values allowed for these maximums.
//

const mediump int gl_MaxVertexAttribs = 16;
const mediump int gl_MaxVertexUniformVectors = 256;
const mediump int gl_MaxVertexOutputVectors = 16;
const mediump int gl_MaxFragmentInputVectors = 15;
const mediump int gl_MaxVertexTextureImageUnits = 16;
const mediump int gl_MaxCombinedTextureImageUnits = 32;
const mediump int gl_MaxTextureImageUnits = 16;
const mediump int gl_MaxFragmentUniformVectors = 224;
const mediump int gl_MaxDrawBuffers = 4;
const mediump int gl_MinProgramTexelOffset = -8;
const mediump int gl_MaxProgramTexelOffset = 7;

7.4 Built-In Uniform State
As an aid to accessing OpenGL ES processing state, the following uniform variables are built into the
OpenGL ES Shading Language.

//
// Depth range in window coordinates,
// section 2.13.1 “Controlling the Viewport” in the
// OpenGL ES Graphics System Specification.
//
struct gl_DepthRangeParameters {
 highp float near; // n
 highp float far; // f
 highp float diff; // f - n
};
uniform gl_DepthRangeParameters gl_DepthRange;

83

8 Built-in Functions

The OpenGL ES Shading Language defines an assortment of built-in convenience functions for scalar and
vector operations. Many of these built-in functions can be used in more than one type of shader, but some
are intended to provide a direct mapping to hardware and so are available only for a specific type of
shader.

The built-in functions basically fall into three categories:

• They expose some necessary hardware functionality in a convenient way such as accessing a texture
map. There is no way in the language for these functions to be emulated by a shader.

• They represent a trivial operation (clamp, mix, etc.) that is very simple for the user to write, but they
are very common and may have direct hardware support. It is a very hard problem for the compiler to
map expressions to complex assembler instructions.

• They represent an operation graphics hardware is likely to accelerate at some point. The trigonometry
functions fall into this category.

Many of the functions are similar to the same named ones in common C libraries, but they support vector
input as well as the more traditional scalar input.

Applications should be encouraged to use the built-in functions rather than do the equivalent computations
in their own shader code since the built-in functions are assumed to be optimal (e.g., perhaps supported
directly in hardware).

When the built-in functions are specified below, where the input arguments (and corresponding output)
can be float, vec2, vec3, or vec4, genType is used as the argument. Where the input arguments (and
corresponding output) can be int, ivec2, ivec3, or ivec4, genIType is used as the argument. Where the
input arguments (and corresponding output) can be uint, uvec2, uvec3, or uvec4, genUType is used as the
argument. Where the input arguments (or corresponding output) can be bool, bvec2, bvec3, or bvec4,
genBType is used as the argument. For any specific use of a function, the actual types substituted for
genType, genIType, genUType, or genBType have to have the same number of components for all
arguments and for the return type. Similarly for mat, which can be any matrix basic type.

The precision of built-in functions is dependent on the function and arguments. There are three
categories:

• Some functions have predefined precisions. The precision is specified
e.g.

highp ivec2 textureSize (gsampler2D sampler, int lod)

• For the texture sampling functions, the precision of the return type matches the precision of the
sampler type.

84

8 Built-in Functions

uniform lowp sampler2D sampler;
highp vec2 coord;
...
lowp vec4 col = texture (sampler, coord); // texture() returns lowp

• For other built-in functions, a call will return a precision qualification matching the highest precision
qualification of the call's input arguments. See Section 4.5.2 “Precision Qualifiers” for more detail.

The built-in functions are assumed to be implemented according to the equations specified in the
following sections. The precision at which the calculations are performed follows the general rules for
precision of operations as specified in section 4.5.3 “Precision Qualifiers“.

Example:

If the input vector is lowp, the entire calculation is performed at lowp. For some inputs, this will cause
the calculation to overflow, even when the correct result is within the range of lowp.

85

normalize(
x
y
z)=

1

√ x2
+ y2

+z 2(
x
y
z)

8 Built-in Functions

8.1 Angle and Trigonometry Functions
Function parameters specified as angle are assumed to be in units of radians. In no case will any of these
functions result in a divide by zero error. If the divisor of a ratio is 0, then results will be undefined.

These all operate component-wise. The description is per component.

Syntax Description

genType radians (genType degrees)
Converts degrees to radians, i.e.,



180
⋅degrees

genType degrees (genType radians)
Converts radians to degrees, i.e.,

180


⋅radians

genType sin (genType angle) The standard trigonometric sine function.

genType cos (genType angle) The standard trigonometric cosine function.

genType tan (genType angle) The standard trigonometric tangent.

genType asin (genType x) Arc sine. Returns an angle whose sine is x. The range

of values returned by this function is [−

2
,


2]
Results are undefined if ∣x∣1.

genType acos (genType x) Arc cosine. Returns an angle whose cosine is x. The
range of values returned by this function is [0, p].
Results are undefined if ∣x∣1.

genType atan (genType y, genType x) Arc tangent. Returns an angle whose tangent is y/x. The
signs of x and y are used to determine what quadrant the
angle is in. The range of values returned by this
function is [−π , π]. Results are undefined if x and y
are both 0.

genType atan (genType y_over_x) Arc tangent. Returns an angle whose tangent is
y_over_x. The range of values returned by this function

is [−
π
2

, π
2].

86

8 Built-in Functions

Syntax Description

genType sinh (genType x) Returns the hyperbolic sine function
e x

−e−x

2

genType cosh (genType x) Returns the hyperbolic cosine function
e x

e−x

2

genType tanh (genType x) Returns the hyperbolic tangent function
sinh x

cosh  x

genType asinh (genType x) Arc hyperbolic sine; returns the inverse of sinh.

genType acosh (genType x) Arc hyperbolic cosine; returns the non-negative inverse
of cosh. Results are undefined if x < 1.

genType atanh (genType x) Arc hyperbolic tangent; returns the inverse of tanh.
Results are undefined if ∣x∣≥1.

8.2 Exponential Functions
These all operate component-wise. The description is per component.

Syntax Description

genType pow (genType x, genType y) Returns x raised to the y power, i.e., x y

Results are undefined if x < 0.

Results are undefined if x = 0 and y <= 0.

genType exp (genType x) Returns the natural exponentiation of x, i.e., ex.

genType log (genType x) Returns the natural logarithm of x, i.e., returns the value
y which satisfies the equation x = ey.

Results are undefined if x <= 0.

genType exp2 (genType x) Returns 2 raised to the x power, i.e., 2 x

genType log2 (genType x) Returns the base 2 logarithm of x, i.e., returns the value
y which satisfies the equation x=2 y

Results are undefined if x <= 0.

87

8 Built-in Functions

Syntax Description

genType sqrt (genType x) Returns √ x .

Results are undefined if x < 0.

genType inversesqrt (genType x)
Returns

1

√ x
.

Results are undefined if x <= 0.

8.3 Common Functions
These all operate component-wise. The description is per component.

Syntax Description

genType abs (genType x)
genIType abs (genIType x)

Returns x if x >= 0, otherwise it returns –x.

genType sign (genType x)
genIType sign (genIType x)

Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0.

genType floor (genType x) Returns a value equal to the nearest integer that is less
than or equal to x.

genType trunc (genType x) Returns a value equal to the nearest integer to x whose
absolute value is not larger than the absolute value of x.

genType round (genType x) Returns a value equal to the nearest integer to x. The
fraction 0.5 will round in a direction chosen by the
implementation, presumably the direction that is fastest.
This includes the possibility that round(x) returns the
same value as roundEven(x) for all values of x.

genType roundEven (genType x) Returns a value equal to the nearest integer to x. A
fractional part of 0.5 will round toward the nearest even
integer. (Both 3.5 and 4.5 for x will return 4.0.)

genType ceil (genType x) Returns a value equal to the nearest integer that is
greater than or equal to x.

genType fract (genType x) Returns x – floor (x).

88

8 Built-in Functions

Syntax Description

genType mod (genType x, float y)
genType mod (genType x, genType y)

Modulus. Returns x – y * floor (x/y).

genType modf (genType x, out genType i) Returns the fractional part of x and sets i to the integer
part (as a whole number floating point value). Both the
return value and the output parameter will have the same
sign as x.
If x has the value +/- INF, the return value should be
NaN and must be either NaN or 0.0.

genType min (genType x, genType y)
genType min (genType x, float y)
genIType min (genIType x, genIType y)
genIType min (genIType x, int y)
genUType min (genUType x, genUType y)
genUType min (genUType x, uint y)

Returns y if y < x, otherwise it returns x.

genType max (genType x, genType y)
genType max (genType x, float y)
genIType max (genIType x, genIType y)
genIType max (genIType x, int y)
genUType max (genUType x, genUType y)
genUType max (genUType x, uint y)

Returns y if x < y, otherwise it returns x.

genType clamp (genType x,
 genType minVal,
 genType maxVal)
genType clamp (genType x,
 float minVal,
 float maxVal)
genIType clamp (genIType x,
 genIType minVal,
 genIType maxVal)
genIType clamp (genIType x,
 int minVal,
 int maxVal)
genUType clamp (genUType x,
 genUType minVal,
 genUType maxVal)
genUType clamp (genUType x,
 uint minVal,
 uint maxVal)

Returns min (max (x, minVal), maxVal).

Results are undefined if minVal > maxVal.

89

8 Built-in Functions

Syntax Description

genType mix (genType x,
 genType y,
 genType a)
genType mix (genType x,
 genType y,
 float a)

Returns the linear blend of x and y, i.e.,
x⋅1−a  y⋅a

genType mix (genType x,
 genType y,
 genBType a)

Selects which vector each returned component comes
from. For a component of a that is false, the
corresponding component of x is returned. For a
component of a that is true, the corresponding
component of y is returned. Components of x and y that
are not selected are allowed to be invalid floating point
values and will have no effect on the results. Thus, this
provides different functionality than

 genType mix(genType x, genType y, genType(a))

where a is a Boolean vector.

genType step (genType edge, genType x)
genType step (float edge, genType x)

Returns 0.0 if x < edge, otherwise it returns 1.0.

genType smoothstep (genType edge0,
 genType edge1,
 genType x)
genType smoothstep (float edge0,
 float edge1,
 genType x)

Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
performs smooth Hermite interpolation between 0 and 1
when edge0 < x < edge1. This is useful in cases where
you would want a threshold function with a smooth
transition. This is equivalent to:

 genType t;
 t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
 return t * t * (3 – 2 * t);

Results are undefined if edge0 >= edge1.

genBType isnan (genType x) Returns true if x holds a NaN. Returns false otherwise.

genBType isinf (genType x) Returns true if x holds a positive infinity or negative
infinity. Returns false otherwise.

90

8 Built-in Functions

Syntax Description

genIType floatBitsToInt (genType value)
genUType floatBitsToUint (genType value)

Returns a signed or unsigned highp integer value
representing the encoding of a floating-point value. For
highp floating point, the value's bit level representation
is preserved. For mediump and lowp, the value is first
converted to highp floating point and the encoding of
that value is returned.

genType intBitsToFloat (genIType value)
genType uintBitsToFloat (genUType value)

Returns a highp floating-point value corresponding to a
signed or unsigned integer encoding of a floating-point
value. If an inf or NaN is passed in, it will not signal,
and the resulting floating point value is unspecified.
Otherwise, the bit-level representation is preserved. For
lowp and mediump, the value is first converted to the
corresponding signed or unsigned highp integer and then
reinterpreted as a highp floating point value as before.

91

8 Built-in Functions

8.4 Floating-Point Pack and Unpack Functions
These functions do not operate component-wise, rather as described in each case.

Syntax Description

highp uint packSnorm2x16 (vec2 v) First, converts each component of the normalized
floating-point value v into 16-bit integer values. Then,
the results are packed into the returned 32-bit unsigned
integer.
The conversion for component c of v to fixed point is
done as follows:

packSnorm2x16: round(clamp(c, -1, +1) * 32767.0)

The first component of the vector will be written to the
least significant bits of the output; the last component
will be written to the most significant bits.

highp vec2 unpackSnorm2x16 (highp uint
p)

First, unpacks a single 32-bit unsigned integer p into a
pair of 16-bit signed integers. Then, each component is
converted to a normalized floating-point value to
generate the returned two-component vector.

The conversion for unpacked fixed-point value f to
floating point is done as follows:

unpackSnorm2x16: clamp(f / 32767.0, -1,+1)

The first component of the returned vector will be
extracted from the least significant bits of the input; the
last component will be extracted from the most
significant bits.

highp uint packUnorm2x16 (vec2 v) First, converts each component of the normalized
floating-point value v into 16-bit integer values. Then,
the results are packed into the returned 32-bit unsigned
integer.

The conversion for component c of v to fixed point is
done as follows:

packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)

The first component of the vector will be written to the
least significant bits of the output; the last component
will be written to the most significant bits.

92

8 Built-in Functions

Syntax Description

highp vec2 unpackUnorm2x16 (highp uint
p)

First, unpacks a single 32-bit unsigned integer p into a
pair of 16-bit unsigned integers. Then, each component
is converted to a normalized floating-point value to
generate the returned two-component vector.

The conversion for unpacked fixed-point value f to
floating point is done as follows:

unpackUnorm2x16: f / 65535.0

The first component of the returned vector will be
extracted from the least significant bits of the input; the
last component will be extracted from the most
significant bits.

highp uint packHalf2x16 (mediump vec2 v) Returns an unsigned integer obtained by converting the
components of a two-component floating-point vector to
the 16-bit floating-point representation found in the
OpenGL ES Specification, and then packing these two
16-bit integers into a 32-bit unsigned integer.

The first vector component specifies the 16 least-
significant bits of the result; the second component
specifies the 16 most-significant bits.

mediump vec2 unpackHalf2x16 (highp uint
v)

Returns a two-component floating-point vector with
components obtained by unpacking a 32-bit unsigned
integer into a pair of 16-bit values, interpreting those
values as 16-bit floating-point numbers according to the
OpenGL ES Specification, and converting them to 32-bit
floating-point values.

The first component of the vector is obtained from the
16 least-significant bits of v; the second component is
obtained from the 16 most-significant bits of v.

8.5 Geometric Functions
These operate on vectors as vectors, not component-wise.

Syntax Description

float length (genType x) Returns the length of vector x, i.e.,

 x[0]
2
x [1]

2
...

