I Locality-sensitive hashing (LSH)

Hashing as “sketching”

Hashing as checksumming

» Idea of checksum: compute a (small) fingerprint h(x) of a

(large) object x such that small modifications of x alter
h(x)

» Goal: verify the integrity of x

» Examples of checksum algorithms:

parity check, modsum
Luhn algorithm

cryptographic hash functions

Hashing as sketching

» Idea (opposite to checksum): compute a (small) sketch
(signature) h(x) of a (large) object x such that small
modifications of x (are likely to) preserve h(x)

» Goal: instead of comparing (large) objects, compare (small)
sketches

Avoiding pairwise comparisons
» Examples:

Finding near-duplicates in a large set of documents
Clustering

Near-neighbor search (NNS)

» General approach for NNS
hash objects using LSH
hash the query, look at corresponding bucket
check objects of the bucket

= false negatives and false positives

Locality-sensitive hashing (LSH)

» given objects {x;, ..., X,,} (points in space of high
dimension d)

» assume a distance distand associated similarity relation
sim(x,y) € [0,1] (dist(x,y) = 0 iff sim(x,y) = 1)

» define a family H of hash functions such that

Pplh(x) = h(y)] = sim(x, y)
» that is: hash collision captures object similarity

Locality-sensitive hashing (LSH)

» given objects {x;, ..., X,,} (points in space of high
dimension d)
» assume a distance distand associated similarity relation
sim(x,y) € |0,1] (dist(x,y) = 0 iff sim(x,y) = 1)
» define a family H of hash functions such that
Pplh(x) = h(y)] = sim(x,y)
» that is: hash collision captures object similarity

» estimating similarity: sample hash functions h4, ..., h; € H
E[#{i | hi(x) = hy(¥)}l/k = sim(x,y)

Example 1: Hamming distance

» objects: bitvectors x € {0,1}¢

» Hamming distance: H(x, y) is the nb of unequal
corresponding bits, e.g. H(00011,10001) = 2

» Hamming similarity simy(x,y) =1 —H(x,y)/d
» define h;(x) = x; for random biti € [1, d]
» Claim: P|h;(x) = h;(y)] = simy(x,y) (prove)

» 2 EH (e (), o i @), (e 3, -, b)) = HGx)

Example 2: Angular distance

» x,¥y € R™, 0(x,y) = (angle between x and y) /@

50 ((£9).(53)) -

angular similarity: 1 — 8 (x, y)

v

v Vv

for a random unit vector r, h,.(x) = sign < x,r >
Claim: P[h,(x) = h(y)] =1 —0(x,y)

v

y

A 4

L E[H (s ey (), (0, e,))| = 0,)

Approximate Near-Neighbor (ANN)

» Hash objects of the dataset using chaining

» Given a query Xx, look through all objects y in bucket
h(x), compute the true distance dist(x,y) and report
those with dist(x,y) < d (filtering)

» MUCH faster than pairwise comparison
» false negatives

» (1, cr, P,p)-sensitive family of hash functions:
dist(x,y) <r = P|h(x) = h(y)] > P
dist(x,y) > cr = Plh(x) = h(y)]| <p

Gap amplification

» let h(x) =< hy(x), ..., hi(x) > and h;'s belong to a
(1, cr, P, p)-sensitive family

» by using L distinct hash tables (in OR fashion), we can
construct a (r, cr,1 — (1 — Pk)L, 1—-(1- pk)L)-sensitive
family

» Example: using 4-tuple hash functions and 4 hash tables, a

(0.2,0.6,0.8,0.4)-sensitive family turns to
(0.2,0.6,0.8785,0.0985)-sensitive 1 (1 pyoy®

» the construction can be
cascaded to achieve arbitrary /

large gap /

LSH on sets: Jaccard distance

» consider sets over a universe U
4 Jaccard S|m||ar'lt)']5(51, Sz) — |Sl N Szl/lSl U Szl
» Jaccard distance JD(S54,5,) =1 —]5(54,5,)

Sl SZ

» Examples:
» similarity of customers w.r.t. purchased items

» similarity of products w.r.t. customers who ordered them
(Amazon, Netflix, ...)

MinHash for Jaccard distance

» consider a random ordering m: U — {1, ..., |U|}
» for aset S € U, define h(S) = meigl{n(x)}
X

» then for two sets 54, 5,, we have
P[h(S1) = h(52)] =JS(51,S2)

» Proof: ...

