Hashing-based data structures

The most important techniques behind Yahoo! are hashing,
hashing and hashing! — Udi Manber




What is this course about

» Hashing is absolutely fundamental in both theory and
practice of algorithm design

» Focus on a family of hashing-based data structures with
different functionalities but based on common ideas
Hash tables (containers)
Filters
Other functionalities

» Applying common mathematical model of random
hypergraphs



Hash tables

> : maintain a (possibly evolving) set of objects
belonging to a large “universe”

» Objects are specified by keys (e.g. configurations, ID
numbers, words, etc.) = associative array

> : data containers, indexing, deduplication, data
bases, path finding, compilers, etc.



Hash tables

» Notation

‘U :universe of all possible keys (Examples: strings, IP addresses, game
configurations, ...)

S :subset of keys (actually stored in the dictionary), |S| < |U|
S| = n

» Supported operations:

INSERT (x) :add x € U Dictionary data
DELETE(x): delete x

structure
LOOKUP(x):find/access x
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» h(x) is the hash value (or simpy hash) of key x



Hashing and collisions
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[. Collision Resolution by Chaining
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Hashing with chaining

» a =n/m load factor (in practice, a constant close to 1)

» INSERT (x) : 0(1)
» LOOKUP(x), DELETE(x): O(1 + «) in expectaton,
assuming uniform hashing
= 0(1) ifn=0(m)
in contrast to other containers (lists, search trees, ...) hash
tables provide expected constant-time operations



[I. Collision Resolution by Open Addressing

» All elements are stored in the hash table itself
y S a= % < 1, no pointers

» hash function h(x,i) wherei =0,1,2,...,m—1, and
< h(x,0),h(x,1),...,h(x,m — 1) > is a permutation
» when inserting/looking up x, probe h(x,0), h(x, 1), ...
(probe sequence) until
we find x, or
the bucket contains nil, or
m buckets have been unsuccessfully probed

» deletion is complicated, needs a special key "deleted”,
time may not be dependent on the load factor



Performance of Open Addressing

» Assuming that < h(x,0),h(x,1),...,A(x,m —1) > isa
random permutation (uniformly drawn), the expected
number of probes in an insertion (or unsuccessful search)
with open addressing is

1/(1 - a),

where a = n/m the load factor

» Proof:
let p; = PJi first buckets are full] = a* (pg = 0)
E[number of probes] = 1 + Y77 i - P[i — 1 full
buckets followed by an empty one] =

lll (pi-1 — pl)_1+2l1pl~
ltat+a’*+a’+-=1/(1—a)



Performance of Open Addressing

» Assuming that < h(x,0),h(x,1),...,A(x,m —1) >isa
random permutation (uniformly drawn), the expected
number of probes in an insertion (or unsuccessful search)
with open addressing is

1/(1 - a),

where a = n/m the load factor

» The expected number of probes for a successful search is

Lyt < (1/a) In(1/(1 - @)



What makes a good hash function

» easy to store and to compute (in O(1) time)

» distributes keys into buckets as uniformly as possible
(behaves like a “random function™)
h is fixed, keys are random

chaining: division method, multiplication method

open addressing: linear probing, quatratic probing, double hashing

keys are fixed, h is randomly drawn from some family of
functions

practical advantage: h can be selected at execution time
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Abstract

We present a new class of low-bandwidth denial of
service attacks that exploit algorithmic deficiencies
in many common applications’ data structures. Fre-
quently used data structures have “average-case”
expected running time that’s far more efficient than

the worst case. For example. both binary trees and
hash tables can degenerate to linked lists with care-

sume O(n) time to insert n elements. However, if
each element hashes to the same bucket, the hash
table will also degenerate to a linked list, and it will

take é(n‘) time to insert z# elements.

While balanced tree algorithms, such as red-black
trees [11], AVL trees [1], and treaps [17] can avoid
predictable input which causes worst-case behav-
ior, and universal hash functions [5] can be used
to make hash functions that are not predictable by

fully chosen input. We show how an attacker can
effectively compute such input, and we demonstrate
attacks against the hash table implementations in
two versions of Perl, the Squid web proxy, and the
Bro intrusion detection system. Using bandwidth
less than a typical dialup modem, we can bring a
dedicated Bro server to its knees; after six min-
utes of carefully chosen packets, our Bro server was
dropping as much as 71% of its traffic and consum-
ing all of its CPU. We show how modern universal
hashing techniques can yield performance compa-
rable to commonplace hash functions while being
provably secure against these attacks.

an attacker, many common applications use simpler
algorithms. I an attacker can control and predict
the inputs being used by these algorithms, then the
attacker may be able to induce the worst-case exe-
cution time, effectively causing a denial-of-service
(DoS) attack.