93

8 Built-in Functions

Syntax Description

float distance (genType p0, genType p1) Returns the distance between p0 and p1, i.e.,
length (p0 – p1)

float dot (genType x, genType y) Returns the dot product of x and y, i.e.,
x [0]⋅y [0]+x [1]⋅y [1]+ ...

vec3 cross (vec3 x, vec3 y) Returns the cross product of x and y, i.e.,

[
x [1]⋅y [2]−y [1]⋅x [2]
x[2]⋅y [0]−y [2]⋅x[0]
x [0]⋅y [1]−y [0]⋅x [1]]

genType normalize (genType x) Returns a vector in the same direction as x but with a

length of 1 i.e.
x

length (x)

genType faceforward(genType N,
 genType I,
 genType Nref)

If dot(Nref, I) < 0 return N, otherwise return –N.

genType reflect (genType I, genType N) For the incident vector I and surface orientation N,
returns the reflection direction:

I – 2 * dot(N, I) * N
N must already be normalized in order to achieve the
desired result.

genType refract(genType I, genType N,
 float eta)

For the incident vector I and surface normal N, and the
ratio of indices of refraction eta, return the refraction
vector. The result is computed by

k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
if (k < 0.0)
 return genType(0.0)
else
 return eta * I - (eta * dot(N, I) + sqrt(k)) * N

The input parameters for the incident vector I and the
surface normal N must already be normalized to get the
desired results.

94

8 Built-in Functions

8.6 Matrix Functions

Syntax Description

mat matrixCompMult (mat x, mat y) Multiply matrix x by matrix y component-wise, i.e.,
result[i][j] is the scalar product of x[i][j] and y[i][j].

Note: to get linear algebraic matrix multiplication, use
the multiply operator (*).

mat2 outerProduct(vec2 c, vec2 r)
mat3 outerProduct(vec3 c, vec3 r)
mat4 outerProduct(vec4 c, vec4 r)

mat2x3 outerProduct(vec3 c, vec2 r)
mat3x2 outerProduct(vec2 c, vec3 r)

mat2x4 outerProduct(vec4 c, vec2 r)
mat4x2 outerProduct(vec2 c, vec4 r)

mat3x4 outerProduct(vec4 c, vec3 r)
mat4x3 outerProduct(vec3 c, vec4 r)

Treats the first parameter c as a column vector (matrix
with one column) and the second parameter r as a row
vector (matrix with one row) and does a linear algebraic
matrix multiply c * r, yielding a matrix whose number of
rows is the number of components in c and whose
number of columns is the number of components in r.

mat2 transpose(mat2 m)
mat3 transpose(mat3 m)
mat4 transpose(mat4 m)

mat2x3 transpose(mat3x2 m)
mat3x2 transpose(mat2x3 m)

mat2x4 transpose(mat4x2 m)
mat4x2 transpose(mat2x4 m)

mat3x4 transpose(mat4x3 m)
mat4x3 transpose(mat3x4 m)

Returns a matrix that is the transpose of m. The input
matrix m is not modified.

float determinant(mat2 m)
float determinant(mat3 m)
float determinant(mat4 m)

Returns the determinant of m.

mat2 inverse(mat2 m)
mat3 inverse(mat3 m)
mat4 inverse(mat4 m)

Returns a matrix that is the inverse of m. The input
matrix m is not modified. The values in the returned
matrix are undefined if m is singular or poorly-
conditioned (nearly singular).

95

8 Built-in Functions

8.7 Vector Relational Functions
Relational and equality operators (<, <=, >, >=, ==, !=) are defined to produce scalar Boolean results. For
vector results, use the following built-in functions. Below, “bvec” is a placeholder for one of bvec2,
bvec3, or bvec4, “ivec” is a placeholder for one of ivec2, ivec3, or ivec4, “uvec” is a placeholder for
uvec2, uvec3, or uvec4, and “vec” is a placeholder for vec2, vec3, or vec4. In all cases, the sizes of the
input and return vectors for any particular call must match.

Syntax Description

bvec lessThan(vec x, vec y)
bvec lessThan(ivec x, ivec y)
bvec lessThan(uvec x, uvec y)

Returns the component-wise compare of x < y.

bvec lessThanEqual(vec x, vec y)
bvec lessThanEqual(ivec x, ivec y)
bvec lessThanEqual(uvec x, uvec y)

Returns the component-wise compare of x <= y.

bvec greaterThan(vec x, vec y)
bvec greaterThan(ivec x, ivec y)
bvec greaterThan(uvec x, uvec y)

Returns the component-wise compare of x > y.

bvec greaterThanEqual(vec x, vec y)
bvec greaterThanEqual(ivec x, ivec y)
bvec greaterThanEqual(uvec x, uvec y)

Returns the component-wise compare of x >= y.

bvec equal(vec x, vec y)
bvec equal(ivec x, ivec y)
bvec equal(uvec x, uvec y)
bvec equal(bvec x, bvec y)

bvec notEqual(vec x, vec y)
bvec notEqual(ivec x, ivec y)
bvec notEqual(uvec x, uvec y)
bvec notEqual(bvec x, bvec y)

Returns the component-wise compare of x == y.

Returns the component-wise compare of x != y.

bool any(bvec x) Returns true if any component of x is true.

bool all(bvec x) Returns true only if all components of x are true.

bvec not(bvec x) Returns the component-wise logical complement of x.

96

8 Built-in Functions

8.8 Texture Lookup Functions
Texture lookup functions are available to vertex and fragment shaders. However, level of detail is not
implicitly computed for vertex shaders. The functions in the table below provide access to textures
through samplers, as set up through the OpenGL ES API. Texture properties such as size, pixel format,
number of dimensions, filtering method, number of mip-map levels, depth comparison, and so on are also
defined by OpenGL ES API calls. Such properties are taken into account as the texture is accessed via the
built-in functions defined below.

Texture data can be stored by the GL as floating point, unsigned normalized integer, unsigned integer or
signed integer data. This is determined by the type of the internal format of the texture. Texture lookups
on unsigned normalized integer data return floating point values in the range [0, 1].

Texture lookup functions are provided that can return their result as floating point, unsigned integer or
signed integer, depending on the sampler type passed to the lookup function. Care must be taken to use
the right sampler type for texture access. The following table lists the supported combinations of sampler
types and texture internal formats. Blank entries are unsupported. Doing a texture lookup will return
undefined values for unsupported combinations.

Internal Texture Format
Floating Point
Sampler Types

Signed Integer
Sampler Types

Unsigned Integer
Sampler Types

Floating point Supported

Normalized Integer Supported

Signed Integer Supported

Unsigned Integer Supported

If an integer sampler type is used, the result of a texture lookup is an ivec4. If an unsigned integer
sampler type is used, the result of a texture lookup is a uvec4. If a floating point sampler type is used, the
result of a texture lookup is a vec4.

In the prototypes below, the “g” in the return type “gvec4” is used as a placeholder for nothing, “i”, or “u”
making a return type of vec4, ivec4, or uvec4. In these cases, the sampler argument type also starts with
“g”, indicating the same substitution done on the return type; it is either a floating point, signed integer, or
unsigned integer sampler, matching the basic type of the return type, as described above.

For shadow forms (the sampler parameter is a shadow-type), a depth comparison lookup on the depth
texture bound to sampler is done as described in section 3.8.16 “Texture Comparison Modes” of the
OpenGL ES Graphics System Specification. See the table below for which component specifies Dref. The
texture bound to sampler must be a depth texture, or results are undefined. If a non-shadow texture call is
made to a sampler that represents a depth texture with depth comparisons turned on, then results are
undefined. If a shadow texture call is made to a sampler that represents a depth texture with depth
comparisons turned off, then results are undefined. If a shadow texture call is made to a sampler that does
not represent a depth texture, then results are undefined.

97

8 Built-in Functions

In all functions below, the bias parameter is optional for fragment shaders. The bias parameter is not
accepted in a vertex shader. For a fragment shader, if bias is present, it is added to the implicit level of
detail prior to performing the texture access operation.

The implicit level of detail is selected as follows: For a texture that is not mip-mapped, the texture is used
directly. If it is mip-mapped and running in a fragment shader, the LOD computed by the implementation
is used to do the texture lookup. If it is mip-mapped and running on the vertex shader, then the base
texture is used.

Some texture functions (non-“Lod” and non-“Grad” versions) may require implicit derivatives. Implicit
derivatives are undefined within non-uniform control flow and for vertex texture fetches.

For Cube forms, the direction of P is used to select which face to do a 2-dimensional texture lookup in, as
described in section 3.8.10 “Cube Map Texture Selection” in the OpenGL ES Graphics System
Specification.

For Array forms, the array layer used will be

max 0,min d −1, floorlayer0.5

where d is the depth of the texture array and layer comes from the component indicated in the tables
below.

98

8 Built-in Functions

Syntax Description

highp ivec2 textureSize (gsampler2D sampler, int lod)
highp ivec3 textureSize (gsampler3D sampler, int lod)
highp ivec2 textureSize (gsamplerCube sampler, int lod)

highp ivec2 textureSize (sampler2DShadow sampler, int lod)
highp ivec2 textureSize (samplerCubeShadow sampler, int lod)

highp ivec3 textureSize (gsampler2DArray sampler, int lod)

highp ivec3 textureSize (sampler2DArrayShadow sampler, int lod)

Returns the dimensions of
level lod for the texture bound
to sampler, as described in
section 2.11.9 “Shader
Execution” of the OpenGL ES
3.0 Graphics System
Specification, under “Texture
Size Query”.

The components in the return
value are filled in, in order,
with the width, height, depth of
the texture.

For the array forms, the last
component of the return value
is the number of layers in the
texture array.

gvec4 texture (gsampler2D sampler, vec2 P [, float bias])
gvec4 texture (gsampler3D sampler, vec3 P [, float bias])
gvec4 texture (gsamplerCube sampler, vec3 P [, float bias])

 float texture (sampler2DShadow sampler, vec3 P [, float bias])
 float texture (samplerCubeShadow sampler, vec4 P [, float bias])

gvec4 texture (gsampler2DArray sampler, vec3 P [, float bias])

 float texture (sampler2DArrayShadow sampler, vec4 P)

Use the texture coordinate P to
do a texture lookup in the
texture currently bound to
sampler. The last component
of P is used as Dref for the
shadow forms. For array
forms, the array layer comes
from the last component of P
in the non-shadow forms, and
the second to last component
of P in the shadow forms.

gvec4 textureProj (gsampler2D sampler, vec3 P [, float bias])
gvec4 textureProj (gsampler2D sampler, vec4 P [, float bias])
gvec4 textureProj (gsampler3D sampler, vec4 P [, float bias])

 float textureProj (sampler2DShadow sampler, vec4 P
 [, float bias])

Do a texture lookup with
projection. The texture
coordinates consumed from P,
not including the last
component of P, are divided by
the last component of P to
form projected coordinates P'.
The resulting third component
of P' in the shadow forms is
used as Dref. The third
component of P is ignored
when sampler has type
gsampler2D and P has type
vec4. After these values are
computed, texture lookup
proceeds as in texture.

99

8 Built-in Functions

Syntax Description

gvec4 textureLod (gsampler2D sampler, vec2 P, float lod)
gvec4 textureLod (gsampler3D sampler, vec3 P, float lod)
gvec4 textureLod (gsamplerCube sampler, vec3 P, float lod)

 float textureLod (sampler2DShadow sampler, vec3 P, float lod)

gvec4 textureLod (gsampler2DArray sampler, vec3 P, float lod)

Do a texture lookup as in
texture but with explicit LOD;
lod specifies λbase and sets the
partial derivatives as follows.
(See section 3.8.9 “Texture
Minification” and equation
3.14 in the OpenGL ES 3.0
Graphics System
Specification.)

∂u
∂x

= 0
∂v
∂x

= 0
∂w
∂x

= 0

∂u
∂ y

= 0
∂v
∂ y

= 0
∂w
∂ y

= 0

gvec4 textureOffset (gsampler2D sampler, vec2 P,
 ivec2 offset [, float bias])
gvec4 textureOffset (gsampler3D sampler, vec3 P,
 ivec3 offset [, float bias])

 float textureOffset (sampler2DShadow sampler, vec3 P,
 ivec2 offset [, float bias])

gvec4 textureOffset (gsampler2DArray sampler, vec3 P,
 ivec2 offset [, float bias])

Do a texture lookup as in
texture but with offset added
to the (u,v,w) texel coordinates
before looking up each texel.
The offset value must be a
constant expression. A limited
range of offset values are
supported; the minimum and
maximum offset values are
implementation-dependent and
given by
MIN_PROGRAM_TEXEL_OFFSET and
MAX_PROGRAM_TEXEL_OFFSET,
respectively.

Note that offset does not apply
to the layer coordinate for
texture arrays. This is
explained in detail in section
3.8.9 “Texture Minification” of
the OpenGL ES Graphics
System Specification, where
offset is u ,v , w. Note
that texel offsets are also not
supported for cube maps.

100

8 Built-in Functions

Syntax Description

gvec4 texelFetch (gsampler2D sampler, ivec2 P, int lod)
gvec4 texelFetch (gsampler3D sampler, ivec3 P, int lod)

gvec4 texelFetch (gsampler2DArray sampler, ivec3 P, int lod)

Use integer texture coordinate
P to lookup a single texel from
sampler. The array layer
comes from the last component
of P for the array forms. The
level-of-detail lod is as
described in sections 2.11.9
“Shader Execution” under
Texel Fetches and 3.8
“Texturing” of the OpenGL ES
3.0 Graphics System
Specification.

gvec4 texelFetchOffset (gsampler2D sampler, ivec2 P, int lod,
 ivec2 offset)
gvec4 texelFetchOffset (gsampler3D sampler, ivec3 P, int lod,
 ivec3 offset)

gvec4 texelFetchOffset (gsampler2DArray sampler, ivec3 P, int lod,
 ivec2 offset)

Fetch a single texel as in
texelFetch offset by offset as
described in textureOffset.

gvec4 textureProjOffset (gsampler2D sampler, vec3 P,
 ivec2 offset [, float bias])
gvec4 textureProjOffset (gsampler2D sampler, vec4 P,
 ivec2 offset [, float bias])
gvec4 textureProjOffset (gsampler3D sampler, vec4 P,
 ivec3 offset [, float bias])

 float textureProjOffset (sampler2DShadow sampler, vec4 P,
 ivec2 offset [, float bias])

Do a projective texture lookup
as described in textureProj
offset by offset as described in
textureOffset.

gvec4 textureLodOffset (gsampler2D sampler, vec2 P,
 float lod, ivec2 offset)
gvec4 textureLodOffset (gsampler3D sampler, vec3 P,
 float lod, ivec3 offset)

 float textureLodOffset (sampler2DShadow sampler, vec3 P,
 float lod, ivec2 offset)

gvec4 textureLodOffset (gsampler2DArray sampler, vec3 P,
 float lod, ivec2 offset)

Do an offset texture lookup
with explicit LOD. See
textureLod and
textureOffset.