MinHash signatures

» consider random orderings 14, ..., T: U = {1, ..., |U|}

» orderings are difficult to handle = replace them by
(random) hash functions 4, ..., m;: U = {1, ..., N} for a
sufficiently large N

» for a set S, define its signature to be
sig(S) =< min{m,(x)}, ..., min{m, (x)} >
XES XES

» then we have

E[#{i|sig(S1): = sig(S2)i3/k = JS(51,52)
» variant: sig(S) is the set of kK minimum values of
{r(x)|x € S} for a single @

» then E[|sig(Sy) N sig(S)|]/k = JS(S1,S,)

MinHash: toy example

S, =103}, 5, =1{2},S; ={1,3,4},S, = {0,2,3}
m1(x) =(x+ 1) mod5
m,(x) = (3x + 1) mod 5
sig(S1) =< 1,0 >, s1g(S,) =< 3,2 >
sig(S3) =< 0,0 >, sig(S,) =< 1,0 >

Then

JS(5,S,) estimated to 1 (true answer 2/3)
JS(54,S3) estimated to 1/2 (true answer 1/4)
JS(S55,5,) estimated to 1/2 (true answer 1/5)
JS(S54,S,) estimated to 0 (true answer 0)

1803.09835v2 [cs.DB] 24 Jul 2018

X1V

Locality-Sensitive Hashing for Earthquake Detection:
A Case Study of Scaling Data-Driven Science

Kexin Rong’, Clara E. Yoon®, Karianne J. Bergeni, Hashem Elezabi*,

Peter Bailis", Philip Levis’, Gregory C. Beroza'

Stanford University

ABSTRACT

In this work, we report on a novel application of Locality Sen-
sitive Hashing (LSH) to seismic data at scale. Based on the high
waveform similarity between reoccurring earthquakes, our appli-
cation identifies potential earthquakes by searching for similar
time series segments via LSH. However, a straightforward imple-
mentation of this LSH-enabled application has difficulty scaling
beyond 3 months of continuous time series data measured at a
single seismic station. As a case study of a data-driven science
workflow, we illustrate how domain knowledge can be incorpo-
rated into the workload to improve both the efficiency and result
quality. We describe several end-to-end optimizations of the analy-
sis pipeline from pre-processing to post-processing, which allow
the application to scale to time series data measured at multiple
seismic stations. Our optimizations enable an over 100X speedup in
the end-to-end analysis pipeline. This improved scalability enabled
seismologists to perform seismic analysis on more than ten years
of continuous time series data from over ten seismic stations, and
has directly enabled the discovery of 597 new earthquakes near
the Diablo Canyon nuclear power plant in California and 6123 new
earthquakes in New Zealand.

1 INTRODUCTION

Locality Sensitive Hashing (LSH) [29] is a well studied com-
putational primitive for efficient nearest neighbor search in high-
dimensional spaces. LSH hashes items into low-dimensional spaces
such that similar items have a higher collision probability in the
hash table. Successful LSH applications include entity resolution [64],
genome sequence comparison [18], text and image search [41, 52],
near duplicate detection [20, 46], and video identification [37].

2010-10-04
400 800

2010-12-27

+
E ¢

0
-8 Station LTZ _goo | Station LTZ
P s 800 P s

Station MQZ _goo { Station Moz

-4
488 P S 800 P s
Station OXZ { _gop { Station OXZ !

-400 . v
08:41:43 08:41:48 08:41:53 08:41:58 14:56:50 14:56:55 14:57:00 14:57:05

o

Figure 1: Example of near identical waveforms between oc-
currences of the same earthquake two months apart, ob-
served at three seismic stations in New Zealand. The stations
experience increased ground motions upon the arrivals of
seismic waves (e.g., P and S waves). This paper scales LSH to
over 30 billion data points and discovers 597 and 6123 new
earthquakes near the Diablo Canyon nuclear power plant in
California and in New Zealand, respectively.

Second, despite large measurement volumes, only a small frac-
tion of earthquake events are cataloged, or confirmed and hand-
labeled by domain scientists. As earthquake magnitude (i.e., size)
decreases, the frequency of earthquake events increases exponen-
tially. Worldwide, major earthquakes (magnitude 7+) occur approxi-
mately once a month, while magnitude 2.0 and smaller earthquakes
can occur several thousand times a day. At low magnitudes, it is in-
creasingly difficult to detect earthquake signals because earthquake
energy approaches the noise floor, and conventional seismolog-
ical analyses can fail to disambiguate between signal and noise.
Nevertheless, detecting these small earthquakes is important in
uncovering unknown seismic sources [24, 32], improving the un-

MinHash for sequences (documents)

» General scenario:

represent a sequence (text) as a set of k-mers (Q-grams, k-
shingles), i.e. tuples of consecutive letters (words) of fixed size

measure document similarity by Jaccard similarity and apply the
MinHash framework

possibly do gap amplification
» first proposed by Broder (1997) with application to
webpage similarity search

MinHash with m min values: example

ACAGTAAC TAAACTAAG
AC CA AG GT TA AA TA AA AC CT AG
L e L
3 10 6 15 13 11 1311 3 4 6

MinHash={3,6,10} m= 3 MinHash={3,4,6}

True Jaccard index: 4/(2+4+1)=4/7

MinHash estimate: 2/3

Ondav et al Genome Blalogy (2016 17:132
DOI 10,1186/513059-016-0697-x

Genome Biology

SOFTWARE Open Access

Mash: fast genome and metagenome

@ CrossMark

distance estimation using MinHash

Brian D. Ondov', Todd J. Treangen', Pall Melsted?, Adam B. Mallonee', Nicholas H. Bergman', Sergey Koren®

and Adam M. Phillippy™

Abstract

license (httpsy//github.com/marbl/mash).

