
Locality-sensitive hashing (LSH)

Hashing as ‟sketching″

Hashing as checksumming
} Idea of checksum: compute a (small) fingerprint ℎ(𝑥) of a

(large) object 𝑥 such that small modifications of x alter
ℎ(𝑥)

} Goal: verify the integrity of 𝑥

} Examples of checksum algorithms:
} parity check, modsum
} Luhn algorithm
} cryptographic hash functions
} …

Hashing as sketching
} Idea (opposite to checksum): compute a (small) sketch

(signature) ℎ(𝑥) of a (large) object 𝑥 such that small
modifications of 𝑥 (are likely to) preserve ℎ(𝑥)

} Goal: instead of comparing (large) objects, compare (small)
sketches

Avoiding pairwise comparisons
} Examples:

} Finding near-duplicates in a large set of documents
} Clustering
} Near-neighbor search (NNS)

} General approach for NNS
} hash objects using LSH
} hash the query, look at corresponding bucket
} check objects of the bucket
} ⇒ false negatives and false positives

Locality-sensitive hashing (LSH)
} given objects {𝑥1, … , 𝑥𝑛} (points in space of high

dimension 𝑑)
} assume a distance dist and associated similarity relation
sim(𝑥, 𝑦) ∈ [0,1] (dist(𝑥, 𝑦) = 0 iff sim(𝑥, 𝑦) = 1)

} define a family 𝐻 of hash functions such that
P![ℎ(𝑥) = ℎ(𝑦)] = sim(𝑥, 𝑦)

} that is: hash collision captures object similarity

Locality-sensitive hashing (LSH)
} given objects {𝑥1, … , 𝑥𝑛} (points in space of high

dimension 𝑑)
} assume a distance dist and associated similarity relation
sim(𝑥, 𝑦) ∈ [0,1] (dist(𝑥, 𝑦) = 0 iff sim(𝑥, 𝑦) = 1)

} define a family 𝐻 of hash functions such that
P![ℎ(𝑥) = ℎ(𝑦)] = sim(𝑥, 𝑦)

} that is: hash collision captures object similarity

} estimating similarity: sample hash functions ℎ1, … , ℎ𝑘 ∈ 𝐻
E[#{𝑖 | ℎ"(𝑥) = ℎ"(𝑦)}]/𝑘 = sim(𝑥, 𝑦)

Example 1: Hamming distance
} objects: bitvectors 𝑥 ∈ {0,1}𝑑

} Hamming distance: 𝐻(𝑥, 𝑦) is the nb of unequal
corresponding bits, e.g. 𝐻(00011,10001) = 2

} Hamming similarity 𝑠𝑖𝑚#(𝑥, 𝑦) = 1 − 𝐻(𝑥, 𝑦)/𝑑
} define ℎ"(𝑥) = 𝑥" for random bit 𝑖 ∈ [1, 𝑑]
} Claim: P[ℎ"(𝑥) = ℎ"(𝑦)] = 𝑠𝑖𝑚#(𝑥, 𝑦) (prove)

}
!
"
! E 𝐻 ℎ! 𝑥 ,… , ℎ" 𝑥 , ℎ! 𝑦 ,… , ℎ" 𝑦 = 𝐻 𝑥, 𝑦

Example 2: Angular distance
} 𝑥, 𝑦 ∈ ℝ#, 𝜃 𝑥, 𝑦 = (angle	between	𝑥	and	𝑦)/𝜋

} Ex: 𝜃 $
% ,

!
% , !

% ,
!
% = !

!%

} angular similarity: 1 − 𝜃(𝑥, 𝑦)
} for a random unit vector 𝑟, ℎ& 𝑥 = 𝑠𝑖𝑔𝑛 < 𝑥, 𝑟 >
} Claim: P ℎ& 𝑥 = ℎ& 𝑦 = 1 − 𝜃(𝑥, 𝑦)

}
$
%
B E 𝐻 ℎ$ 𝑥 , … , ℎ% 𝑥 , ℎ$ 𝑦 ,… , ℎ% 𝑦 = 𝜃 𝑥, 𝑦

𝑥

𝑦

Approximate Near-Neighbor (ANN)
} Hash objects of the dataset using chaining
} Given a query 𝑥, look through all objects 𝑦 in bucket
ℎ(𝑥), compute the true distance dist(𝑥, 𝑦) and report
those with dist(𝑥, 𝑦) < 𝑑 (filtering)

} MUCH faster than pairwise comparison
} false negatives

} (𝑟, 𝑐𝑟, 𝑃, 𝑝)-sensitive family of hash functions:
} dist(𝑥, 𝑦) < 𝑟 ⇒ P[ℎ(𝑥) = ℎ(𝑦)] > 𝑃
} dist(𝑥, 𝑦) > 𝑐𝑟 ⇒ P[ℎ(𝑥) = ℎ(𝑦)] < 𝑝

Gap amplification
} let ℎ(𝑥) =< ℎ1(𝑥), … , ℎ𝑘(𝑥) > and ℎ𝑖's belong to a
(𝑟, 𝑐𝑟, 𝑃, 𝑝)-sensitive family

