
Hashing-based data structures

The most important techniques behind Yahoo! are hashing,
hashing and hashing! – Udi Manber

What is this course about
} Hashing is absolutely fundamental in both theory and

practice of algorithm design

} Focus on a family of hashing-based data structures with
different functionalities but based on common ideas
} Hash tables (containers)
} Filters
} Other functionalities

} Applying common mathematical model of random
hypergraphs

Hash tables
} Goal: maintain a (possibly evolving) set of objects

belonging to a large “universe”

} Objects are specified by keys (e.g. configurations, ID
numbers, words, etc.) ⇒ associative array

} Applications: data containers, indexing, deduplication, data
bases, path finding, compilers, etc.

Hash tables

} Supported operations:
} INSERT ! : add ! ∈ #
} DELETE(!): delete !
} LOOKUP(!): find/access !

} Notation
} ! : universe of all possible keys (Examples: strings, IP addresses, game

configurations, …)
} " : subset of keys (actually stored in the dictionary), " ≪ |!|
} |"| 	= 	'

Dictionary data
structure

Hash functions
} Hash function ℎ: Mapping from !

to entries of hash table
#[0. . '– 1].
 ℎ ∶ ! →	 {0,1, … ,'– 1}

} ℎ($) is the hash value (or simpy hash) of key $
hash
table

Hashing and collisions

0

)–1

ℎ(.1)
ℎ(.4)

ℎ(.2) = ℎ(.5)

ℎ(.3)

!
(universe of keys)

"
(actual
keys)

!1
!2
!3

!5

!4

Collisions are unavoidable and frequent unless
# = Ω && 	 (cf	birthday	paradox)

.2

I. Collision Resolution by Chaining

0

)–1

!
(universe of keys)

"
(actual
keys)

!1

!2
!3

!5

!4

!6
!7!8

.1 .4

.5 .6

.7 .3

.8

Hashing with chaining
} " = 2/' load factor (in practice, a constant close to 1)

} INSERT(5) : 7(1)
} LOOKUP(5), DELETE(5): 7(1 + 9) in expectaton,

assuming uniform hashing
} ⇒ "(1) if & = "(()
} in contrast to other containers (lists, search trees, …) hash

tables provide expected constant-time operations

II. Collision Resolution by Open Addressing
} All elements are stored in the hash table itself
} ⇒ " =

!
" < 1, no pointers

} hash function ℎ(5, ;) where ; = 0,1,2, … ,' − 1, and
< ℎ(5, 0), ℎ(5, 1), … , ℎ(5,' − 1) > is a permutation

} when inserting/looking up 5, probe ℎ(5, 0), ℎ(5, 1), …
(probe sequence) until
} we find), or
} the bucket contains &*+, or
} (buckets have been unsuccessfully probed

} deletion is complicated, needs a special key "deleted",
time may not be dependent on the load factor

Performance of Open Addressing

} Assuming that < ℎ(', 0), ℎ(', 1), … , ℎ(',- − 1) > is a
random permutation (uniformly drawn), the expected
number of probes in an insertion (or unsuccessful search)
with open addressing is
 1/(1 − "),
where " = 1/- the load factor

} Proof:
 let 27 = P[5	7irst	buckets	are	full] 	= 	"" (28 = 0)
 E number	of	probes = 1 + ∑79:

;<: 5 L M[
]

5 − 1	full	
buckets	followed	by	an	empty	one =
∑79:
;<: 5 L (27<: − 27) = 1 + ∑79:

;<:27 ≈
1 + " + "= + "> +⋯ = 1/(1 − ")

Performance of Open Addressing

} Assuming that < ℎ(', 0), ℎ(', 1), … , ℎ(',- − 1) > is a
random permutation (uniformly drawn), the expected
number of probes in an insertion (or unsuccessful search)
with open addressing is
 1/(1 − "),
where " = 1/-	the load factor

} The expected number of probes for a successful search is
:
?∑798

?<: :
:< !

"
≤ (1/")	ln(1/(1 − "))

What makes a good hash function
} easy to store and to compute (in 7(1) time)

} distributes keys into buckets as uniformly as possible
(behaves like a ”random function”)
} ℎ is fixed, keys are random

} chaining: division method, multiplication method
} open addressing: linear probing, quatratic probing, double hashing

} keys are fixed, ℎ is randomly drawn from some family of
functions
} practical advantage: ℎ can be selected at execution time

12th USENIX Security Symposium, 2003

Universal hashing
} Definition: A family T of hash functions is called universal iff for

any pair of keys ' ≠ V,
P@∈B[ℎ(') = ℎ(V)] ≤ 1/-

(Equiv., the nb of hash functions ℎ with ℎ(') = ℎ(V) is ≤ |T|/-)

} Theorem: under hashing with chaining, the expected time (over
ℎ ∈ T) of INSERT, DELETE, LOOKUP is Y(1+ ')