101

8 Built-in Functions

Syntax Description

gvec4 textureProjLod (gsampler2D sampler, vec3 P, float lod)
gvec4 textureProjLod (gsampler2D sampler, vec4 P, float lod)
gvec4 textureProjLod (gsampler3D sampler, vec4 P, float lod)

float textureProjLod (sampler2DShadow sampler, vec4 P, float lod)

Do a projective texture lookup
with explicit LOD. See
textureProj and textureLod.

gvec4 textureProjLodOffset (gsampler2D sampler, vec3 P,
 float lod, ivec2 offset)
gvec4 textureProjLodOffset (gsampler2D sampler, vec4 P,
 float lod, ivec2 offset)
gvec4 textureProjLodOffset (gsampler3D sampler, vec4 P,
 float lod, ivec3 offset)

 float textureProjLodOffset (sampler2DShadow sampler, vec4 P,
 float lod, ivec2 offset)

Do an offset projective texture
lookup with explicit LOD. See
textureProj, textureLod, and
textureOffset.

gvec4 textureGrad (gsampler2D sampler, vec2 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureGrad (gsampler3D sampler, vec3 P,
 vec3 dPdx, vec3 dPdy)
gvec4 textureGrad (gsamplerCube sampler, vec3 P,
 vec3 dPdx, vec3 dPdy)

 float textureGrad (sampler2DShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)
 float textureGrad (samplerCubeShadow sampler, vec4 P,
 vec3 dPdx, vec3 dPdy)

gvec4 textureGrad (gsampler2DArray sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)

 float textureGrad (sampler2DArrayShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)

Do a texture lookup as in
texture but with explicit
gradients. The partial
derivatives of P are with
respect to window x and
window y. Set

∂s
∂x

=
∂P.s
∂x

∂s
∂ y

=
∂P.s
∂ y

∂t
∂x

=
∂P.t
∂x

∂t
∂ y

=
∂P.t
∂ y

∂r
∂x

=
∂P.p
∂x

cube

∂r
∂ y

=
∂P.p
∂ y

cube

For the cube version, the
partial derivatives of P are
assumed to be in the
coordinate system used before
texture coordinates are
projected onto the appropriate
cube face.

102

8 Built-in Functions

Syntax Description

gvec4 textureGradOffset (gsampler2D sampler, vec2 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureGradOffset (gsampler3D sampler, vec3 P,
 vec3 dPdx, vec3 dPdy, ivec3 offset)

 float textureGradOffset (sampler2DShadow sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureGradOffset (gsampler2DArray sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

 float textureGradOffset (sampler2DArrayShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup with both
explicit gradient and offset, as
described in textureGrad and
textureOffset.

gvec4 textureProjGrad (gsampler2D sampler, vec3 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad (gsampler2D sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)
gvec4 textureProjGrad (gsampler3D sampler, vec4 P,
 vec3 dPdx, vec3 dPdy)

 float textureProjGrad (sampler2DShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy)

Do a texture lookup both
projectively, as described in
textureProj, and with explicit
gradient as described in
textureGrad. The partial
derivatives dPdx and dPdy are
assumed to be already
projected.

gvec4 textureProjGradOffset (gsampler2D sampler, vec3 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)
gvec4 textureProjGradOffset (gsampler2D sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (gsampler3D sampler, vec4 P,
 vec3 dPdx, vec3 dPdy, ivec3 offset)

 float textureProjGradOffset (sampler2DShadow sampler, vec4 P,
 vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup
projectively and with explicit
gradient as described in
textureProjGrad, as well as
with offset, as described in
textureOffset.

8.9 Fragment Processing Functions
Fragment processing functions are only available in fragment shaders.

Derivatives may be computationally expensive and/or numerically unstable. Therefore, an OpenGL ES
implementation may approximate the true derivatives by using a fast but not entirely accurate derivative
computation. Derivatives are undefined within non-uniform control flow.

The expected behavior of a derivative is specified using forward/backward differencing.

103

8 Built-in Functions

Forward differencing:

 F  xdx −F  x ~ dFdx  x⋅dx 1a

 dFdx  x~ F  xdx −F  x

dx
1b

Backward differencing:

 F  x−dx −F  x ~−dFdx  x⋅dx 2a

 dFdx  x~ F  x−F x−dx
dx

2b

With single-sample rasterization, dx <= 1.0 in equations 1b and 2b. For multi-sample rasterization, dx <
2.0 in equations 1b and 2b.

dFdy is approximated similarly, with y replacing x.

An OpenGL ES implementation may use the above or other methods to perform the calculation, subject to
the following conditions:

1. The method may use piecewise linear approximations. Such linear approximations imply that higher
order derivatives, dFdx(dFdx(x)) and above, are undefined.

2. The method may assume that the function evaluated is continuous. Therefore derivatives within the
body of a non-uniform conditional are undefined.

3. The method may differ per fragment, subject to the constraint that the method may vary by window
coordinates, not screen coordinates. The invariance requirement described in section 3.2 “Invariance”
of the OpenGL ES Graphics System Specification, is relaxed for derivative calculations, because the
method may be a function of fragment location.

Other properties that are desirable, but not required, are:

4. Functions should be evaluated within the interior of a primitive (interpolated, not extrapolated).

5. Functions for dFdx should be evaluated while holding y constant. Functions for dFdy should be
evaluated while holding x constant. However, mixed higher order derivatives, like dFdx(dFdy(y))
and dFdy(dFdx(x)) are undefined.

6. Derivatives of constant arguments should be 0.

In some implementations, varying degrees of derivative accuracy may be obtained by providing GL hints
(section 5.3 “Hints” of the OpenGL ES 3.0 Graphics System Specification), allowing a user to make an
image quality versus speed trade off.

104

8 Built-in Functions

Syntax Description

genType dFdx (genType p) Returns the derivative in x using local differencing for
the input argument p.

genType dFdy (genType p) Returns the derivative in y using local differencing for
the input argument p.

These two functions are commonly used to estimate the
filter width used to anti-alias procedural textures. We
are assuming that the expression is being evaluated in
parallel on a SIMD array so that at any given point in
time the value of the function is known at the grid points
represented by the SIMD array. Local differencing
between SIMD array elements can therefore be used to
derive dFdx, dFdy, etc.

genType fwidth (genType p) Returns the sum of the absolute derivative in x and y
using local differencing for the input argument p, i.e.,
abs (dFdx (p)) + abs (dFdy (p));

105

9 Shading Language Grammar

The grammar is fed from the output of lexical analysis. The tokens returned from lexical analysis are

CONST BOOL FLOAT INT UINT
BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN SWITCH CASE DEFAULT
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 UVEC2 UVEC3 UVEC4 VEC2 VEC3 VEC4
MAT2 MAT3 MAT4 CENTROID IN OUT INOUT UNIFORM

FLAT SMOOTH LAYOUT
MAT2X2 MAT2X3 MAT2X4
MAT3X2 MAT3X3 MAT3X4
MAT4X2 MAT4X3 MAT4X4
SAMPLER2D SAMPLER3D SAMPLERCUBE SAMPLER2DSHADOW
SAMPLERCUBESHADOW SAMPLER2DARRAY
SAMPLER2DARRAYSHADOW ISAMPLER2D ISAMPLER3D ISAMPLERCUBE
ISAMPLER2DARRAY USAMPLER2D USAMPLER3D
USAMPLERCUBE USAMPLER2DARRAY

STRUCT VOID WHILE

IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT UINTCONSTANT BOOLCONSTANT
FIELD_SELECTION
LEFT_OP RIGHT_OP
INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP
AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN
MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN
SUB_ASSIGN

LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET LEFT_BRACE RIGHT_BRACE DOT
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT
LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION

INVARIANT
HIGH_PRECISION MEDIUM_PRECISION LOW_PRECISION PRECISION

The following describes the grammar for the OpenGL ES Shading Language in terms of the above tokens.

variable_identifier:
 IDENTIFIER

primary_expression:

 variable_identifier

106

9 Shading Language Grammar

 INTCONSTANT

 UINTCONSTANT

 FLOATCONSTANT

 BOOLCONSTANT

 LEFT_PAREN expression RIGHT_PAREN

postfix_expression:

 primary_expression

 postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET

 function_call

 postfix_expression DOT FIELD_SELECTION

 postfix_expression INC_OP

 postfix_expression DEC_OP

integer_expression:

 expression

function_call:

 function_call_or_method

function_call_or_method:

 function_call_generic

 postfix_expression DOT function_call_generic

function_call_generic:

 function_call_header_with_parameters RIGHT_PAREN

 function_call_header_no_parameters RIGHT_PAREN

function_call_header_no_parameters:

 function_call_header VOID

 function_call_header

function_call_header_with_parameters:

 function_call_header assignment_expression

 function_call_header_with_parameters COMMA assignment_expression

function_call_header:

 function_identifier LEFT_PAREN

// Grammar Note: Constructors look like functions, but lexical analysis recognized most of them as

107

9 Shading Language Grammar

// keywords. They are now recognized through “type_specifier”.
// Methods (.length) and identifiers are recognized through postfix_expression.

function_identifier:

 type_specifier

 IDENTIFIER

 FIELD_SELECTION

unary_expression:

 postfix_expression

 INC_OP unary_expression

 DEC_OP unary_expression

 unary_operator unary_expression

// Grammar Note: No traditional style type casts.

unary_operator:

 PLUS

 DASH

 BANG

 TILDE

// Grammar Note: No '*' or '&' unary ops. Pointers are not supported.

multiplicative_expression:

 unary_expression

 multiplicative_expression STAR unary_expression

 multiplicative_expression SLASH unary_expression

 multiplicative_expression PERCENT unary_expression

additive_expression:

 multiplicative_expression

 additive_expression PLUS multiplicative_expression

 additive_expression DASH multiplicative_expression

shift_expression:

 additive_expression

 shift_expression LEFT_OP additive_expression

 shift_expression RIGHT_OP additive_expression

108

9 Shading Language Grammar

relational_expression:

 shift_expression

 relational_expression LEFT_ANGLE shift_expression

 relational_expression RIGHT_ANGLE shift_expression

 relational_expression LE_OP shift_expression

 relational_expression GE_OP shift_expression

equality_expression:

 relational_expression

 equality_expression EQ_OP relational_expression

 equality_expression NE_OP relational_expression

and_expression:

 equality_expression

 and_expression AMPERSAND equality_expression

exclusive_or_expression:

 and_expression

 exclusive_or_expression CARET and_expression

inclusive_or_expression:

 exclusive_or_expression

 inclusive_or_expression VERTICAL_BAR exclusive_or_expression

logical_and_expression:

 inclusive_or_expression

 logical_and_expression AND_OP inclusive_or_expression

logical_xor_expression:

 logical_and_expression

 logical_xor_expression XOR_OP logical_and_expression

logical_or_expression:

 logical_xor_expression

 logical_or_expression OR_OP logical_xor_expression

conditional_expression:

 logical_or_expression

 logical_or_expression QUESTION expression COLON assignment_expression

109

9 Shading Language Grammar

assignment_expression:

 conditional_expression

 unary_expression assignment_operator assignment_expression

assignment_operator:

 EQUAL

 MUL_ASSIGN

 DIV_ASSIGN

 MOD_ASSIGN

 ADD_ASSIGN

 SUB_ASSIGN

 LEFT_ASSIGN

 RIGHT_ASSIGN

 AND_ASSIGN

 XOR_ASSIGN

 OR_ASSIGN

expression:

 assignment_expression

 expression COMMA assignment_expression

constant_expression:

 conditional_expression

declaration:

 function_prototype SEMICOLON

 init_declarator_list SEMICOLON

 PRECISION precision_qualifier type_specifier_no_prec SEMICOLON

 type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE SEMICOLON

 type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 IDENTIFIER SEMICOLON

 type_qualifier IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE
 IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET SEMICOLON

 type_qualifier SEMICOLON

function_prototype:

 function_declarator RIGHT_PAREN

function_declarator:

110

9 Shading Language Grammar

 function_header

 function_header_with_parameters

function_header_with_parameters:

 function_header parameter_declaration

 function_header_with_parameters COMMA parameter_declaration

function_header:

 fully_specified_type IDENTIFIER LEFT_PAREN

parameter_declarator:

 type_specifier IDENTIFIER

 type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

parameter_declaration:

 parameter_type_qualifier parameter_qualifier parameter_declarator

 parameter_qualifier parameter_declarator

 parameter_type_qualifier parameter_qualifier parameter_type_specifier

 parameter_qualifier parameter_type_specifier

parameter_qualifier:

 /* empty */

 IN

 OUT

 INOUT

parameter_type_specifier:

 type_specifier

init_declarator_list:

 single_declaration

 init_declarator_list COMMA IDENTIFIER

 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression
 RIGHT_BRACKET

 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET
 RIGHT_BRACKET EQUAL initializer

 init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression
 RIGHT_BRACKET EQUAL initializer

 init_declarator_list COMMA IDENTIFIER EQUAL initializer

111

9 Shading Language Grammar

single_declaration:

 fully_specified_type

 fully_specified_type IDENTIFIER

 fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

 fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET EQUAL initializer

 fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression
 RIGHT_BRACKET EQUAL initializer

 fully_specified_type IDENTIFIER EQUAL initializer

 INVARIANT IDENTIFIER

// Grammar Note: No 'enum', or 'typedef'.

fully_specified_type:

 type_specifier

 type_qualifier type_specifier

invariant_qualifier:

 INVARIANT

interpolation_qualifier:

 SMOOTH

 FLAT

layout_qualifier:

 LAYOUT LEFT_PAREN layout_qualifier_id_list RIGHT_PAREN

layout_qualifier_id_list:
 layout_qualifier_id
 layout_qualifier_id_list COMMA layout_qualifier_id

layout_qualifier_id:
 IDENTIFIER
 IDENTIFIER EQUAL INTCONSTANT
 IDENTIFIER EQUAL UINTCONSTANT

parameter_type_qualifier:

