
Bloom filters

Approximate membership data structures



Bloom filters [Bloom 1970]: generalities
} approximate membership data structure: supports INSERT 

and MEMBER
} MEMBER only checks for the presence, no satellite data
} produces false positives (with controlled probability)

} cannot iterate over the elements of the set
} DELETE is not supported (in the basic variant)

} very space efficient, keys themselves are not stored
} Example: forbidden passwords



Bloom filter: how it works
} ! : universe of possible 

keys
} p : subset of keys,          
|p| 	= 	1

} - : size of allocated bit 
array q

} define ! hash functions ℎ1, … , ℎ+: & → {0,… ,* − 1}

} INSERT(.): set / ℎ2 . = 1 for all 1
} MEMBER(.): check / ℎ2(.) = 1 for all 1

} false positives but no false negatives



Bloom filters: analysis
} P speci:ic	bit	of	:ilter	is	0 = (1 − 1/*)34≈ D534/7 ≡ F

} P false	positive = (1 − F)3= (1 − D534/7)3

} Optimal number of hash functions: !89: = ln 2 K 74 ≈ 0.693 K 74
} Therefore, for ! = !89:,

         P false	positive = 25;< =>
+
, ≈ 0.6185

+
,

} E.g. with 10 bits per element, R[false	positive] is less than 1%

} To insure the FP rate U:  * = log= D K W K log= ?@ ≈ 1.44 K W K log= ?@



Dependence on the nb of hash functs
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Lower bound on the size of approximate 
membership data structures (AMD) 

} Bloom filter takes 1.44 L log :Z bits per key, is this optimal?

} How many AMDs are there to store all sets of size 1 drawn 
from universe ! with FPP u?

} Each AMD specifies a set of size u|!| (assuming |!| large) 
containing a set of size 1

} Any set of size 1 should be covered, and the number of such 

sets is ≥ |!|
? / Z|!|

? ≈ :
Z
?

} ⇒ each FPP must take ≥ 1 L log :Z bits



Bloom filter: properties/operations
} For the optimal number of hash function, about a half of 

the bits is 1 [immedate from the formula]
} The Bloom filter for the union is the OR of the Bloom 

filters
} Is similar true for the intersection? [explain]
} If a Bloom filter is sparse, it is easy to halve its size



Bloom filters: applications
} Bloom filters are very easy to implement
} apply to the streaming mode
} Used e.g. for

} spell-checkers (in early UNIX-systems)
} unsuitable passwords, "approximate" unsuitable passwords

(Manber&Wu 1994)
} online applications (traffic monitoring, …)
} distributed databases
} malicious sites in Google Chrome
} read articles in publishing systems (Medium)
} Google Bigtable,  Apache HBase, Bitcoin, bioinformatics, …

} Sometimes (when the set of possible queries is predefined) it
is possible to store the set of false positives in a separate data 
structure



Cuckoo filters

filters via Cuckoo hashing



General idea: use fingerprints
} Given d, pick a hash function 

e: 	f ⟶ [0. . 2789
A
B−1]

} Y e 5 = e G = +
*CDE

A
B
= d (collision probability)

← fingerprints



Filters via MPHF
} Given a set [ ⊂ f, build an MPHF ℎ: [ ⟶ [0. . 2 − 1]
} Build an array i of fingerprints: i ℎ(5) = e(5)

} Space: 2 K log +: +<size	of	MPFR>
} lower bound:   size	of	MPFR ≥ 1.442
} [ must be static, insertions/deletions are not supported

\



Cuckoo filter: ideas
} Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

} Supports insertions and deletions (assuming no collision)!

} Problem: How to move a fingerprint? i.e. how to know its 
alternative bucket? 



Cuckoo filter: ideas
} Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

} Problem: How to move a fingerprint? i.e. how to know its 
alternative bucket? 

} Let # = 2;
ℎ+: [ → [0. . 2;−1],	

ℎ*: [0. . 2
789+:−1] → [0. . 2;−1]

location 1: ℎ+(5)
location 2: ℎ+(5)⨁ℎ*(e 5 )

} Alternative location of a fingerprint 9 at location ; is 
;⨁ℎ*(9)



Remarks
} Deletions are supported!
} Two locations of a key are not fully independent. E.g. two 

keys sharing the same bucket and the same fingerprint 
have the same alternative location. (⇒ store multisets in c-
element buckets)

} Practical: Cuckoo vs. Bloom: for 
small false positive rate (< 3%) 
and c = 4, Cuckoo filter achieves 
the same performance as Bloom 
with smaller space

[Fan et al. Cuckoo filter: practically 
better than Bloom, CoNEXT 2014]