Such algorithmic DoS attacks have much in com-
mon with other low-bandwidth DoS attacks, such as
stack smashing [2] or the ping-of-death !, wherein a
relatively short message causes an Internet server to
crash or misbehave. While a variety of techniques
can be used to address these DoS attacks. com-
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Last year, at 28¢3, presented against web applications.

One of the most impressing demonstrations of the attack was sending crafted data to a web application. The web application would
dutifully parse that data into a hash table, not knowing that the data was carefully chosen in a way so that each key being sent would
cause a collision in the hash table. The result is that the malicious data sent to the web application elicits worst case performance
behavior of the hash table implementation. Instead of amortized constant time for an insertion, every insertion now causes a collision

and degrades our hash table to nothing more than a fancy linked list, requiring linear time in the table size for each consecutive insertion.
Details can be found in the




Universal hashing

» Definition: A family H of hash functions is called universal iff for
any pair of keys x # vy,

Prenlh(x) = h(y)] = 1/m
(Equiv., the nb of hash functions h with h(x) = h(y) is < |H|/m)

» Theorem: under hashing with chaining, the expected time (over
h € H) of INSERT, DELETE, LOOKUP is O(1 + @)

NB: no assumption on the distribution of keys

» Universal class of hash functions first introduced by

Carter&Wegman (1979), construction based on elementary
number theory



Universal hash functions: matrix method

v

U=10..2%—-1],m = 2"
M:random wXu boolean matrix

hy;(x) = Mx, where multiplication is done over (, \)

1000\ (3 /1
Example:| 0111 1]~ 1

1110 0 0
Let x,y € U, x # y. Show that P, [h(x) = h(y)] < ziw = %
Proof:Assume x and y differ in i-th bit which is 0 in x and 1 in
y. h(x) does not depend on the i-th column of h. h(y) are all

different over 2% choices of the i-th column.Therefore
h(x) = h(y) with probability < 1/2%.



Universal hash function: prime table size

» Assume we are hashing IP addresses x;. x,. x3. x, with
0< Xi < 255
» Choose m > 255 a prime number
» Consider quadruples a = (a, a,, a3, a,) with0 < a; <m-—1
» Define
h (x1.Xy.X3.%4) = (a1 X1+ Ay Xy, + a3 X3+ Ay x,) modm
» H = {h,} is a universal family
» Proof:Let x = x1.X7.X3.X4 and y = y1. V5. V3. V4. Assume
x3 * y3. If h(x) = h(y), then
az(x3 — y3)
= a1(x1 — Y1) + ax(xz — y2) + ag(x4 — y4) modm
Since x3 — y3 # 0 and m is prime, a3 is uniquely defined. Since

as is chosen at random, P, [h(x) = h(y)] < %



Multiply-shift universal hashing

» c-universal family H:for any pair of keys x # v,

Prenlh(x) = h(y)] = c/m

» Multiply-shift hashing is 2-universal [Dietzfelbinger et al. A
reliable randomized algorithm for the closest-pair problem,
J.Algorithms, 25:19-51, 1997]

hg:10..2% — 1] = [0..2% — 1] defined by

h,(x) = |(ax mod 2%)/2¥™Y| for a random u-bit odd
integer a

» for more details [M.Thorup, High Speed Hashing for
Integers and Strings, , 2019]


https://arxiv.org/pdf/1504.06804.pdf

Perfect hashing




Motivation

» Can we guarantee a worst-case 0(1) time for hash table
operations!

» Yes if the set of keys is static

» Naive solution: sorting next slides
construction O(nlogn) O(n) expected
space 0(n) 0(n)
lookup O(logn) 0(1)

hash function takes
O (n) bits to store



Collisions: analysis

» What is the expected number of collisions!?
i.e. number of pairs (x,y),x # y and h(x) = h(y)
» Xy = 1iff h(x) = h(y)
le

b E|Zry Xy| = Zaay E[Xuy| = (Tzl)% ~om

2m

» Remarks:
1

if m ~ n?, then we have ~ expected collisions =

Markov inequality

P|3 collision] < % (cf birthday paradox) PIX = a] S#

by iterating, we can build a hash table with NO collision after
O (1) trials in expectation



Pertect hashing: 2-level scheme

» Fredman, Komlos, Szemeredi (1984)

» Guarantees 0(1) worst-case time of LOOKUP for a static set
of keys. Solution uses universal hashing.