 CONST

112

9 Shading Language Grammar

type_qualifier:

 storage_qualifier

 layout_qualifier

 layout_qualifier storage_qualifier

 interpolation_qualifier storage_qualifier

 interpolation_qualifier

 invariant_qualifier storage_qualifier

 invariant_qualifier interpolation_qualifier storage_qualifier

storage_qualifier:

 CONST

 IN

 OUT

 CENTROID IN

 CENTROID OUT

 UNIFORM

type_specifier:

 type_specifier_no_prec

 precision_qualifier type_specifier_no_prec

type_specifier_no_prec:

 type_specifier_nonarray

 type_specifier_nonarray LEFT_BRACKET RIGHT_BRACKET

 type_specifier_nonarray LEFT_BRACKET constant_expression RIGHT_BRACKET

type_specifier_nonarray:

 VOID

 FLOAT

 INT

 UINT

 BOOL

 VEC2

 VEC3

 VEC4

 BVEC2

 BVEC3

 BVEC4

113

9 Shading Language Grammar

 IVEC2

 IVEC3

 IVEC4

 UVEC2

 UVEC3

 UVEC4

 MAT2

 MAT3

 MAT4

 MAT2X2

 MAT2X3

 MAT2X4

 MAT3X2

 MAT3X3

 MAT3X4

 MAT4X2

 MAT4X3

 MAT4X4

 SAMPLER2D

 SAMPLER3D

 SAMPLERCUBE

 SAMPLER2DSHADOW

 SAMPLERCUBESHADOW

 SAMPLER2DARRAY

 SAMPLER2DARRAYSHADOW

 ISAMPLER2D

 ISAMPLER3D

 ISAMPLERCUBE

 ISAMPLER2DARRAY

 USAMPLER2D

 USAMPLER3D

 USAMPLERCUBE

 USAMPLER2DARRAY

 struct_specifier

 TYPE_NAME

precision_qualifier:
 HIGH_PRECISION

114

9 Shading Language Grammar

 MEDIUM_PRECISION
 LOW_PRECISION

struct_specifier:

 STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE

 STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE

struct_declaration_list:

 struct_declaration

 struct_declaration_list struct_declaration

struct_declaration:

 type_specifier struct_declarator_list SEMICOLON

 type_qualifier type_specifier struct_declarator_list SEMICOLON

struct_declarator_list:

 struct_declarator

 struct_declarator_list COMMA struct_declarator

struct_declarator:

 IDENTIFIER

 IDENTIFIER LEFT_BRACKET RIGHT_BRACKET

 IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET

initializer:

 assignment_expression

declaration_statement:

 declaration

statement:

 compound_statement_with_scope

 simple_statement

statement_no_new_scope:

 compound_statement_no_new_scope

 simple_statement

statement_with_scope:
 compound_statement_no_new_scope
 simple_statement

115

9 Shading Language Grammar

// Grammar Note: labeled statements for SWITCH only; 'goto' is not supported.

simple_statement:

 declaration_statement

 expression_statement

 selection_statement

 switch_statement

 case_label

 iteration_statement

 jump_statement

compound_statement_with_scope:

 LEFT_BRACE RIGHT_BRACE

 LEFT_BRACE statement_list RIGHT_BRACE

compound_statement_no_new_scope:

 LEFT_BRACE RIGHT_BRACE

 LEFT_BRACE statement_list RIGHT_BRACE

statement_list:

 statement

 statement_list statement

expression_statement:

 SEMICOLON

 expression SEMICOLON

selection_statement:

 IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement

selection_rest_statement:

 statement_with_scope ELSE statement_with_scope

 statement_with_scope

condition:

 expression

 fully_specified_type IDENTIFIER EQUAL initializer

switch_statement:

116

9 Shading Language Grammar

 SWITCH LEFT_PAREN expression RIGHT_PAREN LEFT_BRACE switch_statement_list
RIGHT_BRACE

switch_statement_list:
 /* nothing */
 statement_list

case_label:
 CASE expression COLON
 DEFAULT COLON

iteration_statement:

 WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope

 DO statement_with_scope WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON

 FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN
statement_no_new_scope

for_init_statement:

 expression_statement

 declaration_statement

conditionopt:

 condition

 /* empty */

for_rest_statement:

 conditionopt SEMICOLON

 conditionopt SEMICOLON expression

jump_statement:

 CONTINUE SEMICOLON

 BREAK SEMICOLON

 RETURN SEMICOLON

 RETURN expression SEMICOLON

 DISCARD SEMICOLON // Fragment shader only.

// Grammar Note: No 'goto'. Gotos are not supported.

translation_unit:

 external_declaration

 translation_unit external_declaration

117

9 Shading Language Grammar

external_declaration:

 function_definition

 declaration

function_definition:

 function_prototype compound_statement_no_new_scope

In general the above grammar describes a super set of the GLSL ES language. Certain constructs that are
valid purely in terms of the grammar are disallowed by statements elsewhere in this specification.

Rules specifying the scoping are present only to assist the understanding of scoping and they do not affect
the language accepted by the grammar. If required, the grammar can be simplified by making the
following substitutions:

• Replace compound_statement_with_scope and compound_statement_no_new_scope with a new
rule compound_statement

• Replace statement_with_scope and statement_no_new_scope with the existing rule statement.

118

10 Errors

10 Errors

This section lists errors that must be detected by the compiler or linker. Development systems must
report all grammatical errors are compile time but otherwise, it is implementation-dependent whether an
error is reported at compile time or link time and there is no guarantee of consistency.

The error string returned is implementation-dependent.

10.1 Preprocessor Errors
P0001: Preprocessor syntax error

P0002: #error

P0003: #extension if a required extension extension_name is not supported, or if all is specified.

P0005: Invalid #version construct

P0006: #line has wrong parameters

P0007: Language version not supported

P0008: Use of undefined macro

P0009: Macro name too long

10.2 Lexer/Parser Errors
Grammatical errors occurs whenever the grammar rules are not followed. They are not listed individually
here.

G0001: Syntax error

The parser also detects the following errors:

G0002: Undefined identifier.

G0003: Use of reserved keywords

G0004: Identifier too long

G0005: Integer constant too long

10.3 Semantic Errors
S0001: Type mismatch in expression e.g. 1 + 1.0

S0002: Array parameter must be an integer

S0003: Conditional jump parameter (if, for, while, do-while) must be a boolean

119

10 Errors

S0004: Operator not supported for operand types (e.g. mat4 * vec3)

S0005: ?: parameter must be a boolean

S0006: 2nd and 3rd parameters of ?: must have the same type

S0007: Wrong arguments for constructor

S0008: Argument unused in constructor

S0009: Too few arguments for constructor

S0011: Arguments in wrong order for structure constructor

S0012: Expression must be a constant expression

S0013: Initializer for constant variable must be a constant expression

S0015: Expression must be a constant integral expression

S0017: Array size must be greater than zero

S0018: Array size not defined

S0020: Indexing an array with a constant integral expression greater than its declared size

S0021: Indexing an array with a negative constant integral expression

S0022: Redefinition of variable in same scope

S0023: Redefinition of function in same scope

S0024: Redefinition of name in same scope (e.g. declaring a function with the same name as a struct)

S0025: Field selectors must be from the same set (cannot mix xyzw with rgba)

S0026: Illegal field selector (e.g. using .z with a vec2)

S0027: Target of assignment is not an l-value

S0028: Precision used with type other than int, float or sampler type

S0029: Declaring a main function with the wrong signature or return type

S0031: const variable does not have initializer

S0032: Use of float or int without a precision qualifier where the default precision is not defined

S0033: Expression that does not have an intrinsic precision where the default precision is not defined

S0034: Variable cannot be declared invariant

120

10 Errors

S0035: All uses of invariant must be at the global scope

S0037: L-value contains duplicate components (e.g. v.xx = q;)

S0038: Function declared with a return value but return statement has no argument

S0039: Function declared void but return statement has an argument

S0040: Function declared with a return value but not all paths return a value

S0042: Return type of function definition must match return type of function declaration.

S0043: Parameter qualifiers of function definition must match parameter qualifiers of function
declaration.

S0045: Declaring an input inside a function

S0046: Declaring a uniform inside a function

S0047: Declaring an output inside a function

S0048: Illegal data type for vertex output or fragment input

S0049: Illegal data type for vertex input (can only use float, floating-point vectors, matrices, signed and
unsigned integers and integer vectors)

S0050: Initializer for input

S0051: Initializer for output

S0052: Initializer for uniform

S0053: Static recursion present

S0054: Overloading built-in functions not allowed.

S0055: Vertex output with integral type must be declared as flat

S0056: Fragment input with integral type must be declared as flat

S0057: init-expression in switch statement must be a scalar integer

S0058: Illegal data type for fragment output

S0059: Invalid layout qualifier

S0060: Invalid use of layout qualifier (e.g. on vertex shader outputs or fragment shader inputs)

10.4 Linker
L0001: Global variables must have the same type (including the same names for structure and field
names and the same size for arrays) and precision.

L0003: Too many vertex input values

121

10 Errors

L0004: Too many vertex output values

L0005: Too many uniform values

L0006: Too many fragment output values

L0007: Fragment shader uses an input where there is no corresponding vertex output

L0008: Type mismatch between vertex output and fragment input

L0009: Missing main function for shader

122

11 Counting of Inputs and Outputs

11 Counting of Inputs and Outputs

This section applies to vertex shader outputs and fragment shader inputs.

GLSL ES 3.0 specifies the storage available for vertex shader outputs and fragment shader inputs in terms
of an array of 4-vectors. The assumption is that variables will be packed into these arrays without wasting
space. This places significant burden on implementations since optimal packing is computationally
intensive. Implementations may have more internal resources than exposed to the application and so
avoid the need to perform packing but this is also considered an expensive solution.

GLSL ES 3.0 therefore relaxes the requirements for packing by specifying a simpler algorithm that may
be used. This algorithm specifies a minimum requirement for when a set of variables must be supported
by an implementation. The implementation is allowed to support more than the minimum and so may use
a more efficient algorithm and/or may support more registers than the virtual target machine.

If referenced in the fragment shader (after preprocessing), the built-in special variables (gl_FragCoord,
gl_FrontFacing and gl_PointCoord) are included when calculating the storage requirements of fragment
inputs.

Vertex outputs and fragment inputs are counted separately. They are only counted if they are statically
used within the shader.

For the algorithm used, failing resource allocation for a variable must result in an error.

The resource allocation of variables must succeed for all cases where the following packing algorithm
succeeds:

• The target architecture consists of a grid of registers, 16 rows by 4 columns for vertex output and
fragment input variables. Each register can contain a scalar value, i.e. a float, int or uint.

• Structures are assumed to be flattened. Each data member is treated as if it were at global scope.

• Variables are packed into the registers one at a time so that they each occupy a contiguous sub-
rectangle. No splitting of variables is permitted.

• The orientation of variables is fixed. Vectors always occupy registers in a single row. Elements
of an array must be in different rows. E.g. vec4 will always occupy one row; float[16] will
occupy one column. Since it is not permitted to split a variable, large arrays e.g. float[32] will
always fail with this algorithm.

• Non-square matrices of type matCxR consume the same space as a square matrix of type matN
where N is the greater of C and R. Variables of type mat2 occupies 2 complete rows. These
rules allow implementations more flexibility in how variables are stored.
Other variables consume only the minimum space required.

• Arrays of size N are assumed to take N times the size of the base type.

123

11 Counting of Inputs and Outputs

• Variables are packed in the following order:

1. Arrays of mat4 and mat4

2. Arrays of mat2 and mat2 (since they occupy full rows)

3. Arrays of vec4 and vec4

4. Arrays of mat3 and mat3

5. Arrays of vec3 and vec3

6. Arrays of vec2 and vec2

7. Arrays of float and float

• For each of the above types, the arrays are processed in order of size, largest first. Arrays of size
1 and the base type are considered equivalent. The first type to be packed will be mat4[4],
mat4[3], mat[2] followed by mat4, mat2[4]...mat2[2], mat2, vec4[8], ve4[7],...vec4[1], vec4,
mat3[2], mat3 and so on. The last variables to be packed will be float (and float[1]).

• For 2,3 and 4 component variables packing is started using the 1st column of the 1st row.
Variables are then allocated to successive rows, aligning them to the 1st column.

• For 2 component variables, when there are no spare rows, the strategy is switched to using the
highest numbered row and the lowest numbered column where the variable will fit. (In practice,
this means they will be aligned to the x or z component.) Packing of any further 3 or 4
component variables will fail at this point.

• 1 component variables (i.e. floats and arrays of floats) have their own packing rule. They are
packed in order of size, largest first. Each variable is placed in the column that leaves the least
amount of space in the column and aligned to the lowest available rows within that column.
During this phase of packing, space will be available in up to 4 columns. The space within each
column is always contiguous.

• For each type, flat variables are packed followed by smooth variables.

• Each row can contain either values with the 'smooth' property or the 'flat' property but not both. If
this situation is encountered during allocation, the algorithm skips the component location and
continues with the next available location. These skipped locations may be used for other values
later in the allocation process.

• There is no backtracking. Once a value is assigned a location, it cannot be changed, even if such
a change is required for a successful allocation.

124

11 Counting of Inputs and Outputs

Example: pack the following types:

out vec4 a; // top left
out mat3 b; // align to left, lowest numbered rows
out mat2x3 c; // same size as mat3, align to left
out vec2 d[6]; // align to left, lowest numbered rows
out vec2 e[4]; // Cannot align to left so align to z column, highest

// numbered rows
out vec2 f; // Align to left, lowest numbered rows.
out float g[3] // Column with minimum space
out float h[2]; // Column with minimum space (choice of 3, any

// can be used)
out float i; // Column with minimum space

In this example, the variables happen to be listed in the order in which they are packed. Packing is
independent of the order of declaration.

x y z w

0 a a a a

1 b b b

2 b b b

3 b b b

4 c c c

5 c c c

6 c c c

7 d d g

8 d d g

9 d d g

10 d d

11 d d

12 d d e e

13 f f e e

14 h i e e

15 h e e

Some types e.g. mat4[8] will be too large to fit. These always fail with this algorithm.

125

12 Issues

12 Issues

12.1 Compatibility with OpenGL ES 2.0
How should OpenGL ES 3.0 support shaders written for OpenGL ES 2.0?

Option 1: Retain all GLSL ES 1.0 constructs in the new language.

