Bloom filters

Approximate membership data structures

Bloom filters [Bloom 1970]: generalities

- approximate membership data structure: supports INSERT and MEMBER
- ▶ MEMBER only checks for the presence, no satellite data
- produces false positives (with controlled probability)
- cannot iterate over the elements of the set
- DELETE is not supported (in the basic variant)
- very space efficient, keys themselves are not stored
- **Example:** forbidden passwords

Bloom filter: how it works

- * U : universe of possible keys
- S: subset of keys, |S| = n
- m: size of allocated bit array B

- ▶ define k hash functions $h_1, ..., h_k$: $\mathcal{U} \rightarrow \{0, ..., m-1\}$
- INSERT(x): set $B[h_i(x)] = 1$ for all i
- MEMBER(x): check $B[h_i(x)] = 1$ for all i
- false positives but no false negatives

Bloom filters: analysis

- ▶ P[specific bit of filter is 0] = $(1 1/m)^{kn} \approx e^{-kn/m} \equiv p$
- P[false positive] = $(1 p)^k = (1 e^{-kn/m})^k$
- Optimal number of hash functions: $k_{opt} = \ln 2 \cdot \frac{m}{n} \approx 0.693 \cdot \frac{m}{n}$
- Therefore, for $k = k_{opt}$,

P[false positive] =
$$2^{-\ln 2 \cdot \frac{m}{n}} \approx 0.6185^{\frac{m}{n}}$$

- \blacktriangleright E.g. with 10 bits per element, $P[false\ positive]$ is less than 1%
- ▶ To insure the FP rate ε : $m = \log_2 e \cdot n \cdot \log_2 \frac{1}{\varepsilon} \approx 1.44 \cdot n \cdot \log_2 \frac{1}{\varepsilon}$

Dependence on the nb of hash functs

Lower bound on the size of approximate membership data structures (AMD)

- ▶ Bloom filter takes $1.44 \cdot \log \frac{1}{\varepsilon}$ bits per key, is this optimal?
- How many AMDs are there to store all sets of size n drawn from universe $\mathcal U$ with FPP ε ?
- Each AMD specifies a set of size $\varepsilon |\mathcal{U}|$ (assuming $|\mathcal{U}|$ large) containing a set of size n
- Any set of size n should be covered, and the number of such sets is $\geq {|\mathcal{U}| \choose n}/{\varepsilon|\mathcal{U}| \choose n} \approx \left(\frac{1}{\varepsilon}\right)^n$
- \Rightarrow each FPP must take $\geq n \cdot \log \frac{1}{\varepsilon}$ bits

Bloom filter: properties/operations

- For the optimal number of hash function, about a half of the bits is 1 [immedate from the formula]
- The Bloom filter for the union is the OR of the Bloom filters
- Is similar true for the intersection? [explain]
- If a Bloom filter is sparse, it is easy to halve its size

Bloom filters: applications

- Bloom filters are very easy to implement
- apply to the streaming mode
- Used e.g. for
 - spell-checkers (in early UNIX-systems)
 - unsuitable passwords, "approximate" unsuitable passwords (Manber&Wu 1994)
 - online applications (traffic monitoring, ...)
 - distributed databases
 - malicious sites in Google Chrome
 - read articles in publishing systems (Medium)
 - ▶ Google Bigtable, Apache HBase, Bitcoin, bioinformatics, ...
- Sometimes (when the set of possible queries is predefined) it is possible to store the set of false positives in a separate data structure

Cuckoo filters

filters via Cuckoo hashing

General idea: use fingerprints

• Given ε , pick a hash function

$$f: \mathcal{U} \to [0..2^{\log \frac{1}{\varepsilon}} - 1] \leftarrow \text{fingerprints}$$

$$P[f(x) = f(y)] = \frac{1}{2^{\log \frac{1}{\varepsilon}}} = \varepsilon \text{ (collision probability)}$$

Filters via MPHF

- ▶ Given a set $S \subset \mathcal{U}$, build an MPHF $h: S \longrightarrow [0..n-1]$
- ▶ Build an array F of fingerprints: F[h(x)] = f(x)
- Space: $n \cdot \log \frac{1}{\varepsilon} + \langle \text{size of MPFR} \rangle$
- ▶ lower bound: size of MPFR $\geq 1.44n$
- S must be static, insertions/deletions are not supported

Cuckoo filter: ideas

- ▶ Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF
- Supports insertions and deletions (assuming no collision)!
- Problem: How to move a fingerprint? i.e. how to know its alternative bucket?

Cuckoo filter: ideas

- ▶ Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF
- Problem: How to move a fingerprint? i.e. how to know its alternative bucket?
- ▶ Let $|T| = 2^t$

$$h_1: S \to [0...2^t - 1],$$
 $h_2: [0...2^{\log \frac{1}{\varepsilon}} - 1] \to [0...2^t - 1]$
location $1: h_1(x)$
location $2: h_1(x) \oplus h_2(f(x))$

Alternative location of a fingerprint α at location i is $i \oplus h_2(\alpha)$

Remarks

- Deletions are supported!
- Two locations of a key are not fully independent. E.g. two keys sharing the same bucket and the same fingerprint have the same alternative location. (\Rightarrow store multisets in b-element buckets)
- Practical: Cuckoo vs. Bloom: for small false positive rate (< 3%) and b = 4, Cuckoo filter achieves the same performance as Bloom with smaller space

Figure 4: False positive rate vs. space cost per element. For low false positive rates (< 3%), cuckoo filters require fewer bits per element than the space-optimized Bloom filters. The load factors to calculate space cost of cuckoo filters are obtained empirically.

[Fan et al. Cuckoo filter: practically better than Bloom, CoNEXT 2014]