Mash extends the MinHash dimensionality-reduction technique to include a pairwise mutation distance and P value
significance test, enabling the efficient clustering and search of massive sequence collections. Mash reduces large
sequences and sequence sets to small, representative sketches, from which global mutation distances can be rapidly
estimated. We demonstrate several use cases, including the clustering of all 54,118 NCBI RefSeq genomes in 33 CPU h;
real-time database search using assembled or unassembled lllumina, Pacific Biosciences, and Oxford Nanopore data;
and the scalable clustering of hundreds of metagenomic samples by composition. Mash is freely released under a BSD

Keywords: Comparative genomics, Genomic distance, Alignment, Sequencing, Nanopore, Metagenomics

Background
\When BLAST was first published in 1990 [1], there were
less than 50 million bases of nucleotide sequence in the
public archives [2]; now a single sequencing instrument
can produce over 1 trilllon bases per run [3]. New
methods are needed that can manage and help organize
thssmleofdau.To dd this, we ider the
problem of computing an approximate distance
between two sequences and dacribe Mash, a general-

any problem where an approxi global di e s
acceptable, eg. to triage and cluster sequence data,
assign specles labels, build large guide trees, identify
mis-tracked samples, and search genomic databases.
The MinHash technique is a form of locality-sensitive
hashing [5] that has been widely used for the detection
of near-duplicate Web pages and images [6, 7], but has
seen limited use in g ics d initial applications
over ten years ago [8] More recem.ly, MinHash has been

purpose toolkit that utilizes the MinHash technique [4]
to reduce large sequences (or sequence sets) to com-
p d sketch rep i Using only the sketches,

ds of times ller, the similarity

which can be th
of the original sequences can be rapidly estimated with
bounded error. Importantly, the error of this computa-
uondependsonlyonthesueofﬂ\esketd\andbhld&
pendent of the genome size. Thus, sketch

pplied to the rel probl of g
[9], 16S rDNA gene clustering [10, 11], and mehgenomk
sequence clustering [12]. Because of the extremely low
memory and CPU requi of this probabilistic
approach, MinHash Is well suited for data-intensive prob-
lems in genomics. To fadllme this, we ha\'e dewloped
Mash for the flexibl fon, lation,
parison of MinHash sketches from genomic data. We

just a few hundred values can be used to appmxlmm
the similarity of arbitrarily large d This has
important applications for large-scale genomic data

t and g long-read, single-molecule
sequenclng technologles Potential applications include

* Comespondence acam philpppeEningoy

Genome Iformatics Section, Computational and Stassticsl Genomics
Branch, Naticndl Human Gename Reseanch Instrute, Nationdl ksstutes of
Heulth, Bethesda, MD, USA

Full st of suthor information is evailatie o the end of the artick

build upon past applications of MinHash by deriving a
new significance test to differentiate chance matches when
searching a database, and derive a new distance metric,
the Mash distance, which estimates the mutation rate
between two sequences directly from thelr MinHash
shms‘ Cimil. “ 14 frea™ thod hm a loﬂs
history in Nolnformncs 113, l4| However, prior methods
based on word counts have relied on short words of only
a few nucleotides, whlchhdtﬂuepowertodmmmm
closely related and di

4 ¥

het

© 2014 The Authordsd. Open Access This artiche i distriunad under the terma of the Crestve Commor Attsbution 40
Imermationyl Licerse hitpuorestivecommors org/Acermestmn4 00, which permits urrestrcted e, dsmbution, and
seproduction In amy medium, peovided you give spprogrisie Dedt 1o e orgny author(s) and the source, provide 2 irk to

the Creattwe Commons license, and Inchaate £ change: wese made. The Oeative Commons Pubiic Domain Dedhcation waker
hitpforestiwecommors org/publodomainyzeny V) apples to the data made aadable n this articde. unless ctherwise stated

Examples

» 50K-byte documents (50K chars)
let k =4
consider sketches of 1K bytes (250 32-bit values)

then the Jaccard distance between two documents will typically
be estimated within a few %

» bacterial genomes ~5M chars (1.25 Mb)
let k = 16, signature size = 400

400 32-bit values (1.6Kb) are sufficient to discriminate
microbial genomes

Features of MinHash

4
4
4
4
4
4

Simple! easy to compute!

Easy to maintain for growing datasets

Size (m) does not depend on the size of the dataset
Suitable for comparing datasets of (roughly) the same size
Low level of false positives ("accidental similarity")

Very space-efficient, 4-5 orders of magnitude compression

Recommended book

J.Leskovec, A.Rajaraman, J.Ullman, Mining Massive Datasets,
Cambridge University Press, 2020 (3™ edition)
http://www.mmds.org/

http://www.mmds.org/