Option 2: Allow GLSL ES 1.0 shaders to run in the OpenGL ES 3.0 API.

RESOLUTION: Option 2. This minimizes the complexity of the language with only a small increase in
system complexity. It also leaves open the option of deprecating the old language in future versions of the
API.

12.2 Convergence with OpenGL
How much should GLSL ES be influenced by the GLSL specification?

OpenGL ES 3.0 is principally targeted at mobile devices such as smartphones and tablets. As such, it is
expected that the major use-cases will include gaming and user-interfaces. It is to be expected that
content will be ported to and from desktop devices.

RESOLUTION: In the absence of any other requirements, GLSL ES 3.0 should follow GLSL 3.3. The
main exceptions to this are:

• The specification should adhere to the principle that functionality should not be duplicated.

• Functionality specific to mobile devices (such as reduced precision) can be added.

• Improvements found in later versions of GLSL can be considered for inclusion.

12.3 Numeric Precision
Should the Open GL ES 2.0 precision requirements be increased?

Most current implementations support a subset of IEEE 754 32-bit floating point. Many implementations
also support reduced precision.

RESOLUTIONS:

• highp float should be specified as a subset of IEEE 754 floating point.

• highp int should be exactly 32 bits.

• lowp and mediump should be retained. Mediump to have increased precision.

Should there be a defined format for mediump?

Option: Yes, this would increase portability and encourage the use of mediump on mobile devices.

126

12 Issues

Option: No, this would be expensive to implement on devices that do not natively support it.

RESOLUTION: No. The specification should allow efficient implementation of mediump float on 16-bit
floating point hardware but must also be implementable on devices which only natively support 32-bit
floating point.

Should the fragment shader have a default precision?

Vertex shaders have a default high precision because lower precisions are not sufficient for the majority of
graphics applications. However, many fragment shader operations do not benefit from high precision and
developers should be encouraged to use lower precision where possible as this may increases performance
or reduce power consumption. In particular, blend operations normally only require low precision and
many texture address calculations can be performed at medium precision.

However OpenGL ES may also be used in higher performance devices where the benefit is limited.
Therefore there appears to be no single precision that would be applicable to all situations.

RESOLUTION: No, there will be no default precision for fragment shaders.

12.4 Floating Point Representation and Functionality
Should IEEE 754 representation be mandated?

The internal format used by an implementation might not be visible to an application so it is meaningless
to specify this. Certain functionality IEEE 754 must be present though.

RESOLUTION: In general, highp float must behave as if it is in IEEE 754 format.

Which features should be mandated?

Most of the IEEE 754 is relatively inexpensive to implement given that 32-bit floating point is a
requirement. However some implementations do not implement signed zeros, rounding modes and NaNs
because of hardware cost. In addition, there are certain compiler optimizations that the IEEE 745
specification prohibits.

RESOLUTION: Mandate support of signed infinities. Support of signed zeros, NaNs.

Should the support of NaNs be consistent?

Should the specification allow either full IEEE NaN support or no support but nothing in between?

RESOLUTION: No, implementations may have partial support and there is no guarantee of consistency.
The only requirement is that isnan() must return false if NaNs are not supported.

Should subnormal numbers (also known as 'denorms') be supported?

RESOLUTION: No, subnormal numbers maybe flushed to zero at any time.

127

12 Issues

How should the rounding mode be specified?

Most current implementations support round-to-nearest. Some but not all also support round-to-nearest-
even.

RESOLUTION: Within the accuracy specification, the rounding mode should be undefined.

Should there be general invariance rules for numeric formats and operations?

The GLSL ES specification allows the implementation a degree of flexibility. Consequently the results of
a computation may be different on different implementations. However, it is not stated whether a single
implementation is allowed to vary the results of a given computation, either in different shaders or
different parts of the same shader. OpenGL has a general invariance rule that prevents the results of a
computation varying if no state (including the choice of shader) is unchanged.

RESOLUTION: Operations and formats are in general considered to be variant.

12.5 Precision Qualifiers
Should the precisions be specified as float16, float32 etc.? This would help portability. It implies
different types rather than hints. It will require all implementations to use the same or similar algorithms
and reduces the scope for innovation.

RESOLUTION: No, the precision should not specify a format. Standardized arithmetic is not (yet) a
requirement for graphics.

Do integers have precision qualifiers? OpenGL ES 3.0 hardware is expected to have native integer
support and some implementations may have reduced precision available.

RESOLUTION: Yes, integers have precision qualifiers.

How should wrapping behavior of integers be defined? If an application relies on wrapping on one
implementation this may cause portability problems.

Option: The standard should specify either wrapping or clamping. This allows for maximum
implementation flexibility.

Option: Mandate wrapping. There is a trend towards more complex shaders and developers will expect
integers to behave as in C++.

RESOLUTION: Mandate wrapping.

Are precision qualifiers available in the vertex shader?

RESOLUTION: Yes. Reduced precision may be available in the vertex shader in some implementations
and it keeps the languages consistent.

128

12 Issues

Should different precisions create different types and e.g. require explicit conversion between them?

Option1: No, they are just hints. But hinting high precision is meaningless if the implementation can
ignore it.

Option 2: Yes they are different types. But this introduces complexity.

RESOLUTION: The precision qualifier can significantly affect behavior in many implementations.
highp means 32-bit IEEE 743 floating point is used but mediump means that at least medium precision is
used (and similarly for lowp) so precision qualifiers are more than just hints. As far as the language is
concerned it doesn't affect the behavior so they can either be considered as hints or as different types with
implicit type conversion. In any case, implementations are free to calculate everything at high precision.

Should precisions be considered when resolving function calls?

RESOLUTION: No, they should be considered more as hints. Function declarations cannot be
overloaded based on precision.

How should precisions be propagated in an expression?

Option 1: Only consider the inputs to an operation. For operands that have no defined precision,
determination of precision starts at the leaf nodes of the expression tree and proceeds to the root until the
precision is found. If necessary this includes the l-value in an assignment. Constant expressions must be
invariant and it is expected that they will be evaluated at compile time. Therefore they must be evaluated
at the highest precision (either lowp or highp) supported by the target, or above.

Option 2: Always take the target of the expression into account. The compiler should be able to work out
how to avoid losing precision.

RESOLUTION: Option 1. This makes it easier for the developer to specify which precisions are used in
a complex expression.

What if there is no precision in an expression?

Option 1: Leave this as undefined.

Option 2: Use the default precision.

RESOLUTION: Use the default precision. It is an error if this is not defined (in the fragment shader).

Do precision qualifiers for uniforms need to match?

Option 1: Yes.

Uniforms are defined to behave as if they are using the same storage in the vertex and fragment processors
and may be implemented this way.

If uniforms are used in both the vertex and fragment shaders, developers should be warned if the
precisions are different. Conversion of precision should never be implicit.

129

12 Issues

Option 2: No.

Uniforms may be used by both shaders but the same precision may not be available in both so there is a
justification for allowing them to be different.

Using the same uniform in the vertex and fragment shaders will always require the precision to be
specified in the vertex shader (since the default precision is highp). This is an unnecessary burden on
developers.

RESOLUTION: Yes, precision qualifiers for uniforms must match.

Do precision qualifiers for vertex outputs and the corresponding fragment inputs (previously known as
'varyings') need to match?

Option 1: Yes. Varyings are written by the vertex shader and read by the fragment shader so there are no
situations where the precision needs to be different.

Option 2: No, the vertex outputs written by the vertex shader should not be considered to be the same
variables as those read by the fragment shader (there can be no shared storage). Hence they can be
specified to have different precisions.

RESOLUTION Precision qualifiers for vertex outputs and fragment inputs do not need to match.

lowp int

lowp float has a range of +/- 2.0 but lowp int has a range of +/- 256. This becomes problematic if
conversion form lowp float to lowp int is required. Direct conversion i.e. lowp int = int(lowp float)
loses almost all the precision and multiplying before conversion e.g. lowp int = int(lowp float * 256)
causes an overflow and hence an undefined result. The only way to maintain precision is to first convert
to mediump float.

Option 1: Keep this behavior. Accept that conversion of lowp float to low int loses precision and is
therefore not useful.

Options 2: Make lowp int consistent with mediump and highp int by setting its range to +/- 1

Options 3: Redefine the conversion of lowp float to lowp int to include an 8-bit left shift. The
conversion of lowp int to lowp float then contains an 8-bit right shift.

Option 4: Option 1 but add built-in functions to shift-convert between the two formats.

Option 5: Redefine the lowp float to be a true floating point format. It would then be equivalent to a
floating point value with a 10 bit mantissa and a 3 bit unsigned exponent.

RESOLUTION: Option 1 Conversion will lose most of the precision.

Precision of built-in texture functions.

130

12 Issues

Most built-in functions take a single parameter and it is sensible for the precision of the return value to be
the same as the precision of the parameter. The texture functions take sampler and coordinate parameters.
The return value should be completely independent of the precision of the coordinates. How should the
precision of the return value be specified?

RESOLUTION: Allow sampler types to take a precision qualifier. The return value of the texture
functions have the same precision as the precision of the sampler parameter.

What should the default precision of sampler types be?

Option 1: lowp. This will be faster on some implementations. In general, OpenGL ES should default to
fast operation rather than precise operation. It is usually easier to detect and correct a functional error
than a performance issue.

Option 2: lowp for textures that are expected to contain color values. highp for textures that are expected
to contain other values e.g. depth.

Option 2: No default precision. Although this requires that the precision be specified in every shader, it
will force the developer to consider the requirements.

RESOLUTION: The default precision of all sampler types present in GLSL ES 1.0 should also be lowp
in GLSL ES 3.0. New sampler types in GLSL ES 3.0 should have no default precision.

12.6 Function and Variable Name Spaces
Do variables and functions share the same name space? GLSL ES doesn't support function pointers so the
grammar can always be used to distinguish cases. However this is a departure from C++.

RESOLUTION: Functions and variables share the same name space.

Should redeclarations of the same names be permitted within the same scope? This would be compatible
with C. There are several cases e.g.:

1. Redeclaring a function. A function prototype is a declaration but not a definition. A function
definition is both a declaration and a definition. Consequently a function prototype and a
function definition (of the same function) within the same scope qualifies as redeclaration.

2. Declaring a name as a function and then redeclaring it as a structure.

3. Declaring a name as a variable and then redeclaring it as a structure.

Disallowing multiple function declarations (including allowing a separate function prototype and function
definition) would prevent static recursion by design. However it imposes constraints on the structure of
shaders.

GLSL ES 1.00 allows a single function definition plus a single optional function declaration.

RESOLUTION: Multiple definitions are disallowed. Multiple function declarations (function
prototypes) are allowed. This is in line with C++.

131

12 Issues

12.7 Local Function Declarations and Function Hiding
Should local functions hide all functions of the same name?

This is considered useful if local function declarations are allowed. However, the only use for local
function declarations in GLSL ES is to unhide functions that have been hidden by variable or structure
declarations. This is not a compelling reason to include them.

RESOLUTION: Disallow local function declarations.

12.8 Overloading main()
Should it be possible for the user to overload the main() function?

RESOLUTION: No. The main function cannot be overloaded.

12.9 Error Reporting
In general which errors must be reported by the compiler?

Some errors are easy to detect. All grammar errors and type matching errors will normally be detected as
part of the normal compilation process. Other semantic errors will require specific code in the compiler.
The bulk of the work in a compiler occurs after parsing so adding some error detection should not
increase the total cost of compilation significantly. However, it is expected that development systems will
have sophisticated error and warning reporting and it is not necessary to repeat this process for on-target
compilers.

RESOLUTION: All grammar, type mismatch and other specific semantic errors as listed in this
specification must be reported. Reporting of other errors or warnings is optional.

Should compilers report if maxima are exceeded, even if the implementation supports them? This could
aid portability.

RESOLUTION: No, high-end implementations may quite legitimately go beyond the specification in
these areas and mandating the use of the extension mechanism would cause needless complexity.
Development systems should issue portability warnings.

Should static recursion be detected?

RESOLUTION: Yes, the compiler will normally generate the necessary control flow graph so detection is
easy.

12.10 Structure Declarations
Should structures with the same name and same member variables be considered as the same type?

RESOLUTION: No, follow the C++ rules. Variables only have the same type if they have been declared
with the same type and not if they have been declared with different types that have the same name. This
does not apply to linking (for uniforms and varyings) which has its own rules.

132

12 Issues

Should structure declarations be allowed in function parameters?

RESOLUTION: No, following the previous resolution it would be impossible to call such a function
because it would be impossible to declare a variable with the same structure type.

12.11 Embedded Structure Definitions
Should embedded structure definitions be allowed?

e.g.

struct S
{
 struct T
 {
 int a;
 } t;
 int b:
};

In order to access the constructor, the structure name would have to be scoped at the same level as the
outer level structure. This is inconsistent.

Option 1: Disallow embedded structure definitions.

Option 2: Allow embedded structure definitions but accept that the constructor is not accessible.

Option 3: Scope embedded structure names at the same level as the outermost scope name.

RESOLUTION: Remove embedded structure definitions.

12.12 Redefining Built-in Functions
Should it be possible to redefine or overload built-in functions?

There may be some applications where it is useful to redefine the built-in functions but the language does
not include the required functionality for all cases. Built-in functions are likely to be efficiently mapped
to the hardware. User-defined functions may not be as efficient but may be able to offer greater precision
(e.g. for the trig functions). The application may then want access to both the original and new function.
Some user-defined functions would benefit from access to the original function. Once the new function
has been declared, the original function is hidden so both these use cases are impossible with the current
specification.

Option 1: Allow both redefinition and overloading of built-in functions.

Option 2: Disallow redefinition of built-in functions. Allow them to be overloaded. This may be useful
where it is required to extend the functionality of a built-in function. However it creates a subtle
incompatibility with the desktop:

133

12 Issues

int sin(int x) {return x;}
void main()
{
 float a = sin(1.0); // legal in GLSL ES, not legal in desktop GLSL.
}

It is also a potential source of backwards-incompatibility if a future version of the language introduces
new overloads.

Option 3: Remove the ability to redefine or overload functions.

RESOLUTION: Disallow both overloading and redefining built-in functions. There is no compelling use
case.

12.13 Global Scope
How should the scoping levels for user-defined and built-in names be defined?

GLSL ES 1.00 and most versions of GLSL have a global scope for user-defined functions and variables
and a distinct 'outer' scope where the built-in functions reside. This is different from C++. Since GLSL
ES 3.00 does not allow the redefinition of built-in functions, a single global scope is sufficient.

