Bloom filters

Approximate membership data structures

Bloom filters [Bloom 1970]|: generalities

» approximate membership data structure: supports INSERT
and MEMBER
» MEMBER only checks for the presence, no satellite data

» produces false positives (with controlled probability)

» cannot iterate over the elements of the set
» DELETE is not supported (in the basic variant)

» very space efficient, keys themselves are not stored
» Example: forbidden passwords

Bloom filter: how it works

‘U : universe of possible

o %N
S :subset of keys,

S| = n ALK
m : size of allocated bit —~/
array B

define k hash functions hq, ..., h,: U — {0,...,m — 1}

INSERT (x): set B[h;(x)] = 1 for all i
MEMBER(x): check B[h;(x)] = 1 for all i

false positives but no false negatives

Bloom filters: analysis

» P[specific bit of filter is 0] = (1 — 1/m)*"~ e~*/Mm = p

P[false positive] = (1 — p)¥= (1 — e~*n/m)k

v

m

Optimal number of hash functions: k,,; = In 2 % ~ 0.693 -

v Vv

Therefore, for k =k,

P[false positive] = 2™ %% ~ 0.6185%

v

E.g. with 10 bits per element, P[false positive] is less than 1%

v

To insure the FP rate e: m =log, e -n - logzi ~ 144 -n - 10g2§

Dependence on the nb of hash functs

False positive rate

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

kope =812 =545 ..
!

1 2 3 4 5 6 7 8 9

Hash functions

m/n = 8

n elements
m bits
k hash functions

Lower bound on the size of approximate
membership data structures (AMD)

» Bloom filter takes 1.44 - logi bits per key, is this optimal?

» How many AMDs are there to store all sets of size n drawn
from universe U with FPP &?

» Each AMD specifies a set of size ¢|U| (assuming |U| large)
containing a set of size n

» Any set of size n should be covered, and the number of such
: U 1\
s (/) = (3

» = each FPP must take = n - logi bits

Bloom filter: properties/operations

» For the optimal number of hash function, about a half of
the bits is 1 [immedate from the formuld]

» The Bloom filter for the union is the OR of the Bloom
filters

» Is similar true for the intersection? [explain]

» If a Bloom filter is sparse, it is easy to halve its size

Bloom filters: applications

» Bloom filters are very easy to implement
» apply to the streaming mode

» Used e.g. for
spell-checkers (in early UNIX-systems)

unsuitable passwords, "approximate" unsuitable passwords
(Manber&Wu 1994)

online applications (traffic monitoring, ...)
distributed databases
malicious sites in Google Chrome
read articles in publishing systems (Medium)
Google Bigtable, Apache HBase, Bitcoin, bioinformatics, ...
» Sometimes (when the set of possible queries is predefined) it

is possible to store the set of false positives in a separate data
structure

Cuckoo filters

filters via Cuckoo hashing

General idea: use fingerprints

» Given g, pick a hash function

1
frU— [0..210g5—1] « fingerprints

» PIf(x) = f(y)] = % = & (collision probability)

2 &

Filters via MPHF

» Given a set S € U, build an MPHF h: S — [0..n — 1]
» Build an array F of fingerprints: F[h(x)] = f(x)

F

\

» Space:n - logi + <size of MPFR>

» lower bound: size of MPFR > 1.44n
» S must be static, insertions/deletions are not supported

Cuckoo filter: ideas
» Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

» Supports insertions and deletions (assuming no collision)!

» Problem: How to move a fingerprint? i.e. how to know its
alternative bucket?

Cuckoo filter: ideas
» Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

» Problem: How to move a fingerprint? i.e. how to know its
alternative bucket?

» Let |T] = 2¢
hy:S - [0..2t—1],

1
h,: [0..2'°8e—1] - [0..2t—1]

location 1: hq(x)
location 2: hy (x)®h,(f(x))

» Alternative location of a fingerprint a at location i is

iDh;(a)

Remarks

Deletions are supported!

Two locations of a key are not fully independent. E.g. two
keys sharing the same bucket and the same fingerprint
have the same alternative location. (= store multisets in b-

element buckets)

Practical: Cuckoo vs. Bloom: for
small false positive rate (< 3%)
and b = 4, Cuckoo filter achieves
the same performance as Bloom
with smaller space

25 ¢

15 ¢

10

Bits per item to achieve €

5 L

20 ’

Crossover: 7.2 bits
(3% false positive rate)

Bloom filter
Cuckoo filter e

semisort-Cuckoo filter

Lower Bound -

0
0.001%

0.01% 0.1% 1% 10%
€: target false positive probability

Figure 4: False positive rate vs. space cost per element.
For low false positive rates (< 3%), cuckoo filters require
fewer bits per element than the space-optimized Bloom
filters. The load factors to calculate space cost of cuckoo
filters are obtained empirically.

[Fan et al. Cuckoo filter: practically
better than Bloom, CoNEXT 2014]