» 2-level hash scheme:
h i ]
\/ \l/
q\kl\kg (h'\\kQ\\]{'5k4\\

J
\ J — _/

» LOOKUP: worst-case O(1)



Why Y n;* can be maid < 2n
»yYni=n+2- Z(Zi) « # of colliding pairs

n

» E[# of colliding pairs] = (g)% ~ 2

» > E[Xn;?]=2n =2 P[Xn? >4n] < 1/2
by Markov inequality

» Algorithm (sketch)
hash to primary table of size O(n) using a universal h.f. h

hash each non-empty bucket to a table of size n;?; if
Y n;%2 > 4n, rehash

using a universal h.f. h;; if collision, rehash until there is none
(expected O (1) time by birthday paradox)



Perfect hashing is practical

» practical implementations exist, e.g. gperf in C++



Minimal Perfect Hash Functions (MPHF)
» MPHF: bijective perfect hash function,i.e. h: S = [1..]|S]]

» enumeration of keys of S

» efficient construction algorithms of MPFH exist, see e.g.
[Fox et al., Comm.ACM 32, 1992]

» space efficiency: a few bits per key

» lower bound = 1.44 bits/key, cf [Mehlhorn 82],
[Belazzougui, Botelho, Dietzfelbinger 09]



Cuckoo hashing

(prefect hashing with open addressing)




Power of choice : Two-choice hashing

» n keys, n buckets

» if each key is placed to a random bucket, the fullest
bucket will have O(logn /loglogn) keys, w.h.p.

» [Azar et al. 2000] if each key is mapped to two random
buckets and the less full bucket is chosen, the fullest
bucket will have O(loglogn) keys, w.h.p.



Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]

hy(k)

k

4
5




Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]
» INSERT (x):
pos < hy(x)
loop
if T|pos] is empty then
T|pos] < x;return k
swap values of x and T'[pos]
pos « alternative position for x




Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]
» INSERT (x):
pos < hy(x)
loop
if T|pos] is empty then /'
T|pos] < x;return z
swap values of x and T'[pos]
pos « alternative position for x

alternative
bucket for



Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]
» INSERT (x):
pos < hy(x)
loop hy
if T|pos] is empty then &
T|pos] < x;return m%
swap values of x and T'[pos]
pos « alternative position for x




Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]
» INSERT (x):
pos < hy(x)
loop
if T|pos] is empty then b
T|pos] < x;return x
swap values of x and T'[pos]
pos « alternative position for x




Cuckoo hashing

» Introduced by Pagh&Rodler in 2001

» uses two independent hash functions i and h;

» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]
» INSERT (x):

pos < hq(x)
loop

if T|pos] is empty then ¢
T|pos] < x;return \

swap values of x and T'[pos]
pos « alternative position for x

-y

=~




Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]

» INSERT (x):

pos « hy (¥) /
loop
e

if T|pos] is empty then d

T|pos] < x;return

-y

=~

swap values of x and T'[pos]

pos « alternative position for x




Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]
» INSERT (x):
pos < hy(x)
loop
if T|pos] is empty then
T|pos] < x;return
swap values of x and T'[pos]
pos « alternative position for x

-y
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Cuckoo hashing

» Introduced by Pagh&Rodler in 2001
» uses two independent hash functions i and h;
» LOOKUP(x): check buckets T'[h;(x)] and T|h,(x)]
» INSERT (x):
pos < hy(x) -
loop n times /
if T|pos] is empty then &
T|pos] < x;return m%
swap values of x and T'[pos]
pos « alternative position for x

rehash from scratch

t1




Cuckoo graph

» Once h; and h; are selected, each set of keys induces a
graph




Cuckoo graph

» Once h; and h; are selected, each set of keys induces a
graph, and a placement induces and orientation

a b C e f d
0 1 2 3 4 5 6 7

:I z .

3 7 6




Analysis of cuckoo hashing

» Def:an undirected graph is orietable if all edges can be
directed so that the outdegree of each node is < 1

» Q1:how likely that a random Erdos-Rényi graph with m
nodes and n edges is orientable!?