RESOLUTION: A single global scope will be used for user-defined and built-in names.

12.14 Constant Expressions
Should user and built-in functions be allowed in constant expressions? e.g.

const float a = sin(1.0);

The compiler must be able to evaluate all possible constant expressions as they can potentially be used to
size arrays and functions resolution is dependent on array size. Compile-time evaluation of built-in
functions is expensive in terms of code size. The complexity of compile-time evaluation of user-defined
functions is potentially unbounded.

RESOLUTION: Allow built-in functions to be included in constant expressions. Redefinition of built-in
functions is prohibited. User-defined functions are not allowed in constant expressions.

12.15 Varying Linkage
In the vertex shader, a particular varying may be either 1) not declared, 2) declared but not written, 3)
declared and written but not in all possible paths or 4) declared and written in all paths. Likewise a
varying in a fragment shader may be either a) not declared, b) declared but not read, c) declared and read
in some paths or d) declared and read in all paths. Which of these 16 combinations should generate an
error?

The compiler should not attempt to discover if a varying is read or written in all possible paths. This is
considered too complex for OpenGL ES.

134

12 Issues

The same vertex shader may be paired with different fragment shaders. These fragment shaders may use a
subset of the available input varyings. This behavior should be supported without causing errors.
Therefore if the vertex shader writes to a varying that the fragment shader doesn't declare or declared but
doesn't read then this is not an error.

If the vertex shader declares but doesn't write to a varying and the fragment shader declares and reads it, is
this an error?

RESOLUTION: No.

RESOLUTION: The only error case is when a varying is declared and read by the fragment shader but is
not declared in the vertex shader.

12.16 gl_Position
Is it an error if the vertex shader doesn't write to gl_Position? Whether a shader writes to gl_Position
cannot always be determined e.g. if there is dependence on an attribute.

Option 1: No it is not an error. The behavior is undefined in this case. Development systems should
issue a warning in this case but the on-target compiler should not have to detect this.

Option 2: It is an error if the vertex shader does not statically write to gl_Position

Option 3: It is an error if there is any static path through the shader where gl_Position is not written.

RESOLUTION: No error (option 1). The nature of the undefined behavior must be specified.

12.17 Preprocessor
Is the preprocessor necessary?

Arguments for removing or simplifying the preprocessor:

• The preprocessor is moderately complex to implement. In particular, function-like macros may
have arbitrary complexity and require significant resources to compile.

• The C++ standard does not fully specify the preprocessor. In particular, the situations where
preprocessor tokens are subject to macro expansion are not fully defined. Neither is the effect of
macro definitions encountered during macro expansion.

• Over-use of the preprocessor is a common source of programming errors because there is limited
compile-time checking.

Arguments for retaining the preprocessor:

• The extension mechanism relies on the preprocessor so this would need to be replaced.

• The #define, #ifdef, #ifndef, #elsif and #endif constructs are commonly used for managing
different versions and for include guards.

• There is no template mechanism in GLSL ES so macros are often used instead.

GLSL ES 1.00 removed token pasting and other functionality.

135

12 Issues

RESOLUTION: Keep the basic preprocessor as defined in the GLSL ES 1.00 specification.

12.18 Character set
GLSL ES 1.00 only allowed a subset of the ASCII character set to be used in shaders. That included
names and comments. The written languages of many countries include other characters or use a
completely different character set. This makes it difficult or impossible to write comments in those
languages.

Where should the new characters be allowed? It would be possible to decide independently for comments,
identifiers and macros. For macros, they could be allowed as part of macro definitions but prohibited in
the final output of macro expansion.

RESOLUTION: The new characters are only allowed inside comments.

Which character set should be used to define the new characters.

UTF-8 has the advantage that it is backwards-compatible with ASCII. All ASCII characters are valid
UTF-8 single-byte characters and UTF-8 multi-byte characters all have the highest bit set to '1' in each
byte. The disadvantage is that UTF-8 is variable length.

RESOLUTION: UTF-8

How should the extended character set be specified?

Options include full UTF-8 or by explicitly listing the allowed characters.

RESOLUTION: Full UTF-8

Should the compiler check for the presence of invalid UTF-8 byte sequences?

Since any multi-byte characters will only occur within comments and so not required further processing, it
would be inexpensive to check for valid UTF-8 characters. Conversely, there appears to be no advantage
to doing so. The issue of validity is only of concern to text editors.

RESOLUTION: The compiler must not check for invalid UTF-8 characters. Bytes '0' and newline
characters will be interpreted as such wherever they occur.

How does the #version directive interact with the use of UTF-8 in comments?

Following C++, the 'phases of translation' specification defines comment processing to be performed
before macro directives are processed. However UTF-8 is legal in GLSL ES 3.00, identified by #version
300 but not in GLSL ES 1.00, identified by #version 100 (or by absence of a #version directive).
Therefore the #version behavior in GLSL ES 1.00 would require compilation to be dependent on a
directive occurring later in the shader source.

Option: The shader is processed in 2 passes. The first determines the shader version and the second
performs compilation as before.

136

12 Issues

Option: Replace the current version directive mechanism with a byte or character sequence that must
always occur at the start of the shader. This is similar to other standards that have multiple versions e.g.
HTTP.

Option: Make UTF-8 characters an optional feature of GLSL ES 1.00

RESOLUTION: Replace the version directive in GLSL ES 1.0 with a character sequence that must
always occur at the start of the shader.

12.19 Line Continuation
Should the line continuation character '\' be included in the specification?

Line continuation was deliberately excluded from previous versions of GLSL and GLSL ES in order to
discourage excessive use of the preprocessor. However, function-like macros are commonly used because
there is no 'template' mechanism, which would allow functions to be parametrized by a type. Long macro
definitions are therefore not uncommon and the line-continuation character may aid readability.

Given that shader source is stored in a list of character strings, the newline character can be omitted and
this has the same effect as a newline followed by a line-continuation.

RESOLUTION: Include line-continuation.

How does this interact with #version?

RESOLUTION: Same issue as with UTF-8in general. Line-continuation to be made optional in GLSL ES
1.00

12.20 Phases of Compilation
Should the preprocessor run as the very first stage of compilation or after conversion to preprocessor
tokens as with C/C++?

The cases where the result is different are not common.

#define e +1
int n = 1e;

According to the c++ standard, '1e' should be converted to a preprocessor token which then fails
conversion to a number. If the preprocessor is run first, '1e' is expanded to '1+1' which is then parsed
successfully.

RESOLUTION: Follow c++ rules.

12.21 Maximum Number of Varyings
How should gl_MaxVaryingFloats be defined? Originally this was specified as 32 floats but currently
some desktop implementations fail to implement this correctly. Many implementations use 8 vec4
registers and it is difficult to split varyings across multiple registers without losing performance.

137

12 Issues

Option 1: Specify the maximum as 8 4-vectors. It is then up to the application to pack varyings. Other
languages require the packing to be done by the application. Developers have not reported this as a
problem.

Option 2: Specify the maximum according to a packing rule. The developer may use a non-optimal
packing so it is better to do this in the driver. Requiring the application to pack varyings is problematic
when shaders are automatically generated. It is easier for the driver to implement this.

RESOLUTION: The maximum will be specified according to a packing rule.

Should attributes and uniforms follow this rule?

RESOLUTION: Attributes should not follow this rule. They will be continued to be specified as vec4s.

RESOLUTION: Uniforms should not follow this rule for GLSL ES 3.00. Implementations are expected
to virtualize such resources.

Should the built-in special variables (gl_FragCoord, gl_FrontFacing, gl_PointCoord) be included in this
packing algorithm? Built-in special variables are implemented in a variety of ways. Some
implementations keep them in separate hardware, some do not.

RESOLUTION: Any built-in special variables that are statically used in the shader should be included in
the packing algorithm.

Should gl_FragCoord be included in the packing algorithm? The x and y components will always be
required for rasterization. The z and w components will often be required.

RESOLUTION: gl_FragCoord is included in the count of varyings.

How should mat2 varyings be packed?

Option 1: Pack them as 2x2.

Option 2: Pack them as 4 columns x 1 row. This is usually more efficient for an implementation.

Option 3: Allocate a 4 column x 2 row space. This is inefficient but allows flexibility in how
implementations map them to registers.

Option 4: As above but pack 2 mat2 varyings into each 4 column x 2 row block. Any unpaired mat2
takes a whole 4x2 block.

RESOLUTION: Option 3

Should mat3 take 3 whole rows?

This would again allow flexibility in implementation but it wastes space that could be used for floats or
float arrays.

138

12 Issues

RESOLUTION: No, mat3 should take a 3x3 block.

Should vec3 take a whole row?

RESOLUTION: No.

Should gl_MaxVertexUniformsComponents be changed (from desktop GLSL) to reflect the packing
rules?

RESOLUTION: Rename gl_MaxVertexUniformComponents to gl_MaxVertexUniformVectors. Rename
gl_MaxFragmentUniformComponents to gl_MaxFragmentUniformVectors.

12.22 Array Declarations
Unsized array declarations.

Desktop GLSL allows arrays to be declared without a size and these can then be accessed with constant
integral expressions. The size never needs to be declared. This was to support gl_Texcoord e.g.

varying vec4 gl_TexCoord[];
...
gl_FragColor = texture (tex, gl_TexCoord[0].xy);

This allows gl_TexCoord to be used without having to declare the number of texture units.

gl_TexCoord is part of the fixed functionality so unsized arrays should be removed for GLSL ES

RESOLUTION: Remove unsized array declarations.

Which forms of array declarations should be permitted?

 float a[5];
 ...
 float b[] = a; // b is explicitly size 5

or

 float a[] = float[] (1.0, 2.0, 3.0);

RESOLUTION: All above constructs are valid. However, any declaration that leaves the size undefined
is disallowed as this would add complexity and there are no use-cases.

12.23 Invariance
How should invariance between shaders be handled?

Version 1.10 of desktop GLSL uses ftransform() to guarantee that gl_Position can be guaranteed to be
calculated the same way in different vertex shaders. This relies on the fixed function that has been
removed from ES. It is also very restrictive in that it only allows vertex transforms based on matrices. It
does not apply to other values such as those used to generate texture coordinates.

139

12 Issues

Option 1: Specify all operations to be invariant. No, this is too restrictive. Optimum use of resources
becomes impossible for some implementations.

Option 2: Add an invariance qualifier to functions that require invariance. No, this does not work as the
inputs to the functions and operations performed on the outputs may not be invariant.

Option 3: Add an invariance qualifier to all variables (including shader outputs).

RESOLUTION: Add an invariance qualifier to variables but permit its use only for outputs from the
vertex and fragment shaders. Add a global invariance option for use when complete invariance is
required.

Should the invariance qualifier be permitted on parameters to texture functions?

Many algorithms rely on two or more textures being exactly aligned, either within a single invocation of a
shader or using multi-pass techniques. This could be guaranteed by using the invariant qualifier on
variables that are used as parameters to the texture function.

Using the global invariance pragma also guarantees alignment of the textures. It is not clear whether
allowing finer control of invariance is useful in practice. Compilers may revert to global invariance and
there may be other specific cases that need to be considered.

RESOLUTION: Use of a variable as a parameter to a texture function does not imply that it may be
qualified as invariant.

Do invariance qualifiers for declarations in the vertex and fragment shaders need to match?

Option 1: Only allow invariance declarations on outputs.

Option 2: Specify that they must match.

RESOLUTION: Only allow invariant declarations on outputs.

Should this rule apply if the varying is declared but not used?

RESOLUTION: Yes, this rule applies for declarations, independent of usage.

How does this rule apply to the built-in special variables.

Option 1: It should be the same as for varyings. But gl_Position is used internally by the rasterizer as
well as for gl_FragCoord so there may be cases where rasterization is required to be invariant but
gl_FragCoord is not.

Option 2: gl_FragCoord and gl_PointCoord can be qualified as invariance if and only if gl_Position and
gl_PointSize are qualified invariant, respectively.

Can undefined values be made invariant?

140

12 Issues

If a type is implemented by a larger native type and due to lack of initialization, a variable of that type has
an illegal value, it is possible for variant behavior to occur.

For example suppose a boolean is represented by a 32-bit integer with 'false' represented as 0 and 'true'
represented as '1'. If the compiler uses both an 'equals 0' and an 'equals 1' test, the following may occur:

 bool b; // The implementation sets this to an illegal value e.g. 3

 if (b) // implementation tests 'b == 1' which is false
 {
 f();
 }
 else // implementation tests 'b == 0' which is also false
 {
 g();
 }

Neither f() nor g() are executed which is unexpected behavior. Such cases could be made invariant but
would for example require the compiler to initialize undefined values which is a performance cost.

RESOLUTION: Undefined values cannot be made invariant. These shaders are malformed and therefore
have undefined behavior.

12.24 Invariance Within a shader
How should invariance within a shader be specified?

Compilers may decide to recalculate a value rather than store it in a register (rematerialization). The new
value may not be exactly the same as the original value.

Option 1: Prohibit this behavior.

Option 2: Use the invariance qualifier on variables to control this. This is consistent with the desktop.

RESOLUTION: Values with in a shader are in variant be default. The invariance qualifier or pragma
may be used to make them invariant.

Should constant expressions be invariant? In the following example, it is not defined whether the literal
expression should always evaluate to the same value.

precision mediump int;
precision mediump float;
const int size = int(ceil(4.0/3.0 – 0.333333));
int a[size];
for (int i=0; i<int(ceil(4.0/3.0 – 0.333333)); i++) {a [i] = i;}

141

12 Issues

Implementations must usually be able to evaluate constant expressions at compile time since they can be
used to declare the size of arrays. Hardware may compute a less accurate value compared with maths
libraries available in C. It would however be expected that functions such as sine and cosine return
similar results whether or not they are part of a constant expression. This suggests that the
implementation might want to evaluate these functions only on the hardware. However, there are no
situations, even with global invariance, where compile time evaluation and runtime evaluation must match
exactly.

RESOLUTION: Yes, constant expressions must be invariant.

12.25 While-loop Declarations
What is the purpose of allowing variable declarations in a while statement?

while (bool b = f()) {...}

Boolean b will always be true until the point where it is destroyed. It is useful in C++ since integers are
implicitly converted to booleans.

RESOLUTION: Keep this behavior. Will be required if implicit type conversion is added to a future
version.