 NB: no assumption on the distribution of keys

} Universal class of hash functions first introduced by
Carter&Wegman (1979), construction based on elementary
number theory

Universal hash functions: matrix method
} ! = [0. . 2C − 1], - = 2D

} \: random]×_ boolean matrix
} ℎE ' = \', where multiplication is done over (⊕,⋀)

} Example:
1
0
1

0
1
1

0
1
1

0
1
0

1
0
1
0

=
1
1
0

} Let ', V ∈ !, ' ≠ V. Show that P@ ℎ ' = ℎ V ≤ :
=# =

:
;

} Proof: Assume ' and V differ in 5-th bit which is 0 in ' and 1 in
y. ℎ ' does not depend on the 5-th column of ℎ. ℎ(V) are all
different over 2D choices of the 5-th column. Therefore
ℎ ' = ℎ(V) with probability ≤ 1/2D.

Universal hash function: prime table size
} Assume we are hashing IP addresses '1. '2. '3. '4 with
0 ≤ '7 ≤ 255

} Choose - > 255 a prime number
} Consider quadruples c = (c1, c2, c3, c4) with 0 ≤ c7 ≤ - − 1
} Define
ℎ'('1. '2. '3. '4) = (c1 ⋅ '1+ c2 ⋅ '2+ c3 ⋅ '3+ c4 ⋅ '4) mod -

} T = {ℎF} is a universal family
} Proof: Let ' = ':. '=. '>. 'G and V = V:. V=. V>. VG. Assume
'> ≠ V>. If ℎ ' = ℎ(V), then

c> '> − V>
= c: ': − V: + c= '= − V= + cG 'G − VG 	mod	-

Since '> − V> ≠ 0 and - is prime, c> is uniquely defined. Since
c> is chosen at random, P@ ℎ ' = ℎ V ≤ :

;

Multiply-shift universal hashing
} (-universal family): for any pair of keys $ ≠ +,

P0∈2[ℎ($) = ℎ(+)] ≤ (/2
} Multiply-shift hashing is 2-universal [Dietzfelbinger et al. A

reliable randomized algorithm for the closest-pair problem,
J. Algorithms, 25:19–51, 1997]

 ℎ#: 0. . 2$ − 1 → [0. . 2% − 1] defined by
 ℎ# 5 = (A5	mod	2$)/2$&% for a random E-bit odd
integer A
} for more details [M.Thorup, High Speed Hashing for

Integers and Strings, arxiv:1504.06804, 2019]

https://arxiv.org/pdf/1504.06804.pdf

Perfect hashing

Motivation
} Can we guarantee a worst-case 7(1) time for hash table

operations?

} Yes if the set of keys is static

} Naive solution: sorting
} construction "(& log &)
} space "(&)
} lookup "(log &)

"(&) expected
"(&)
"(1)

next slides

hash function takes
"(&) bits to store

Collisions: analysis
} What is the expected number of collisions?

} i.e. number of pairs), 1 ,) ≠ 1	and	ℎ) = ℎ(1)
} F'(= 1 iff ℎ 5 = ℎ(G)

} H ∑')(F'(= ∑')(H F'(= !
*

+
" ≈ !(

*"

} Remarks:
} if (≈ &!, then we have "! expected collisions ⇒

8 ∃	collision ≤ "
! (cf birthday paradox)

} by iterating, we can build a hash table with NO collision after
"(1) trials in expectation

Markov inequality

$[& ≥ (] ≤ +[&]
(

Perfect hashing: 2-level scheme
} Fredman, Komlós, Szemerédi (1984)
} Guarantees Y(1) worst-case time of LOOKUP for a static set

of keys. Solution uses universal hashing.
} 2-level hash scheme:

} LOOKUP: worst-case Y(1)

Why ∑">? can be maid ≤ 2"
} ∑2,* = 2 + 2 K ∑ !)

* ← # of colliding pairs

} E #	of	colliding	pairs = !
*

+
! ≈

!
*

} ⇒ E[∑2,*] = 22	 ⇒ Y ∑2,* > 42 < 1/2

} Algorithm (sketch)
} hash to primary table of size "(&) using a universal h.f. ℎ
} hash each non-empty bucket to a table of size &#!; if ∑&#! > 4&, rehash
} using a universal h.f. ℎ#; if collision, rehash until there is none

(expected "(1) time by birthday paradox)

by Markov inequality

Perfect hashing is practical
} practical implementations exist, e.g. gperf in C++

Minimal Perfect Hash Functions (MPHF)
} MPHF: bijective perfect hash function, i.e. ℎ: [→ [1. . |[|]
} enumeration of keys of [
} efficient construction algorithms of MPFH exist, see e.g.