» Q2: how likely is a rehash? what is the expected time of
an insertion? what is the expected time of successively
building a hash table? ..



Analysis of cuckoo hashing: orientability

» Orientability of a random graph G,, ;,, undergoes a phase
transition depending on load factor @ = n/m:
fora <1/2, P|G;, 1, is orientable] > 1asn - oo

fora > 1/2, P|Gy, , is orientable] » 0 asn - o

» Therefore, we should allocate m > 2n



Analysis of cuckoo hashing: time

» Precise analysis is somewhat complicated
» Simplification:
consider undirected graphs (instead of directed)

analyze the probability of a path of length d between two
nodes (this covers cycles)



Cost of insertions: How many iterations?

Theorem:if n < then P[shortest path from i to j is of

m
. 2(1+68)
length d]< — (1 + 5)~¢

= P[j is accessible from i]= 0(%)

= number of accessible nodes is n - 0 (#) =0(1)

Proof:
d =1 = P[an edge connects i and j] <
: < 2t oL -1
between i and j]< < (1+6)
induction:d = d + 1
- 1 -a, 1 -1_ 1 —(d+1)
foraflxedk,m(1+5) m(1+5) —m2(1+5)

2

— = Plexists an edge

summing over m possibilities for k, we obtain %(1 + 5)‘(‘”1)



Cost of rehashing: how likely is a cycle?

m
2(1+6)

a rehash is O (i)

n2

» lfn < careful analysis shows that the probability of

» A rehash involves n insertions, each taking expected O (1)

1

time = amortized cost of rehashing is O (ﬁ) time per

insertion

» for more details see


https://www.itu.dk/people/pagh/papers/cuckoo-undergrad.pdf
http://www.cs.utoronto.ca/~noahfleming/CuckooHashing.pdf

Cuckoo hashing: summary

» LOOKUP, DELETE: worst-case O(1) (two probes)
» INSERT: expected 0(1)

» deletions supported

» no dynamic memory allocation (as in chaining)
» reasonable memory use, but load factor <1 /2
» generalization: (H, b)-cuckoo hashing

H hash functions (instead of 2), each bucket carries b items

admits a much higher load factor, e.g. (3,4)-tables admits load
factor of over 99.9% [Walzer, ICALP 2018]



Critical load for H > 2 or b > 1

b=1
—----n-
critical load 0.918 0.976 0.992 0.997 0.999

(orientability threshold)

H=2
-_-----n-

critical load 0.5 0.897 0.959 0.980 0.989 0.997 0.999
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Don't Throw Out Your Algorithms Book Just Yet: Classical Data
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There’s recently been a lot of excitement about a new proposal from authors at Google: to replace conventional indexing data
structures like B-trees and hash maps by instead fitting a neural network to the dataset. The paper compares such learned
indexes against several standard data structures and reports promising results. For range searches, the authors report up 3.2x

speedups over B-trees while using 9x less memory, and for point lookups, the authors report up to 80% reduction of hash table
memory overhead while maintaining a similar query time.

While learned indexes are an exciting idea for many reasons (e.g., they could enable self-tuning databases), there is a long
literature of other optimized data structures to consider, so naturally researchers have been trying to see whether these can do
better. For example, Thomas Neumann posted about using spline interpolation in a B-tree for range search and showed that this
easy-to-implement strategy can be competitive with learned indexes. In this post, we examine a second use case in the paper:
memory-efficient hash tables. We show that for this problem, a simple and beautiful data structure, the cuckoo hash, can
achieve 5-20x less space overhead than learned indexes, and that it can be surprisingly fast on modern hardware, running nearly

2x faster. These results are interesting because the cuckoo hash is asymptotically better than simpler hash tables at load

balancing, and thus makes optimizing the hash function using machine learning less important: it’s always great to see cases

where beautiful theory produces great results in practice.

Going Cuckoo for Fast Hash Tables

Let’s start by understanding the hashing use case in the learned indexes paper. A typical hash function distributes keys
randomly across the slots in a hash table, causing some slots to be empty, while others have collisions, which require some form
of chaining of items. If lots of memory is available, this is not a problem: simply create many more slots than there are keys in
the table (say, 2x) and collisions will be rare. However, if memory is scarce, heavily loaded tables will result in slower lookups
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