} by using 𝐿 distinct hash tables (in OR fashion), we can
construct a 𝑟, 𝑐𝑟, 1 − 1 − 𝑃"), 1 − (1 − 𝑝")) -sensitive
family

} Example: using 4-tuple hash functions and 4 hash tables, a
(0.2,0.6,0.8,0.4)-sensitive family turns to
(0.2,0.6,0.8785,0.0985)-sensitive

} the construction can be
cascaded to achieve arbitrary
large gap

LSH on sets: Jaccard distance
} consider sets over a universe 𝑈
} Jaccard similarity 𝐽𝑆(𝑆1, 𝑆2) = |𝑆1 ∩ 𝑆2|/|𝑆1 ∪ 𝑆2|
} Jaccard distance 𝐽𝐷(𝑆1, 𝑆2) = 1 − 𝐽𝑆(𝑆1, 𝑆2)

𝑆1 𝑆2

} Examples:
} similarity of customers w.r.t. purchased items
} similarity of products w.r.t. customers who ordered them

(Amazon, Netflix, …)

MinHash for Jaccard distance
} consider a random ordering 𝜋:𝒰 → {1,… , |𝒰|}
} for a set 𝑆 ⊆ 𝒰, define ℎ(𝑆) = min

&∈(
{𝜋(𝑥)}

} then for two sets 𝑆1, 𝑆2, we have
𝑃[ℎ(𝑆1) = ℎ(𝑆2)] = 𝐽𝑆(𝑆1, 𝑆2)

} Proof: …

MinHash signatures
} consider random orderings 𝜋$, … , 𝜋%: 𝒰 → {1,… , |𝒰|}
} orderings are difficult to handle ⇒ replace them by

(random) hash functions 𝜋$, … , 𝜋%: 𝒰 → 1,… ,𝑁 for a
sufficiently large 𝑁

} for a set 𝑆, define its signature to be
sig 𝑆 =< min

&∈(
𝜋$ 𝑥 , … ,min

&∈(
𝜋% 𝑥 >

} then we have
E[#{𝑖|sig(𝑆1)𝑖 = sig(𝑆2)𝑖}]/𝑘 = 𝐽𝑆(𝑆1, 𝑆2)

} variant: sig(𝑆) is the set of 𝑘 minimum values of
{𝜋(𝑥)|𝑥 ∈ 𝑆} for a single 𝜋

} then E[|sig(𝑆1) ∩ sig(𝑆2)|]/𝑘 = 𝐽𝑆(𝑆1, 𝑆2)

MinHash: toy example
𝑆1 = 0,3 , 𝑆2 = 2 , 𝑆3 = 1,3,4 , 𝑆4 = {0,2,3}
𝜋1(𝑥) = (𝑥 + 1) mod 5
𝜋2(𝑥) = (3𝑥 + 1) mod 5
sig(𝑆1) =< 1,0 >, sig(𝑆2) =< 3,2 >
sig(𝑆3) =< 0,0 >, sig(𝑆4) =< 1,0 >

Then
𝐽𝑆(𝑆1, 𝑆4) estimated to 1 (true answer 2/3)
𝐽𝑆(𝑆1, 𝑆3) estimated to 1/2 (true answer 1/4)
𝐽𝑆(𝑆3, 𝑆4) estimated to 1/2 (true answer 1/5)
𝐽𝑆(𝑆1, 𝑆2) estimated to 0 (true answer 0)

MinHash for sequences (documents)
} General scenario:

} represent a sequence (text) as a set of k-mers (Q-grams, k-
shingles), i.e. tuples of consecutive letters (words) of fixed size

} measure document similarity by Jaccard similarity and apply the
MinHash framework

} possibly do gap amplification

} first proposed by Broder (1997) with application to
webpage similarity search

MinHash with 𝑚 min values: example

ACAGTAAC TAAACTAAG

3 10 6 15 13 11 13 11 3 4 6

AC CA AG GT TA AA TA AA AC CT AG

MinHash={3,6,10} MinHash={3,4,6}

True Jaccard index: 4/(2+4+1)=4/7

MinHash estimate: 2/3

Examples
} 50K-byte documents (50K chars)

} let 𝑘 = 4
} consider sketches of 1K bytes (250 32-bit values)
} then the Jaccard distance between two documents will typically

be estimated within a few %

} bacterial genomes ~5M chars (1.25 Mb)
} let 𝑘 = 16, signature size = 400
} 400 32-bit values (1.6Kb) are sufficient to discriminate

microbial genomes

Features of MinHash
} Simple! easy to compute!
} Easy to maintain for growing datasets
} Size (𝑚) does not depend on the size of the dataset
} Suitable for comparing datasets of (roughly) the same size
} Low level of false positives ("accidental similarity")
} Very space-efficient, 4-5 orders of magnitude compression

Recommended book
J.Leskovec, A.Rajaraman, J.Ullman, Mining Massive Datasets,
Cambridge University Press, 2020 (3rd edition)
http://www.mmds.org/

http://www.mmds.org/