A similar issue exists in for-loops. The grammar allows constructs such as

for(;bool x = a < b;) ;

12.26 Cross Linking Between Shaders
Should it be permissible for a fragment shader to call a function defined in a vertex shader or vice versa?

RESOLUTION: No, there is no need for this behavior.

12.27 Visibility of Declarations
At what point should a declaration take effect?

int x=1;
{
 int x=2, y=x; // case A
 int z=z; // case B
}

Option 1: The name should be visible immediately after the identifier. Both cases above are legal. In
case A, y is initialized to the value 2. This is consistent with c++. For case B, the use case is to initialize
a variable to point to itself e.g. void* p = &p; This is not relevant to GLSL ES.

Option 2: The name should be visible after the initializer (if present), otherwise immediately after the
identifier. In case A, y is initialized to 2. Case B is an error (assuming no prior declaration of z).

Option 3: The name should be visible after the declaration. In case A, y is initialized to 1. Case B is an
error if z is has no prior declaration.

142

12 Issues

RESOLUTION: Option 2. Declarations are visible after the initializer if present, otherwise after the
identifier.

12.28 Language Version
What version number should the language have? This version of the language is based on version 3.30 of
the desktop GLSL. However it includes a number of features that are in version 4.20 but not 3.30. The
previous version of GLSL ES was version 1.00 so this version could be called version 2.00.

RESOLUTION: Follow the desktop GLSL convention so that the language version matches the API
version. Hence this version will be called 3.00

12.29 Samplers
Should samplers be allowed as l-values? The specification already allows an equivalent behavior:

Current specification:

uniform sampler2D sampler[8];
int index = f(...);
vec4 tex = texture(sampler[index], xy); // allowed

Using assignment of sampler types:

uniform sampler2D s;
s = g(...);
vec4 tex = texture(s, xy); // not allowed

RESOLUTION: Dynamic indexing of sampler arrays is now prohibited by the specification. Restrict
indexing of sampler arrays to constant integral expressions.

12.30 Dynamic Indexing
For GLSL ES 1.00, support of dynamic indexing of arrays, vectors and matrices was not mandated
because it was not directly supported by some implementations. Software solutions (via program
transforms) exist for a subset of cases but lead to poor performance. Should support for dynamic indexing
be mandated for GLSL ES 3.00?

RESOLUTION: Mandate support for dynamic indexing of arrays except for sampler arrays, fragment
output arrays and uniform block arrays.

Should support for dynamic indexing of vectors and matrices be mandated in GLSL ES 3.00?

RESOLUTION: Yes.

Indexing of arrays of samplers by constant-index-expressions is supported in GLSL ES 1.00. A constant-
index-expression is an expression formed from constant-expressions and certain loop indices, defined for
a subset of loop constructs. Should this functionality be included in GLSL ES 3.00?

143

12 Issues

RESOLUTION: No. Arrays of samplers may only be indexed by constant-integral-expressions.

12.31 Maximum Number of Texture Units
The minimum number of texture units that must be supported in the fragment shader is currently 2 as
defined by gl_MaxTextureImageUnits = 8. Is this too low for GLSL ES 3.0?

Option 1: Yes, the number of texturing units is the limiting factor for fragment shaders. The number of
texture units was increased from 1 to 2 going from OpenGL ES 1.0 to OpenGL ES 1.1 and increased to 8
for OpenGL ES 2.0

RESOLUTION: Increase to 16

12.32 On-target Error Reporting
Should compilers be required to report any errors at compile time or can errors be deferred until link
time?

RESOLUTION: If a program cannot be compiled, on-target compilers are only required to report that an
error has occurred. This error may be reported at compile time or link time or both. Development
systems must generate grammar errors at compile time.

12.33 Rounding of Integer Division
Should the rounding mode be specified for integer division?

The rounding mode for division is related to the definition of the remainder operator. The important
relation in most languages (but not relevant in this version of GLSL ES) is:

(a / b) * b + a % b = a (a and b are integers)

Usually the remainder operator is defined to have the same sign as the dividend which implies that divide
must round towards zero. (Note that the modulo function is not the same as the remainder function.
Modulo is defined to have the same sign as the divisor).

The remainder operator was not part of GLSL ES 1.00, so it was not necessary to specify the rounding
mode. In GLSL ES 3.00, the remainder operator is included but the results are undefined if either or both
operands are negative.

RESOLUTION: The rounding mode is undefined for this version of the specification.

12.34 Undefined Return Values
If a function is declared with a non-void return type, any return statements within the definition must
specify a return expression with a type matching the return type. However if the function returns without
executing a return statement the behavior is undefined. Should the compiler attempt to check for these
cases and report them as an error?

144

12 Issues

Example:

int f()
{
 // no return statement
}

...

int a = f();

Option 1: An undefined value is returned to the caller. No error is generated. This is what most c++
compilers do in practice (although the c++ standard actually specifies 'undefined behavior').

Option 2: There must be a return statement at the end of all function definitions that return a value.

No, this requires statements to be added that may be impossible to execute.

Option 3: A return statement at the end of a function definition is required only if it is possible for
execution to reaches the end of the function:

E.g.

int f(bool b)
{
 if (b)
 return 1;
 else
 return 0;
 // No error. The execution can never reach the end of the function so
 // the implicit return statement is never executed.
}

This becomes impossible to determine in the presence of loops.

Option 4: All finite static paths through a function definition must end with a return statement. A static
path is a path that could potentially be taken if each branch in the code could be controlled independently.

RESOLUTION: Option 1: The function returns an undefined value.

12.35 Precisions of Operations
Should the precision of operations such as add and multiply be defined?

These are not defined by the C++ standard but it is generally assumed that C++ implementations will use
IEEE 754 arithmetic. This is not true for GPUs which generally support only a subset of IEEE 754. In
addition, many operations such as the transcendental functions are considered too expensive to implement
with more than 10 significant bits of precision. Division is commonly implemented by reciprocal and
multiplication.

RESOLUTION: Include a table of precisions for operations.

145

12 Issues

12.36 Compiler Transforms
What compiler transforms should be allowed?

C++ prohibits compiler transforms of expressions that alter the final result. (Note that C++ allows higher
precisions than specified to be used but this is a different issue.) GPUs commonly make use of such
transforms, for example when mapping sequential code to vector-based architectures.

RESOLUTION: A specified set of transforms (in addition to those permitted by C++) are allowed.

12.37 Expansion of Function-like Macros in the Preprocessor
When expanding macros, each macro can only be applied once to the original token or any token
generated from that token. To implement this, the expansion of function-like macros requires a list of
applied macros for each token to be maintained. This is a large overhead.

RESOLUTION: Follow the C++ specification.

What should the behavior be if a directive is encountered during expansion of function-like macros?

This is currently specified as undefined in C++ although several compilers implement the expected
behavior.

RESOLUTION: Leave as undefined behavior.

12.38 Should Extension Macros be Globally Defined?
For each extension there is an associated macro that the shader can use to determine if an extension is
available on a given implementation. Should this macro be defined globally or should it be defined when
the extension is (successfully) enabled?

Both alternatives are usable since attempting to enable an unimplemented extension only results in a
warning.

Option 1: Globally defined

#ifdef GL_OES_<extension-name>
 #extension GL_OES_<extension-name> : enable
 ...
#endif

Option 2: Defined as part of #extension

#extension GL_OES_<extension-name> : enable // warning if not available
#ifdef GL_OES_<extension-name>
 ...
#endif

RESOLUTION: The macros are defined globally. There should be a warning-free path for all legal cases.

146

12 Issues

12.39 Minimum Requirements
GLSL ES 1.00 specified a set of minimum requirements that effectively made parts of the specification
optional. The purpose was to enable low cost implementations while allowing higher performance
devices to expose features without recourse to extensions. That flexibility came at the cost of portability.
Should the minimum requirements section be included as part of GLSL ES 3.00?

RESOLUTION: No, except for the section on counting of varyings.

12.40 Packing Functions
These functions are used to pack and unpack a 32-bit bit-vector into various types.

Should the conversions be based on the precision (lowp, mediump, highp)? e.g.

highp uint packFloat2x16(mediump vec2 v);

RESOLUTION: No. Since mediump can be implemented using more than 16 bits, packing and then
unpacking a mediump value might result in a different value on some platforms but not on others.

Should conversion to and from 8-bit types be supported?

RESOLUTION: No. It is not clear which low precision types to support. e.g. lowp is nominally 10 bit.

Which variant of snorm should be used?

Option 1: The range is [-32768, +32767]. Zero is not representable. Uses all the available values.
Sometimes known as the 'attribute snorm format'.

Option 2: The range is [-32767, +32767]. Zero is representable. Does not use all the available values.
Sometimes known as the 'texture snorm format'.

RESOLUTION: Option 2. It is important that zero is representable. Option 1 is simpler to implement but
this is not considered significant for current hardware. The API specification will be amended to use this
format for all snorm to float and float to snorm conversions.

12.41 Boolean logical vector operations
The logical binary operators and (&&), or (| |), and exclusive or (^^) operate only on two boolean
expressions and result in a boolean expression. Should they be extended to operate on boolean vectors?

The 2nd operand is conditionally evaluated for these operators.

 bvec4 f();
 bvec4 g();

 f() && g(); // g() gets 'run' for some components but not others.
 // This isn't well defined.

RESOLUTION: No, these should not be part of the language.

147

12 Issues

12.42 Range Checking of literals
Should an error be generated if a literal integer is outside the range of a 32-bit integer?

This can be easily checked by the compiler. However, there is a complication because the literal does not
include the minus sign for negative constants. Signed integers can be distinguished from unsigned
integers by the 'u' suffix but the value 0x8000000 is only valid if preceded by a unary minus.

Option: Check only that the numeric part of a literal integer (signed or unsigned) is representable by 32
bits.

Option: Include any preceding unary minus and check that the literal is within the range of a signed or
unsigned integer as appropriate.

Option: Extend the checking to any constant integral expression.

RESOLUTION: It is an error to have a literal unsigned integer outside the range of a 32-bit integer.

Should this apply to floating-point numbers?

The GLSL spec allows an arbitrary number of digits before the decimal point. It therefore possible for a
float literal to have an arbitrarily large number of characters but still be representable e.g.

1<1 million zeros>.0e-1000000

1. Parsing constraints. Should the number of characters in each field be limited in some way?

1. Should the mantissa be limited to e.g. 16 characters?

2. Should the unsigned part of the mantissa be required to fit into a 32 bit integer?

2. Range checks.

1. If the value is larger than 3.40282347e38, should it be required to return INF? Or return
an error?

RESOLUTION: No limit on the number of characters in the mantissa or exponent in a float literal.

RESOLUTION: Values larger than representable in a float 32 must return INF (+ or - as appropriate).
Values with a magnitude too small to be representable in a float 32 must return zero.

12.43 Sequence operator and constant expressions
Should the following construct be allowed?

float a[2,3];

The expression within the brackets uses the sequence operator (',') and returns the integer 3 so the
construct is declaring a single-dimensional array of size 3. In some languages, the construct declares a
two-dimensional array. It would be preferable to make this construct illegal to avoid confusion.

148

12 Issues

One possibility is to change the definition of the sequence operator so that it does not return a constant-
expression and hence cannot be used to declare an array size.

RESOLUTION: The result of a sequence operator is not a constant-expression.

12.44 Version Directive
The version directive in GLSL ES 1.00 has been found to be unsuitable in cases where certain features of
the language specification are changed. The existing mechanism relies on a preprocessor directive but,
following the order of operations specified by the 'phases of translation' section in the C++ specification,
it is difficult or perhaps impossible to change features of the language that are processed before such
directives are invoked. Such features include the introduction of the line-continuation character ('\') and
the extension of the character set.

There are several options for an improved version mechanism. All specify the version in the first line of
the shader and require that the version directive is followed by a newline.

Option 1: Add a byte sequence to the start of the shader. This would allow any change to be made to the
language, including changing the character set. This mechanism is often used in file formats for images.

Option 2: Add a character string sequence to the start of the shader. Define it to appear to be a
preprocessor directive e.g.

#version 300 es

Option 3: As option 2 but allow some flexibility in the format so that extra white-space would still be
allowed.

Option 4: As option 2 but use a distinctive non-preprocessor format e.g.

version-300-es

Option 5: As option 4 but include the characters 'glsl' to aid identification e.g.

glsl-version-300-es

RESOLUTION: Option 3. The version directive is a string, present as the only non-white-space in the
first line of the shader. It is very unlikely that the character set will be changed in an incompatible way
from UTF-8 in the future. Option 3 is the closest in appearance to the current mechanism.

12.45 Use of Unsigned Integers
Should functions that can only return a positive value e.g. textureSize() and the length() method, return
signed or unsigned values?

Option 1: Unsigned integer. This allows for some degree of compile-time checking. For example it
would be impossible to accidentally access an array element with a negative index in a typical
initialization loop such as:

149

12 Issues

float a[5];
for (unit i=0u; i<a.length (); i++)
 a[i] = 0.0;

Option 2: Signed integer. This allows greater flexibility in calculating array indices without the need for
type conversions e.g.

float a[SIZE];
...
int index = a.length() - 3; // Library code. SIZE may not be known when
 // this code is written
if (index >= 0) // would not work with an unsigned integer
 f(a[index]);

RESOLUTION: Option 2. The principle is that integers that represent values and hence may form part of
arithmetic expressions should always be signed, even if it is known that they will always be positive.
Values that represent bit vectors should always be unsigned.

The extra checking made available by the use of unsigned integers for values known to be positive is
minimal. It would be preferable to include a range mechanism in a future version of the language.

12.46 Vertex Attribute Aliasing
Vertex inputs (attributes) can be assigned a location in 3 ways:

• By the location qualifier in the shader

• By the API (BindAttribLocation)

• Automatically by the linker (default if the location is not specified explicitly)

These methods may be mixed e.g. some locations may be defined by the shader and others automatically
by the linker.

Option 1: Disallow aliasing. The linker would be required to detect and report any aliasing.

Option 2: Permit aliasing.

Issue: How do inputs with different types alias?

Option 2a: Type conversion is performed

Option 2b: A 'reinterpret cast' is used i.e. the bit pattern is unchanged.

Issue: This is well-defined for highp values but lowp integers, lowp
floats and mediump floats have undefined bit representations.

Option 3: Leave undefined. Implementations may choose to detect errors, may convert them according to
any of the above methods or may generate arbitrary values.