[Fox et al., Comm. ACM 32, 1992]
} space efficiency: a few bits per key
} lower bound ≈ 1.44 bits/key, cf [Mehlhorn 82],

[Belazzougui, Botelho, Dietzfelbinger 09]

Cuckoo hashing

(prefect hashing with open addressing)

Power of choice : Two-choice hashing
} 2 keys, 2 buckets
} if each key is placed to a random bucket, the fullest

bucket will have 7(log 2 / log log 2) keys, w.h.p.
} [Azar et al. 2000] if each key is mapped to two random

buckets and the less full bucket is chosen, the fullest
bucket will have O(log log 2) keys, w.h.p.

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]

h1(k)

h2(k)

*

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5

*

+

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5

+

*

alternative
bucket for)

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5

h1(k)

h2(k)

*

,

'

-

.

/

0
1

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5

-

,

'

*

.

/

0
1

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5

0

,

'

*

.

/

-
1

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5

/

,

'

*

.

0

-
1

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5

/

,

'

*

.

0

-
1

Cuckoo hashing
} Introduced by Pagh&Rodler in 2001
} uses two independent hash functions ℎ1 and ℎ2
} LOOKUP(5): check buckets #[ℎ+(5)] and #[ℎ*(5)]
} INSERT(5):
 ^_` ← ℎ+(5)
 loop 2 times
 if #[^_`] is empty then
 #[^_`] ← 5; return
 swap values of 5 and #[^_`]
 ^_` ← alternative position for 5
 rehash from scratch

h1(k)

h2(k)

*

,

'

-

.

/

0
1

Cuckoo graph
} Once ℎ1 and ℎ2 are selected, each set of keys induces a

graph

c g h i j k …

0 1 2 3 4 5 6 7

0 4
c

1

j

3 h

2 g 5

7

i k

6

Cuckoo graph
} Once ℎ1 and ℎ2 are selected, each set of keys induces a

graph, and a placement induces and orientation

c g h i j k …

0 1 2 3 4 5 6 7

0 4
c

1

j

3
h

2
g

5

7
i

k

6

c jhg k i

Analysis of cuckoo hashing
} Def: an undirected graph is orietable if all edges can be

directed so that the outdegree of each node is ≤ 1

} Q1: how likely that a random Erdos-Rényi graph with '
nodes and 2 edges is orientable?

} Q2: how likely is a rehash? what is the expected time of
an insertion? what is the expected time of successively
building a hash table? ..

Analysis of cuckoo hashing: orientability
} Orientability of a random graph l?,; undergoes a phase

transition depending on load factor " = 2/':
} for C < 1/2, Ρ[I&,(is	orientable] → 1 as & → ∞
} for C > 1/2, Ρ[I&,(is	orientable] → 0 as & → ∞

} Therefore, we should allocate ' > 22

Analysis of cuckoo hashing: time
} Precise analysis is somewhat complicated
} Simplification:

} consider undirected graphs (instead of directed)
} analyze the probability of a path of length R between two

nodes (this covers cycles)

Cost of insertions: How many iterations?
Theorem: if 1 < ;

=(:QR), then P[shortest path from 5 to m is of

length i]≤ :
; (1 + n)

<S

⇒ P[m is accessible from 5]= Y(
:
;)

⇒ number of accessible nodes is 1 L Y :
; = Y(1)

Proof:
} ! = 1	 ⇒ P[an edge connects & and '] ≤ !

"* 	⇒	P[exists an edge

between & and ']≤ !#
"* <

$
" (1 + ,)

%$

} induction: ! ⇒ ! + 1
} for a fixed -, ,- (1 + 1)

./3 ,- 1 + 1 ., = ,
-* (1 + 1).(/1,)

} summing over . possibilities for /, we obtain $" (1 + ,)
%('($)

Cost of rehashing: how likely is a cycle?
} If 2 < "

*(+56), careful analysis shows that the probability of

a rehash is 7 +
!(

} A rehash involves 2 insertions, each taking expected 7(1)
time ⇒ amortized cost of rehashing is 7 +

! time per
insertion

} for more details see
https://www.itu.dk/people/pagh/papers/cuckoo-undergrad.pdf

 http://www.cs.utoronto.ca/~noahfleming/CuckooHashing.pdf

https://www.itu.dk/people/pagh/papers/cuckoo-undergrad.pdf
http://www.cs.utoronto.ca/~noahfleming/CuckooHashing.pdf

Cuckoo hashing: summary
} LOOKUP, DELETE: worst-case 7(1) (two probes)
} INSERT: expected 7 1

} deletions supported
} no dynamic memory allocation (as in chaining)
} reasonable memory use, but load factor <1/2
} generalization: (b, c)-cuckoo hashing

} S hash functions (instead of 2), each bucket carries T items
} admits a much higher load factor, e.g. (3,4)-tables admits load

factor of over 99.9% [Walzer, ICALP 2018]

Critical load for % > 2 or ' > 1

T 2 3 4 5 6 7
critical load
(orientability threshold)

0.5 0.918 0.976 0.992 0.997 0.999

X 1 2 3 4 5 8 10
critical load 0.5 0.897 0.959 0.980 0.989 0.997 0.999

3 = 1

) = 2

