
Bloom filters

Approximate membership data structures

Bloom filters [Bloom 1970]: generalities
} approximate membership data structure: supports INSERT

and MEMBER
} MEMBER only checks for the presence, no satellite data
} produces false positives (with controlled probability)

} cannot iterate over the elements of the set
} DELETE is not supported (in the basic variant)

} very space efficient, keys themselves are not stored
} Example: forbidden passwords

Bloom filter: how it works
} ! : universe of possible

keys
} p : subset of keys,
|p| 	= 	1

} - : size of allocated bit
array q

} define ! hash functions ℎ1, … , ℎ+: & → {0,… ,* − 1}

} INSERT(.): set / ℎ2 . = 1 for all 1
} MEMBER(.): check / ℎ2(.) = 1 for all 1

} false positives but no false negatives

Bloom filters: analysis
} P speci:ic	bit	of	:ilter	is	0 = (1 − 1/*)34≈ D534/7 ≡ F

} P false	positive = (1 − F)3= (1 − D534/7)3

} Optimal number of hash functions: !89: = ln 2 K 74 ≈ 0.693 K 74
} Therefore, for ! = !89:,

 P false	positive = 25;< =>
+
, ≈ 0.6185

+
,

} E.g. with 10 bits per element, R[false	positive] is less than 1%

} To insure the FP rate U: * = log= D K W K log= ?@ ≈ 1.44 K W K log= ?@

Dependence on the nb of hash functs

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0 1 2 3 4 5 6 7 8 9 10

Hash functions

Fa
ls

e
po

si
tiv

e
ra

te

-/1	 = 	8

6345 = 8	ln 2 = 5.45…
& elements
bits
Y hash functions

Lower bound on the size of approximate
membership data structures (AMD)

} Bloom filter takes 1.44 L log :Z bits per key, is this optimal?

} How many AMDs are there to store all sets of size 1 drawn
from universe ! with FPP u?

} Each AMD specifies a set of size u|!| (assuming |!| large)
containing a set of size 1

} Any set of size 1 should be covered, and the number of such

sets is ≥ |!|
? / Z|!|

? ≈ :
Z
?

} ⇒ each FPP must take ≥ 1 L log :Z bits

Bloom filter: properties/operations
} For the optimal number of hash function, about a half of

the bits is 1 [immedate from the formula]
} The Bloom filter for the union is the OR of the Bloom

filters
} Is similar true for the intersection? [explain]
} If a Bloom filter is sparse, it is easy to halve its size

Bloom filters: applications
} Bloom filters are very easy to implement
} apply to the streaming mode
} Used e.g. for

} spell-checkers (in early UNIX-systems)
} unsuitable passwords, "approximate" unsuitable passwords

(Manber&Wu 1994)
} online applications (traffic monitoring, …)
} distributed databases
} malicious sites in Google Chrome
} read articles in publishing systems (Medium)
} Google Bigtable, Apache HBase, Bitcoin, bioinformatics, …

} Sometimes (when the set of possible queries is predefined) it
is possible to store the set of false positives in a separate data
structure

Cuckoo filters

filters via Cuckoo hashing

General idea: use fingerprints
} Given d, pick a hash function

e: 	f ⟶ [0. . 2789
A
B−1]

} Y e 5 = e G = +
*CDE

A
B
= d (collision probability)

← fingerprints

Filters via MPHF
} Given a set [⊂ f, build an MPHF ℎ: [⟶ [0. . 2 − 1]
} Build an array i of fingerprints: i ℎ(5) = e(5)

} Space: 2 K log +: +<size	of	MPFR>
} lower bound: size	of	MPFR ≥ 1.442
} [must be static, insertions/deletions are not supported

\

Cuckoo filter: ideas
} Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

} Supports insertions and deletions (assuming no collision)!

} Problem: How to move a fingerprint? i.e. how to know its
alternative bucket?

Cuckoo filter: ideas
} Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

} Problem: How to move a fingerprint? i.e. how to know its
alternative bucket?

} Let # = 2;
ℎ+: [→ [0. . 2;−1],	

ℎ*: [0. . 2
789+:−1] → [0. . 2;−1]

location 1: ℎ+(5)
location 2: ℎ+(5)⨁ℎ*(e 5)

} Alternative location of a fingerprint 9 at location ; is
;⨁ℎ*(9)

Remarks
} Deletions are supported!
} Two locations of a key are not fully independent. E.g. two

keys sharing the same bucket and the same fingerprint
have the same alternative location. (⇒ store multisets in c-
element buckets)

} Practical: Cuckoo vs. Bloom: for
small false positive rate (< 3%)
and c = 4, Cuckoo filter achieves
the same performance as Bloom
with smaller space

[Fan et al. Cuckoo filter: practically
better than Bloom, CoNEXT 2014]