150

12 Issues

There are some valid uses for aliasing. An 'uber shader' (i.e. a large shader that consists of multiple
selectable smaller shaders) might have too many vertex inputs if they all have unique locations but could
map two or more inputs to the same location is if it known that they will not be used within the same
shader invocation. However, this technique appears not to be widely used. Furthermore, it risks
applications making use of undefined type conversions that may work in some implementations but not
others.

RESOLUTION: Aliasing is disallowed and the linker must report an error.

Issue: Under which conditions are two inputs with conflicting locations considered to be aliased?

Option 1: Declared but not referenced.

Option 2: Declared and statically used.

Option 3: Declared and not removed by compiler optimization.

In general, the behavior of GLSL ES should not depend on compiler optimizations which might be
implementation-dependent. Name matching rules in most languages, including C++ from which GLSL
ES is derived, are based on declarations rather than use.

RESOLUTION: The existence of aliasing is determined by declarations present after preprocessing.

12.47 Does a vertex input Y collide with a fragment uniform Y?
If a vertex shader declares

in vec3 y;

and a fragment shader declares

uniform float y;

Should this be a link error?

The original intention was that uniforms could be shared across shader stages. Hence there is a single
name space for uniforms and uniforms with the same name but in different shaders must have the same
type and precision. However, a single name space does not imply a single scope and it is the scope that
defines where a name is visible. In the above example, the uniform name 'y' is in the uniform name space
and in the global scope of the fragment shader but is not in scope in the vertex shader. The vertex input 'y'
exists in the vertex global name space and the vertex global scope.

If the vertex shader had declared a uniform 'y' with type 'vec3', that would be an error.

Within shaders, there is a one-to-one correspondence between (regions of) scopes and name spaces.
However, when uniforms are declared, they are conceptually inserted into two name spaces: the global
name space of the shader and a separate program-level uniform name space. This does not apply to
shader input names which are only inserted into the global scope of the shader. Consequently, there is no
conflict between a uniform name declared in the fragment shader and an input name declared in the vertex
shader.

RESOLUTION: There is no collision and hence no error in this case.

151

13 Acknowledgments

13 Acknowledgments

This specification is based on the work of those who contributed to the OpenGL 3.3 Language
Specification, the OpenGL ES 2.0 Language Specification, and the following contributors to this version:

Acorn Pooley, NVIDIA

Alberto Moreira, Qualcomm

Aleksandra Krstic, Qualcomm

Alon Or-bach, Nokia &
Samsung

Andrzej Kacprowski, Intel

Arzhange Safdarzadeh, Intel

Aske Simon Christensen, ARM

Avi Shapira, Graphic Remedy

Barthold Lichtenbelt, NVIDIA

Ben Bowman, Imagination
Technologies

Ben Brierton, Broadcom

Benj Lipchak, Apple

Benson Tao, Vivante

Bill Licea-Kane, AMD &
Qualcomm

Brent Insko, Intel

Brian Murray, Freescale

Bruce Merry, ARM

Carlos Santa, TI

Cass Everitt, Epic Games &
NVIDIA

Cemil Azizoglu, TI

Chang-Hyo Yu, Samsung

Chris Dodd, NVIDIA

Chris Knox, NVIDIA

Chris Tserng, TI

Clay Montgomery, TI

Cliff Gibson, Imagination
Technologies

Daniel Kartch, NVIDIA

Daniel Koch, Transgaming&
NVIDIA

Daoxiang Gong, Imagination
Technologies

Dave Shreiner, ARM

David Garcia, AMD

David Jarmon, Vivante

Derek Cornish, Epic Games

Dominick Witczak, Mobica

Eben Upton, Broadcom

Ed Plowman, Intel & ARM

Eisaku Ohbuchi, DMP

Elan Lennard, ARM

Erik Faye-Lund, ARM

Georg Kolling, Imagination
Technologies

Graeme Leese, Broadcom

Graham Connor, Imagination
Technologies

Graham Sellers, AMD

Greg Roth, NVIDIA

Guillaume Portier, Hi
Corporation

Guofang Jiao, Qualcomm

Hans-Martin Will, Vincent

Hwanyong Lee, Huone

I-Gene Leong, NVIDIA

Ian Romanick, Intel

Ian South-Dickinson, NVIDIA

Ilan Aelion-Exch, Samsung

Inkyun Lee, Huone

Jacob Strm, Ericsson

James Adams, Broadcom

James Jones, Imagination
Technologies

James McCombe, Imagination
Technologies

Jamie Gennis, Google

Jan-Harald Fredriksen, ARM

Jani Vaisanen, Nokia

Jarkko Kemppainen, Symbio

Jeff Bolz, NVIDIA

Jeff Leger, Qualcomm

Jeff Vigil, Qualcomm

Jeremy Sandmel, Apple

Jeremy Thorne, Broadcom

152

13 Acknowledgments

Jim Hauxwell, Broadcom

Jinsung Kim, Huone

Jiyoung Yoon, Huone

John Kessenich, LunarG

Jon Kennedy, 3DLabs

Jon Leech, Khronos

Jonathan Putsman, Imagination
Technologies

Joohoon Lee, Samsung

Jouko Kylmäoja, Symbio

Jrn Nystad, ARM

Jussi Rasanen, NVIDIA

Kalle Raita, drawElements

Kari Pulli, Nokia

Keith Whitwell, VMware

Kent Miller, Netlogic
Microsystems

Kimmo Nikkanen, Nokia

Konsta Karsisto, Nokia

Krzysztof Kaminski, Intel

Larry Seiler, Intel

Lars Remes, Symbio

Lee Thomason, Adobe

Lefan Zhong, Vivante

Marcus Lorentzon, Ericsson

Mark Butler, Imagination
Technologies

Mark Callow, Hi Corporation

Mark Cresswell, Broadcom

Mark Snyder, Alt Software

Mark Young, AMD

Mathieu Robart, STM

Matt Netsch, Qualcomm

Matt Russo, Matrox

Maurice Ribble, AMD &
Qualcomm

Max Kazakov, DMP

Mika Pesonen, Nokia

Mike Cai, Vivante

Mike Weiblen, Zebra Imaging
& Qualcomm

Mila Smith, AMD

Nakhoon Baek, Kyungpook
Univeristy

Nate Huang, NVIDIA

Neil Trevett, NVIDIA

Nelson Kidd, Intel

Nick Haemel, AMD &
NVIDIA

Nick Penwarden, Epic Games

Niklas Smedberg, Epic Games

Nizar Romdan, ARM

Oliver Wohlmuth , Fujitsu

Pat Brown, NVIDIA

Paul Ruggieri, Qualcomm

Per Wennersten, Ericsson

Petri Talalla, Symbio

Phil Huxley, ZiiLabs

Philip Hatcher, Freescale &
Intel

Piers Daniell, NVIDIA

Piotr Tomaszewski, Ericsson

Piotr Uminski, Intel

Pyry Haulos, drawElements

Rami Mayer, Samsung

Rauli Laatikainen, RightWare

Rob Barris, NVIDIA

Rob Simpson, Qualcomm

Roj Langhi, Vivante

Rune Holm, ARM

Sami Kyostila, Nokia

Sean Ellis, ARM

Shereef Shehata, TI

Sila Kayo, Nokia

Slawomir Cygan, Intel

Slawomir Grajewski, Intel

Steve Hill, STM & Broadcom

Steven Olney, DMP

Suman Sharma, Intel

Tapani Palli, Nokia

Teemu Laakso, Symbio

Tero Karras, NVIDIA

Timo Suoranta, Imagination
Technologies & Broadcom

Tom Cooksey, ARM

Tom McReynolds, NVIDIA

Tom Olson, TI & ARM

Tomi Aarnio, Nokia

Tommy Asano, Takumi

Wes Bang, Nokia

Yanjun Zhang, Vivante

Yuan Wang, Imagination
Technologies

153

13 Acknowledgments

14 Normative References

1. The OpenGL® ES Graphics System Version 3.00

2. The OpenGL® ES Shading Language Version 1.00

3. The OpenGL® Graphics System: A Specification (Versions 3.3 – 4.2)

4. International Standard ISO/IEC 14882:1998(E). Programming Languages – C++

5. International Standard ISO/IEC 646:1991. Information technology - ISO 7-bit coded character
set for information interchange The Unicode Standard Version 6.0 – Core Specification

6. IEEE 754-2008. IEEE Standard for Floating-Point Arithmetic

154

	1 Introduction
	1.1 Changes
	1.1.1 Changes from GLSL ES 3.0 revision 5
	1.1.2 Changes from GLSL ES 3.0 revision 4
	1.1.3 Changes from GLSL ES 3.0 revision 3
	1.1.4 Changes from GLSL ES 3.0 revision 2
	1.1.5 Changes from GLSL ES 3.0 revision 1:
	1.1.6 Changes from OpenGL GLSL 3.3:

	1.2 Overview
	1.3 Error Handling
	1.4 Typographical Conventions
	1.5 Compatibility

	2 Overview of OpenGL ES Shading
	2.1 Vertex Processor
	2.2 Fragment Processor
	2.3 Executable

	3 Basics
	3.1 Logical Phases of Compilation
	3.2 Character Set
	3.3 Source Strings
	3.4 Version Declaration
	3.5 Preprocessor
	3.6 Comments
	3.7 Tokens
	3.8 Keywords
	3.9 Identifiers
	3.10 Definitions
	3.10.1 Static Use
	3.10.2 Uniform and Non-Uniform Control Flow
	3.10.3 Dynamically Uniform Expressions

	4 Variables and Types
	4.1 Basic Types
	4.1.1 Void
	4.1.2 Booleans
	4.1.3 Integers
	4.1.4 Floats
	4.1.5 Vectors
	4.1.6 Matrices
	4.1.7 Opaque Types
	4.1.7.1 Samplers

	4.1.8 Structures
	4.1.9 Arrays
	4.1.10 Definitions of Terms

	4.2 Scoping
	4.2.1 Definition of Terms
	4.2.2 Types of Scope
	4.2.3 Redeclaring Names
	4.2.4 Global Scope
	4.2.5 Shared Globals

	4.3 Storage Qualifiers
	4.3.1 Default Storage Qualifier
	4.3.2 Constant Qualifier
	4.3.3 Constant Expressions
	4.3.4 Input Variables
	4.3.5 Uniform Variables
	4.3.6 Output Variables
	4.3.7 Interface Blocks
	4.3.8 Layout Qualifiers
	4.3.8.1 Input Layout Qualifiers
	4.3.8.2 Output Layout Qualifiers
	4.3.8.3 Uniform Block Layout Qualifiers

	4.3.9 Interpolation
	4.3.10 Linking of Vertex Outputs and Fragment Inputs

	4.4 Parameter Qualifiers
	4.5 Precision and Precision Qualifiers
	4.5.1 Range and Precision
	4.5.2 Conversion between precisions
	4.5.3 Precision Qualifiers
	4.5.4 Default Precision Qualifiers

	4.6 Variance and the Invariant Qualifier
	4.6.1 The Invariant Qualifier
	4.6.2 Invariance Within a Shader
	4.6.3 Invariance of Constant Expressions
	4.6.4 Invariance of Undefined Values

	4.7 Order of Qualification
	4.8 Empty Declarations

	5 Operators and Expressions
	5.1 Operators
	5.2 Array Operations
	5.3 Function Calls
	5.4 Constructors
	5.4.1 Conversion and Scalar Constructors
	5.4.2 Vector and Matrix Constructors
	5.4.3 Structure Constructors
	5.4.4 Array Constructors

	5.5 Vector Components
	5.6 Matrix Components
	5.7 Structure and Array Operations
	5.8 Assignments
	5.9 Expressions
	5.10 Vector and Matrix Operations
	5.11 Evaluation of expressions

	6 Statements and Structure
	6.1 Function Definitions
	6.1.1 Function Calling Conventions

	6.2 Selection
	6.3 Iteration
	6.4 Jumps

	7 Built-in Variables
	7.1 Vertex Shader Special Variables
	7.2 Fragment Shader Special Variables
	7.3 Built-In Constants
	7.4 Built-In Uniform State

	8 Built-in Functions
	8.1 Angle and Trigonometry Functions
	8.2 Exponential Functions
	8.3 Common Functions
	8.4 Floating-Point Pack and Unpack Functions
	8.5 Geometric Functions
	8.6 Matrix Functions
	8.7 Vector Relational Functions
	8.8 Texture Lookup Functions
	8.9 Fragment Processing Functions

	9 Shading Language Grammar
	10 Errors
	10.1 Preprocessor Errors
	10.2 Lexer/Parser Errors
	10.3 Semantic Errors
	10.4 Linker

	11 Counting of Inputs and Outputs
	12 Issues
	12.1 Compatibility with OpenGL ES 2.0
	12.2 Convergence with OpenGL
	12.3 Numeric Precision
	12.4 Floating Point Representation and Functionality
	12.5 Precision Qualifiers
	12.6 Function and Variable Name Spaces
	12.7 Local Function Declarations and Function Hiding
	12.8 Overloading main()
	12.9 Error Reporting
	12.10 Structure Declarations
	12.11 Embedded Structure Definitions
	12.12 Redefining Built-in Functions
	12.13 Global Scope
	12.14 Constant Expressions
	12.15 Varying Linkage
	12.16 gl_Position
	12.17 Preprocessor
	12.18 Character set
	12.19 Line Continuation
	12.20 Phases of Compilation
	12.21 Maximum Number of Varyings
	12.22 Array Declarations
	12.23 Invariance
	12.24 Invariance Within a shader
	12.25 While-loop Declarations
	12.26 Cross Linking Between Shaders
	12.27 Visibility of Declarations
	12.28 Language Version
	12.29 Samplers
	12.30 Dynamic Indexing
	12.31 Maximum Number of Texture Units
	12.32 On-target Error Reporting
	12.33 Rounding of Integer Division
	12.34 Undefined Return Values
	12.35 Precisions of Operations
	12.36 Compiler Transforms
	12.37 Expansion of Function-like Macros in the Preprocessor
	12.38 Should Extension Macros be Globally Defined?
	12.39 Minimum Requirements
	12.40 Packing Functions
	12.41 Boolean logical vector operations
	12.42 Range Checking of literals
	12.43 Sequence operator and constant expressions
	12.44 Version Directive
	12.45 Use of Unsigned Integers
	12.46 Vertex Attribute Aliasing
	12.47 Does a vertex input Y collide with a fragment uniform Y?

	13 Acknowledgments
	14 Normative References

